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Abstract—Sequential matrix diagonalisation (SMD) refers to
a family of algorithms to iteratively approximate a polynomial
matrix eigenvalue decomposition. Key is to transfer as much
energy as possible from off-diagonal elements to the diagonal
per iteration, which has led to fast converging SMD versions
involving judicious shifts within the polynomial matrix. Through
an exhaustive search, this paper determines the optimum shift in
terms of energy transfer. Though costly to implement, this scheme
yields an important benchmark to which limited search strategies
can be compared. In simulations, multiple-shift SMD algorithms
can perform within 10% of the optimum energy transfer per
iteration step.

I. INTRODUCTION

Polynomial matrices arise in many broadband multichannel

or array problems, where a multivariate process, described

by x[n] ∈ CM , requires the use of delays rather than

phase shifts which leads to a space-time covariance matrix

R[τ ] = E
{
x[n]xH[n− τ ]

}
, with E{·} being the expectation

operator. Its z-transform, the cross-spectral density matrix

R(z) =
∑

τ R[τ ]z−τ •—◦ R[τ ], is a polynomial in z [1] and

possesses the parahermitian property R(z) = R̃(z), where

R̃(z) = RH(z−1) is the parahermitian of R(z).
A polynomial EVD (PEVD) of R(z) is required to extend

the EVD’s utility from many narrowband problems to the

broadband case [2],

R(z) ≈ Q(z)D(z)Q̃(z) , (1)

with Q(z) paraunitary, i.e. Q(z)Q̃(z) = I, and a diagonal

D(z),

D(z) = diag{D0(z) D1(z) . . . DM−1(z)} . (2)

Similar to an ordered EVD or an SVD [3], the polynomial

eigenvalues in D(z) are ordered, such that the power spectral

densities Dm(ejΩ) = Dm(z)|z=ejΩ satisfy

Dm+1(e
jΩ) ≥ Dm(ejΩ) ∀ Ω m = 0 . . . (M − 1) . (3)

Equality in (1) for FIR paraunitary matrices is not guaran-

teed [2], but is likely to be valid for high orders of Q(z) in

close approximation [4].

The PEVD is important for a number of applications.

This includes subband coding [5], filter bank-based channel

coding [6], design of broadband precoding and equalisation

of MIMO systems [7], and broadband angle of arrival estima-

tion [8], to name but a few. A number of these methods utilise

broadband subspace techniques [6]–[8], where the accuracy of

the PEVD w.r.t. diagonalisation and spectral majorisation is

directly linked to the performance of the specific applications.

A number of iterative algorithms to approximate (1) have

been developed, including the second order sequential best

rotation (SBR2) algorithm [2] and a coding gain optimised

SBR2 version [5]. SBR2 has been successful at transferring

the energy of the maximum off-diagonal element at every step,

and has been proven to converge. Iterations will stop once off-

diagonal elements are suppressed below a given threshold. An

approximate PEVD (APEVD) [9] is based on a fixed target

order for the decomposition, with convergence not proven.

A recent sequential matrix diagonalisation (SMD, [10]) al-

gorithm clears an entire column per iteration; by transferring

more energy, SMD converges faster and to a more accurate

diagonalisation than SBR2.

Based on the diagonalisation idea of SMD, a multiple-

shift (MS-SMD) version has been developed [11], which does

not transfer the energy of one but of several columns at

every step. This calls for little extra complexity over SMD,

but leads to a further enhancement of energy transfer and

diagonalisation accuracy. The added complexity lies in the

identification of appropriate column shifts. Since each column

shift is combined with a shift of the associated row, elements

cannot be moved in isolation, and may be affected by a number

of subsequent shifts. Therefore, the identification of elements

and careful shifting of columns such that no previous effort is

undone is tricky and requires a limitation of the search space

for the shift parameters. As a further restriction, the extracted

Q(z) can be constrained to be causal [12].

