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Abstract—The Internet of Things (loT) could enable the smartphone or a laptop due to its limited space. The linoitati
development of cloud multiple-input multiple-output (MIM O)  can be overcome by cloud MIMO which exploits the loT
systems where internet-enabled devices can work as disttied environment.

transmission/reception entities. We expect that spatial mitiplex- . .
ing with distributed reception using cloud MIMO would be a Recently, the scenario that combines cloud MIMO at the

key factor of future wireless communication systems. In trg receiver side and spatial multiplexing with multiple tremis
paper, we first review practical receivers for distributed reception antennas is studied in [11]. By having only a few quantizatio
of spatially multiplexed transmit data where the fusion certer  pjts for the received signal at each receive node, an optimal
relies on quantized received signals conveyed from geogrhajzally maximum likelihood (ML) receiver and a suboptimal low-

separated receive nodes. Using the structures of these raas, lexit forci ZE)-t . t the fusi@mte
we propose practical channel estimation techniques for thblock- complexity zero-forcing (ZF)-type receiver at the fusi@nter

fading scenario. The proposed channel estimation technigs rely areé proposed. It is shown analytically and numerically that
on very simple operations at the received nodes while achimg symbol error rates (SERs) of both receivers can become

near-optimal channel estimation performance as the traimig arbitrary small by increasing the number of distributeceiee
length becomes large. nodes. However, the results in [11] are based on the ideal
assumption of perfect global channel knowledge at the fusio
center.

The Internet of Things (IoT) could fundamentally change In this paper, we extend the work in_[11] and propose
the wireless communication industry as more and more deviggractical channel estimation techniques. Using anallytiis
(e.g., labtops, smartphones, tablets, and home applipaces developed in[[11], we are able to show that channel estimatio
connected through wired/wireless networks [1]. Geograplérror can be made arbitrary small by increasing the length of
cally separated, but closely located, internet-enabledcee training phase even with small quantization bits at the ivece
could form clusters through a local area network (LAN) andodes. Numerical results also show the effectiveness of the
work as massive distributed multiple-input multiple-outp proposed channel estimation techniques.

(MIMO) systems. We dub such syster@oud MIMOin this Notation: Lower and upper boldface symbols represent
paper. column vectors and matrices, respective|s/ denotes the

It is important to point out that cloud MIMO is differenttwo-norm of a vecton, andA”, A¥, At are used to denote
from wireless sensor networks (WSNSs), i.e., the former ihe transpose, Hermitian transpose, and pseudo inverse of t
focused on data transmission and reception while the latteatrix A, respectively.Re(b) and Im(b) denote the real
is aimed to estimate the behavior of local environments [2hnd complex part of a complex vectty, respectively.0,,

[4]. Still, there are many similarities between the two,.g.grepresents then x 1 all zero vector, and,, is used for the
geographically distributed nodes may cooperate with eaghx m identity matrix.C™ (R™) andC™*" (R™*") represent
other to perform distributed transmission/reception, @nd the set of allm x 1 complex (real) vectors and the set of alll
desirable for each distributed node to perform only simpie x n complex (real) matrices, respectively.

operations considering processing power or battery lifeese

similarities allow us to utilize many techniques developed Il. SYSTEM MODEL

for WSNs to design cloud MIMO systems. For example, We consider a network consisting of a transmitter, fusion
coded distributed diversity techniques have been proposshter, andK geographically separated receive nodes. We
to increase the diversity order of distributed receptiorewh assume the transmitter is equipped with antennas while
the transmitter is equipped with a single antenna [B], [@&ll other entities in the network have a single antenna. The
inspired by exploiting channel coding theory for distribtit transmitter simultaneously transmi¥s independent data sym-
fault-tolerant classification in WSNS§I[7],][8]. bols by spatial multiplexing, and each receive node coniteys

Cloud MIMO will be particularly important at the mobile processed (or quantized) received signal to the fusionecent
side. At base stations, we can deploy a large number tbhfough some sort of local area network. The fusion center
antennas without having strict restriction in space, whgh decodes the transmitted data symbols using quantizedregtei
known as massive MIMOL[][9],[]10]. However, it may besignals and its (estimated) channel knowledge. The conaépt
difficult to deploy many antennas at a mobile such as faure of this scenario is depicted in FIg. 1.

|I. INTRODUCTION
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H = [h, ]H We assumgj;, can be forwarded to the fusion center without
‘ any error. The collection of the quantized received signal a
the fusion center is given as
S ~ ~ ~ ~ T
L1 ¥y = [yl Go - yK}

IIl. REVIEW OF ML AND ZF-TYPE RECEIVERS

For the scenario of interest, the optimal ML receiver and
the low-complexity ZF-type receiver based on the assumptio
of perfect global channel knowledge at the fusion center are
developed in[[11]. We briefly review these two receivers in
this section.