Since it is difficult to assess how much the search space

for MS-SMD algorithms limits performance, the aim of this

paper is to determine the maximum possible energy transfer

per iteration step. At present, the only available means is an

exhaustive search, which is very expensive but can serve as an

important benchmark to which reduced search space methods

can be compared.

Below, Sec. II reviews iterative PEVD algorithms of the

SMD family. Sec. III outlines the exhaustive search, with

results presented in Sec. IV and conclusions drawn in Sec. V.



II. ITERATIVE POLYNOMIAL EVD APPROXIMATION

USING SEQUENTIAL MATRIX DIAGONALISATION

A. General SMD Approach

All SMD algorithms are initialised with the space-time

covariance matrix R(z), such that

S(0)(z) = Q(0)HR(z)Q(0) . (4)

The matrix Q(0) is the modal matrix obtained from an EVD

of R[0] = Q(0)S(0)[0]Q(0)H, with S(0)[τ ] ◦—• S(0)(z). This

ensures that at the start of the iteration, the lag zero or

instantaneous covariance matrix S(0)[0] is diagonal.

At the ith iteration, in a first step the SMD family of

algorithms perform a shift operation

S(i)′(z) = Λ̃
(i)
(z)S(i−1)(z)Λ(i)(z) , i = 1 . . . I , (5)

using a diagonal delay matrix Λ(i)(z) that depends on the

particular algorithm version and will be defined further below.

Its aim is to shift one or several columns of S(i−1)(z) such

that large off-diagonal elements are transferred to the zero-lag

matrix S(i)′[0]. In a second step, the off-diagonal elements in

S(i)′[0] are eliminated via

S(i)(z) = Q(i)HS(i)′(z)Q(i) (6)

by setting Q(i) as the modal matrix of the EVD of S(i)′[0],
S(i)′[0] = Q(i)S(i)[0]Q(i)H.

The iteration with steps (5) and (6) continues until a set

threshold for the maximum off-diagonal element or some

norm defined over the off-diagonal elements is reached. The

SMD algorithm has been proven to converge, since every

step reduces the off-diagonal energy, with a transfer onto

the diagonal. Since this transfer is performed by paraunitary

operations, the overall energy remains unaltered, and the off-

diagonal energy therefore continues to reduce with every

iteration.

Once the algorithm has been stopped after I iterations, the

approximately diagonalised matrix D(z) in (1) is

D(z) ≈ S(I)(z) . (7)

The paraunitary matrix in (1) can be assembled via the delay

matrices Λ(i) and rotations Q(i),

Q(z) ≈ Q(0)
I∏

i=1

Λ(i)(z)Q(i) . (8)

Thus, the PEVD is approximated with (7) and (8).

B. Sequential Matrix Diagonalisation (SMD)

SMD in its basic form [10] identifies in the ith iteration

a single column — indicated by its column index k(i) and

lag index τ (i) — with maximum l2-norm over its off-diagonal

elements,

{k(i), τ (i)} = argmax
k,τ
‖ŝ

(i−1)
k [τ ]‖2 . (9)

The vector ŝ
(i−1)
k [τ ] ∈ CM−1 contains all elements of the

k(i)th column at the τ (i) lag, except for the diagonal element.

With the parameters identified according to (9), the column

shift is performed by

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)
−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} (10)

as the delay matrix in (5).

C. Maximum Element SMD (ME-SMD)

To ease the search in (9), the costlier l2-norm can be

replaced by the less expensive l∞-norm, such that the shifted

column is identified by containing the maximum off-diagonal

element. Even though most of the SMD’s computation burden

lies in the EVD calculation and the application of the modal

matrix at all lag values, the ME-SMD version brings a slight

computational advantage over the standard SMD as described

in Sec. II-B.

D. Multiple Shift ME-SMD (MSME-SMD)

The fact, that the complexity of SMD and ME-SMD algo-

rithms is governed by the application of an EVD to S(i)′[0] and

the multiplication of S(i)′(z) with a unitary matrix, allows the

shifting of several columns onto the lag zero matrix S(i)′[0]
at little extra cost. This can enhance the energy transfer of

off-diagonal elements onto the main diagonal and lead to a

significant increase on convergence speed.

To consider multiple shifts, the delay matrix in (5) takes the

form

Λ(i)(z) = diag
{

z−τ
(i)
0 z−τ

(i)
1 . . . z−τ

(i)
M−1

}

. (11)

Determining the delays τ
(i)
m is tricky since column shifts by

Λ(i)(z) will partially be undone by row shifts applied through

Λ̃
(i)
(z) in (5). Search strategies have been aimed at finding

and isolating maximum off-diagonal elements that will be

unaffected by other shifts [11]. By reducing the search space,

(M − 1) off-diagonal local maxima can be identified and

shifted, with a further restriction to causality of (11) leading

to a causally constrained MSME-SMD (C-MSME-SMD).

III. MAXIMUM ENERGY SMD ALGORITHM

A. Idea

Different to the limited search strategies of previous SMD

algorithms reviewed in Sec. II, the maximum energy SMD

approach finds the set of shifts for the delay matrix Λ(i)(z) in

(11), such that the maximum amount of off-diagonal energy

is transferred onto the zero lag S(i)′[0] of the parahermitian

matrix S(i)′(z) at the ith iteration, where it can be eliminated

by (6). Below we focus on the ith iteration, and assume that

S(i−1)(z) ∈ CM×M has a support of 2L+1, i.e. S(i−1)[τ ] =
0 ∀ |τ | > L, from which the optimum Λ(i)(z) can be

determined via an exhaustive search.
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Fig. 1. Visualisation of possible delay matrices for M = 4 and L = 1;
each top-bottom path in the (2∆max+1)×M trellis defines the parameters
of a possible delay matrix; one specific matrix is highlighted in red, with
redundant matrices for horizontally shifted paths.

B. Exhaustive Search

In the case of a single shift algorithm, the maximum shift

length, ∆max, is L. Under multiple shifts the movement of

one row/column pair will affect other rows and columns and

so the maximum shift, ∆max, becomes ⌈(M − 1)L/2⌉.

Varying each diagonal element of Λ(i)(z) in (11) over the

interval τ ∈ [−∆max,∆max] will lead to (2∆max + 1)M

possible shift combinations. This is visualised in Fig. 1 for

the case M = 4 and L = 1, with the mth row representing

all possible values for τ (i,m) in (11). Each path from top to

bottom represents one particular combination of shifts, with

a total number of (2∆max + 1)M possibilities. For larger

values of M or L, the diagram in Fig. 1 expands vertically or

horizontally, respectively.

Of the established (2∆max + 1)M possible shift combina-

tions, a number of combinations are redundant, because for

(5), z−∆Λ(i)(z), with ∆ chosen arbitrarily, will implement

a shift that is identical to Λ(i)(z). As an example for the

case of S(i−1)[τ ] ∈ C
4×4 with L = 1, Fig. 1 highlights

three redundant combinations that yield the same results

as Λ(i)(z) = diag
{
[z2 z2 z z2]

}
. Selecting one path, its

redundant copies can be identified by strict horizontal shifts

within the trellis, which correspond to an overall delay or

advance encapsulated by z−∆.

Defining S as the set of shift combinations, the following

theorem states its cardinality:

Theorem 1 (Cardinality of S): For a parahermitian matrix

S(i−1)(z) ∈ CM×M of order 2L, such that S(i−1)[τ ] with a

support of 2L+1, the set S of independent shift combinations

that an exhaustive search algorithm has to evaluate has the

cardinality

|S| = (2∆max + 1)M − (2∆max)
M . (12)
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Fig. 2. Trellis of paths representing possible shift matrices. Redundant shift
matrices according to the definition of (14), which do not involve the left-most
column with τ = −L, have (2∆max)M paths confined to the shaded area.

Proof: We define a redundant delay matrix Γ(i)(z) as

one that can be obtained by delaying a genuine delay matrix

Λ(i)(z) ∈ S, such that Γ(i)(z) = z−∆Λ(i)(z) with ∆ > 0.