Transmitter

A. ML receiver

Fig. 1. The conceptual figure of spatial multiplexing with a To simplify notation, we first convert all expressions into
cloud MIMO receiver. the real domain as

[Re(h —Im(h
Hgr = I e(hk) m k)] = [brk1 hrk2],
o : o [Im(hy)  Re(hy)
With this setup, the input-output relation is glveIE] as R
XR = I e(X) )
y= P gty +n L m(x)
V N N Re(nk)}
where R I (ng) |
= 1" yig = | o)) YRk
Y=\Yyr Y2 Y| R, _Im(yk) YR k.2
H=|h; hy --- hg],
T where
X = [xl €T QCNJT ) b B Re(hk) " B —Im(hk)
n=— [nl Ny - nK} ) R.k,1 = Tm(hy)|’ R.k,2 = Re(hy) |-

Note thaty; is the received signal at thé-th received Then the input-output relation can be rewritten as
node, p is the transmit signal-to-noise ratio (SNR); ~
CN(0n,,Iy,) is the independent and identically distributed YRk = \/ZH§ WXR + DR k- (1)
Rayleigh fading channel vector between the transmitter and ’ Ne ™ ’
the k-th receive nodeny. ~ CN(0,1) is complex additive The vectorized version of the quantizggin the real domain
white Gaussian noise (AWGN) at tiieth node, andr; is the g given as
transmitted signal from a standafd-ary constellation
. _ [sen(Re(yr))| _ IRk
S={s1,,su}pcC YRR Lgn(lm(yk))} B [ya,k,z] '

at thei-th transmit antenna. We assunSeis a phase shift we also letSg be
keying (PSK) constellation meaning,,|?> = 1 for all m and
|x||* = N:. We assumer; is drawn fromS with all symbols Sk = {[Re(sl)] e [RG(SM)] } _
equally likely. Im(s1) Im(sn)
Following the same setup as in [11], we assume the receiveqggge( onyg x, the fusion center generates tsign-refined
signaly;, is quantized with two bits using one bit for each oghannel matrix
the real and imaginary parts gf. Then the quantized received _ 5 B
signal gy, is given as Hg = [hR,k,l hR,k,Q}

g = sgn(Re(yx)) + jsgn(Tm(yx)) wherehg, , ; is defined as

where -) is the sign function defined as % .
sgn(’) g bR x: = JR.k,: R k-

sgn(zr) = 1 ff z20 ) With these definitions, the ML receiver is defined[inl[11] as
-1 ifz<0
2 K 5~
< — SPyT
1we consider the block-fading channel model to develop chlagstimation XR,ML = argmaXH H o < \/ N, thkﬂxR) @)

N . i x! ESN' im1 k1
techniques in Section 1V. RECOR



where ®(t) = ftoo\/%—e_TdT and S§* is the N;-ary  Note that the assumptiog-HH” = Iy, holds when
Cartesian product set ofg. We can also define the ML K — oo. Moreover, Lemmd]2 shows that the MSE of the

estimator by relaxing the constrairf;, € SNf in @) as ZF-type estimator can be made arbitrary small by increasing
the number of receive nodes.
[2p =
X = argmax (0] iy 3
FoME " ER 11_[11}_[1 ( Roki® R> ®) IV. CHANNEL ESTIMATION TECHNIQUES
leRII2 Ny

Note that the analytical results in the previous section
Note that the optimization problem iri](3) is not convelre based on the assumption of perfect channel knowledge

because of the norm constraint &f. at the fusion center. In practice, global channel knowledge
The following lemma, which is derived in_[11], shows th&should be estimated using training signals. Moreover, oban
performance of the ML estimator. estimation techniques should be based on simple operations

at the receive nodes as for distributed reception. Becdese t
channel between the transmitter and each receive node can be
estimated separately, we focus on the channel vectdrtbf
XR ML —— XR receive nodény,.
To develop channel estimation techniques, we consider
a block-fading channel, i.e., the channel is static for the
The lemma can be proved by using the weak law of largmherence block length af channel uses and changes inde-
numbers and the stochastic dominance theorem. Please mE@dently from block-to-block. Then the input-output tela

Lemma 1. For arbitrary p > 0, Xg w1, cOnverges to the true
transmitted vectok in probability, i.e.,

as K — oo.

Lemma 2 in [11] for details. at thek-th receive node can be rewritten as
B. ZF-type rece|ver- o _ Ykm|l] = /Nith,me (€] + ngem [€]
The low-complexity ZF-type receiver is developed(ini[11], t

which is given as for the ¢-th channel use in the:-th fading block.

b= (HH)Ty We assume that the fir§t < L (_:hannel uses are used for
a training phase and the remainiig— 7' channel uses are
Based onxyzr, the fusion center can perform symbol-bydedicated to a data communication phase. We can write the
symbol detection as first T received signals into a vector form as

Fyp,; = argmin |Fzp; — 2/ |? [p
77‘ - )/L
z'eS Yk m,train = Xm trlunhk,m + Ng m train

whereizr ; is thei-th element ofkzp.
To show the performance of the ZF-type estimator, we firgthere
define the mean-squared error (MSE) betweggnandxg zr

H
as ) YEe,m, train = [yk,m[o] yk,m[l] T yk,m[T - 1]}
I\ISEZF = FE [”X — XZFH2] Xm,train = [Xm O] Xm[l] o Xm[T - 1]] ’
t
Ng m,train = [nk,m[o] nk,m[l] T nk,m[T - 1]]

where the expectation is taken over the realizations of élan

and noise. With reasonable assumptions, the MSE of the ZF-

type estimator is derived iri_[11], which is rewritten in thef\lote that yy,
m,train

following lemma € € Xpgrain € CM7, and

Ng o train € CT. In the training phaseX,, +rqin iS known to
Lemma 2. If we approximate the quantization error using arboth the transmitter and the fusion center wiile,,, needs to

additional Gaussian noiser as be estimated at the fusion center. We focus on unitary trgini
5 and assume&,, ;qin Satisfies[[13]
vy =,/ —H7x+n+w,
VN X 1 gin X train = Ir if Ny > T,
with w ~ CN/(0k, o5 -1k ) and assumgleHH =1Iy,, the H B :
MSE of the ZF- type estimator is given as Ko trainXm,train = EIN* it N <T.
MSE e — Nip~t + 03 The normalization ternT'/N; in the case ofV; < T ensures
ZE K ' the average transmit SNR is equalgan each channel use.

Similar to Sectior Tl[-A, we can reformulate these expres-

The lemma can be shown using the analytical tools deve'Ons into the real domain as

oped in frame expansion [12]. Please see Lemma 4 in [11] for [ p
dgtalls P ) ] [ ] YR, k,m train = XR m, trmnhR k;m T DR k,m, train (4)



where

10°

[Re » —6— ML estimator, SNR=10dB
YR, k,m,train = Yi,m tram) —8— ZF estimator, SNR=10dB
o _Im Yi,m train) | = © =ML estimator, SNR=20dB
c = B = ZF estimator, SNR=20dB
XR o Re( m trazn) _Im(Xm,train) 107 ]
;m,train —
_Im( m trazn) Re(Xm,train)

hR,k,m =

l
o
T

hk m)

_Re Ngm trmn)
_Im (nk,m,trazn) ’

(

(
Re (hk m)]
I (

(

NR k,m,train =

=
o
&
T

MSE of normalized channel estimation
=
o

It is easy to show thayr km train € R*?, XRm.train €
R2Nex2T hp g € RPN andng g om train € R?T.