W.r.t. the sample trellis in Fig. 1, the path belonging to the

parameter set of Λ(i)(z) has to include at least one node in

the left-most column of the trellis, i.e. if Λ(i)(z) is constructed

according to (11),

Λ(i)(z) ∈ S ←→ min
m

τ (i,m) = −∆max . (13)

Therefore, a redundant matrix Γ(i)(z) — also constructed

according to (11) — is characterised by not reaching any node

in the left-most column, or

Γ(i)(z) /∈ S ←→ min
m

τ (i,m) > −∆max . (14)

Since any path fulfilling (14) has to lie entirely within the

shaded area in Fig. 2, occupying the 2∆max left-most columns

of the trellis, there are (2∆max)
M paths belonging to redun-

dant delay matrices. With a total possibility of (2∆max+1)M

combinations within the trellis, (12) is proven.

The cardinality |S| in (12) is important, as it restricts the

exhaustive search and therefore limits its implementation cost.

The definition of an independent delay matrix according to

(13) is somewhat arbitrary, and its place in the set S could

also be taken by one of its redundant copies z−∆Λ(i)(z). This

has no impact on S(i)′(z) in (5) and therefore does not affect

D(z) in (7). However, selecting a copy with minimum degree

in z−1 will influence the order of the paraunitary matrix Q(z)
in (8), and a search algorithm would therefore have to operate

with care to either keep the order increase low w.r.t. Q(z), or

to ensure that any growth by trailing zero matrices is curtailed.

The size of the search space for delay matrices applicable

to S(i−1)[τ ] ∈ CM×M is shown in Fig. 3 for the cases M =
3, 5, 7 and over a range of maximum lag values L. Both the

number of possible as well as the independent number of shifts

— those belonging to S — are detailed.

C. Convergence

Theorem 2 (Maximum Energy SMD Algorithm): With a

sufficiently high number of iterations, I , the maximum energy

SMD algorithm, defined as transferring maximal energy into

the off-diagonal elements of S(i′)[0] and subsequently onto
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Fig. 3. Number of shift combinations that an exhaustive search algorithm has

to evaluate for S(i−1)[τ ] ∈ CM×M for M = 3, 5, 7 with support 2L+1.

the diagonal of S(i)[0] at every iteration i, will converge to

an arbitrarily low limit ǫ for the off-diagonal energy.

Proof: Since the exhaustive search yields a transfer of

at least as much off-diagonal energy per iteration as MSME-

SMD, Theorem 2 is covered by the proof in [11]. The value

of ǫ is determined by the stopping criterion of the algorithm.

D. Implementation

The implemented algorithm first finds the list of all

(2∆max+1)M possible shifts, which is then pruned to remove

the redundant (2∆max)
M delay operations to obtain S. Within

S, the best possible shift combination for S(i−1)[τ ] ∈ CM×M

with support 2L+ 1 is then identified.

According to Fig. 3, the complexity of the exhaustive search

grows very fast for an increase in the spatial matrix dimension

M , but also a rise in the lag dimension L has significant

impact. In general the complexity is such that it is not possible

to calculate a full maximum energy SMD algorithm, as it may

reach large values of L during its iteration. Therefore, we will

below only analyse the exhaustive search approach for a single

iteration step, but use the results as a benchmark for other

SMD algorithms based on limited search strategies.

IV. RESULTS

The comparison of search algorithms is calculated over

an ensemble of 1000 realisations of a parahermitian matrix

S(z) = A(z)Ã(z), which are obtained from a matrix A(z) ∈
CM×M of order L with independent and identically distributed

Gaussian elements. First, this section looks at a single iteration

of SMD algorithms as reviewed in Sec. II, using the maximum

energy SMD of Sec. III as a benchmark, before the general

approximation of a PEVD is investigated.

A. Energy Transfer

Simulating the ith iteration of an SMD algorithm, we set

S(i−1)(z) = S(z) but with zeroed off-diagonal elements in

S(i−1)[0]. The performance of the various search algorithms

is evaluated by calculating the off-diagonal energy of the zero

lag S(i′)[0] after shifts have been performed, i.e.