It is important to point out thaf{{4) has the same form &
(@) while the roles of the channel and the training signal a = 107} > 3
reversed. Thus, using the same techniques in Sefibn 11, * 10 10 10

can develop channel estimators based on the knowledge ofl'ghe 2 The MSEs of th lized ch | estimat ith
quantized Signayr.x.m.train AN X train. ig e s of the normalized channel estimates wi

We define thei-th column of Xg m train @S XR.am.irain.i N; = 4 and different values of” (training channel uses) and
and o Y © p (transmit SNR).

yR k,m,train,i — Sgn(yR k,m,train z)

WNEreyR,k.m,train,i iS thei-th element ofyr k m,train- TREN  for the performance metric of a receiverin Sectior(Y.

the sign-refinement based @® «,m,¢rain.i 1S performed as Although similar, we are not able to apply Lemrh 1 to
analyze the performance of the ML channel estimator because
Lemmd is based on the norm constraintgnwhile the ML
channel estimator does not have such a constraint. However,

XR,m,truin,i = yR,k,m,train,ixR,m,train,i7

and the ML channel estimator is given as

. 21 20 1 , we can still analyze the performance of the ZF-type channel
hg gm M = a,rgnga]tVXH ® ( N, XR,m,train, DR ) estimator with the same assumption of quantization error as
PR R =1 ' in Lemmal2.
2T
= argmax Z log ((I) < %ig,mmmh;{» . Corollary 1. .If Ny <T and we gpprpximat_e the quantiz_ation
hp eR2Ne Y t error of the firstT' received training signals in thex-th fading

(5)  channel at the:-th receive node using an additional Gaussian
Because®(-) is a log-concave function, we can efficientlyN0IS€ Wi i train &S
solve [B) using standard convex optimization methads [14].
However, if T is not large enough, the ML channel estimatoyx,m,train = \/7Xm trainBk,m + Dk m. train + Wkm, train
returns an inaccurate channel estimate because there fare no
enough samples to estimate the true channel. For exampleyith wy. , ¢r4in ~ CN(0r, 02 T5 train W
we only conside = 1, then there are many possible choicegF-type channel estimator is given as
for hy; that give®(-) equals to one. This trend is shown by

Ir), the MSE of the

. LN . N3p*1 + N2
numerical studies in Sectidnl V. MSEE train = —- Ig,train
We can also define the ZF-type channel estimator as ' T
L _ (XT . )T N o ©) The result is a direct consequence of Lenifha 2. The lemma
R.k,m,ZF Rym,train) YRkm train shows that we can make the MSE of the ZF-type channel
If N, <T, then [6) can be also written as estimator arbitrary small by increasing the length of the
N, training phasel’. Numerical studies in Sectidn]V shows the
Bk m 2 = ?XR m.trainYR.k,m,train same result holds for the ML channel estimator as well.
becauseX,,, tmmX{i train = INt Note that the norm V. SIMULATION RESULTS

of thmZF highly depends on the norm Ofg k. m train- . .
HOWEVE,§k. 4.m.train iS based on the sign function and does We perform Monte-Carlo simulations to evaluate the pro-

not have any norm information Ofg.s.m.train. THUS, We posed channel estimation techniques. In Elg. 2, we first com-

consider the MSE of the normalized channel estimate, whiPg"® the MSEs of the normalized channel estimates of the ML
and ZF-type channel estimators, i BlSEyr, » andMSEzp n,

is defined as
. 2 defined in the previous section. The results are averagerd ove
MSE, , = H bR gm I}R-,k-,mvr ’ 10000 channel realizations of a single receive node with
bR kmll  |[hR g m,o | N; = 4. As expected, the MSEs of both channel estimators
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Fig. 3: Symbol error rate (SER) vs. SNR in dB scale for the[ ]

ZF-type receiver with different levels of channel estiroati

quality. We setN; = 4 and 8PSK forS. 7]

go to zero asI' increases. The convergence rate of the ZFrg
type channel estimator (and the ML channel estimator a9 welﬁ
is proportional to% as derived in Corollary]1. Note that
the ML channel estimator is inferior to the ZF-type channelq
estimator wher” is small, which is explained in Sectign]IV.
However, the ML channel estimator outperforms the ZF-type
channel estimator a8 becomes large. The gap between thid®!
two channel estimators is not significant with 10dB SNR but
there is a notable gap between the two with 20dB SNR.

In Fig.[3, we plot the SER of the ZF-type receldrased (11
on the ZF-type channel estimator. The SER is defined as

Ny

1 A
A ;E [Pr (&, # zn | x sSentH,n, p, Ny, K, S)]

[12]
SER =

[13]
where the expectation is taken owerH, andn. We again fix

N; = 4 and adopt 8PSK constellation for. As T' increases,

o we can exploit long-term channel statistics, i.e., spatrad/or
temporal correlation of channels as in[15], which would be
an interesting future research topic.
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