E =

M∑

k=1

‖ŝ
(i′)
k [0]‖2 . (15)
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Fig. 5. Percentage of maximum off-diagonal energy transferred by SMD

algorithms for S
(i−1)(z) ∈ CM×M with L = 1 for variable M .

Fig. 4 compares the values of E normalised by the result of

the maximum energy SMD algorithm for M = 3 over a range

of values for the maximum lag L. The same situation is shown

in Fig. 5, but for a fixed value of L = 1, the matrix dimension

M is varied.

The matrix dimension M has a significant impact on the

optimality of the energy transfer of SMD algorithms that only

shift a single column per iteration, i.e. the standard SMD and

the ME-SMD algorithms as defined in Secs. II-B and II-C.

The latter methods drop performance quickly in Fig. 5, the

for larger values of M and only a single column to shift, their

potential for transferring off-diagonal energy rapidly declines.

Also an increase in the lag dimension in Fig. 4 affects these

algorithms, although the impact of L is not as severe as M ,

and seems to approximately level out for larger values of L.

The multiple shift SMD versions detailed in Sec. II-D are

only modestly affected by the maximum lag L, and show

a slight decline with an increase in matrix dimensions. For

the values investigated however, both MSME-SMD and C-

MSME-SMD transfer on average 90% of the energy that is

maximally attainable with an exhaustive search.

B. Order Increase

The shift matrices Λ(i)(z) obtained by the various SMD

algorithms increase the order of the parahermitian and parau-

nitary matrices via (7) and (8). It can be seen that the advantage

in energy transfer of SMD and ME-SMD comes at the expense

of a larger growth in order [11]. Fig. 6 shows the average

growth in length of the paraunitary matrix during the ith
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iteration, where it is interesting to note that despite its higher

transfer of energy, the maximum energy SMD algorithm does

not cause a greater growth than either MSME-SMD or C-

MSME-SMD.

C. Diagonalisation

Based on the ensemble of parahermitian matrices S(z)
defined at the beginning of Sec. IV, the diagonalisation

performance for R(z) = S(z) with M = L = 5 over

a number of iterations i is provided in Fig. 7. The graph

shows the remaining off-diagonal energy, normalised by the

total energy in R(z) which is invariance under paraunitary

operations. With the maximum energy SMD too complex to

obtain ensemble averaged results, only the SMD algorithms

reviewed in Sec. II and SBR2 [2] are shown. Since the

multiple-shift versions perform within approx. 10% of the

maximum transferable off-diagonal energy per iteration, these

limited search-strategy algorithm provide an excellent trade-

off between energy transfer and implementation complexity.

V. CONCLUSION

To iteratively approximate a PEVD with high accuracy,

this paper has presented a maximum energy approach for

sequential matrix diagonalisation which transfers the maxi-

mally achievable off-diagonal power in very iteration step.

This has required an exhaustive search over all independent

shift combinations in the SMD algorithm per iteration. The

overall size of the search space has been determined, which

increases dramatically as the parahermitian matrix grows both

in terms of space and lag dimension. Although the resulting

complexity does not permit the maximum energy SMD algo-

rithm to calculate a full iterative PEVD, the performance over

one iteration provides a valuable benchmark for other SMD

algorithms.

On average, for the parameter set considered, it has been

demonstrated that recently introduced multiple-shift SMD al-

gorithms, which optimise energy over a small, limited search

space, can perform within 10% of the transferred energy of

the maximum energy SMD approach. Therefore, multiple-shift
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Fig. 7. Diagonalisation performance of SBR2 [2] and various SMD algo-
rithms [10], [11], measured by the remaining off-diaginal energy normalised
by the total energy in the parahermitian matrix.

SMD algorithms appear to perform close to the optimum and

provide a very good trade-off between the loss of performance

and the reduction in computational complexity when compared

to maximum energy SMD.
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