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Abstract—The Internet of Things (IoT) could enable the
development of cloud multiple-input multiple-output (MIM O)
systems where internet-enabled devices can work as distributed
transmission/reception entities. We expect that spatial multiplex-
ing with distributed reception using cloud MIMO would be a
key factor of future wireless communication systems. In this
paper, we first review practical receivers for distributed reception
of spatially multiplexed transmit data where the fusion center
relies on quantized received signals conveyed from geographically
separated receive nodes. Using the structures of these receivers,
we propose practical channel estimation techniques for theblock-
fading scenario. The proposed channel estimation techniques rely
on very simple operations at the received nodes while achieving
near-optimal channel estimation performance as the training
length becomes large.

I. I NTRODUCTION

The Internet of Things (IoT) could fundamentally change
the wireless communication industry as more and more devices
(e.g., labtops, smartphones, tablets, and home appliances) are
connected through wired/wireless networks [1]. Geographi-
cally separated, but closely located, internet-enabled devices
could form clusters through a local area network (LAN) and
work as massive distributed multiple-input multiple-output
(MIMO) systems. We dub such systemsCloud MIMO in this
paper.

It is important to point out that cloud MIMO is different
from wireless sensor networks (WSNs), i.e., the former is
focused on data transmission and reception while the latter
is aimed to estimate the behavior of local environments [2]–
[4]. Still, there are many similarities between the two, e.g.,
geographically distributed nodes may cooperate with each
other to perform distributed transmission/reception, andit is
desirable for each distributed node to perform only simple
operations considering processing power or battery life. These
similarities allow us to utilize many techniques developed
for WSNs to design cloud MIMO systems. For example,
coded distributed diversity techniques have been proposed
to increase the diversity order of distributed reception when
the transmitter is equipped with a single antenna [5], [6]
inspired by exploiting channel coding theory for distributed
fault-tolerant classification in WSNs [7], [8].

Cloud MIMO will be particularly important at the mobile
side. At base stations, we can deploy a large number of
antennas without having strict restriction in space, whichis
known as massive MIMO [9], [10]. However, it may be
difficult to deploy many antennas at a mobile such as a

smartphone or a laptop due to its limited space. The limitation
can be overcome by cloud MIMO which exploits the IoT
environment.

Recently, the scenario that combines cloud MIMO at the
receiver side and spatial multiplexing with multiple transmit
antennas is studied in [11]. By having only a few quantization
bits for the received signal at each receive node, an optimal
maximum likelihood (ML) receiver and a suboptimal low-
complexity zero-forcing (ZF)-type receiver at the fusion center
are proposed. It is shown analytically and numerically that
symbol error rates (SERs) of both receivers can become
arbitrary small by increasing the number of distributed receive
nodes. However, the results in [11] are based on the ideal
assumption of perfect global channel knowledge at the fusion
center.

In this paper, we extend the work in [11] and propose
practical channel estimation techniques. Using analytical tools
developed in [11], we are able to show that channel estimation
error can be made arbitrary small by increasing the length of
training phase even with small quantization bits at the receive
nodes. Numerical results also show the effectiveness of the
proposed channel estimation techniques.

Notation: Lower and upper boldface symbols represent
column vectors and matrices, respectively.‖a‖ denotes the
two-norm of a vectora, andAT , AH , A† are used to denote
the transpose, Hermitian transpose, and pseudo inverse of the
matrix A, respectively.Re(b) and Im(b) denote the real
and complex part of a complex vectorb, respectively.0m

represents them × 1 all zero vector, andIm is used for the
m×m identity matrix.Cm (Rm) andCm×n (Rm×n) represent
the set of allm× 1 complex (real) vectors and the set of all
m× n complex (real) matrices, respectively.

II. SYSTEM MODEL

We consider a network consisting of a transmitter, fusion
center, andK geographically separated receive nodes. We
assume the transmitter is equipped withNt antennas while
all other entities in the network have a single antenna. The
transmitter simultaneously transmitsNt independent data sym-
bols by spatial multiplexing, and each receive node conveysits
processed (or quantized) received signal to the fusion center
through some sort of local area network. The fusion center
decodes the transmitted data symbols using quantized received
signals and its (estimated) channel knowledge. The conceptual
figure of this scenario is depicted in Fig. 1.
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Fig. 1: The conceptual figure of spatial multiplexing with a
cloud MIMO receiver.

With this setup, the input-output relation is given as1

y =

√
ρ

Nt

HHx+ n

where

y =
[
y1 y2 · · · yK

]T
,

H =
[
h1 h2 · · · hK

]
,

x =
[
x1 x2 · · · xNt

]T
,

n =
[
n1 n2 · · · nK

]T
.

Note that yk is the received signal at thek-th received
node, ρ is the transmit signal-to-noise ratio (SNR),hk ∼
CN (0Nt

, INt
) is the independent and identically distributed

Rayleigh fading channel vector between the transmitter and
the k-th receive node,nk ∼ CN (0, 1) is complex additive
white Gaussian noise (AWGN) at thek-th node, andxi is the
transmitted signal from a standardM -ary constellation

S = {s1, · · · , sM} ⊂ C

at the i-th transmit antenna. We assumeS is a phase shift
keying (PSK) constellation meaning|sm|2 = 1 for all m and
‖x‖2 = Nt. We assumexi is drawn fromS with all symbols
equally likely.

Following the same setup as in [11], we assume the received
signalyk is quantized with two bits using one bit for each of
the real and imaginary parts ofyk. Then the quantized received
signal ŷk is given as

ŷk = sgn(Re(yk)) + jsgn(Im(yk))

wheresgn(·) is the sign function defined as

sgn(x) =

{
1 if x ≥ 0

−1 if x < 0
.

1We consider the block-fading channel model to develop channel estimation
techniques in Section IV.

We assumêyk can be forwarded to the fusion center without
any error. The collection of the quantized received signal at
the fusion center is given as

ŷ =
[
ŷ1 ŷ2 · · · ŷK

]T
.

III. R EVIEW OF ML AND ZF-TYPE RECEIVERS

For the scenario of interest, the optimal ML receiver and
the low-complexity ZF-type receiver based on the assumption
of perfect global channel knowledge at the fusion center are
developed in [11]. We briefly review these two receivers in
this section.

A. ML receiver

To simplify notation, we first convert all expressions into
the real domain as

HR,k =

[
Re(hk) −Im(hk)
Im(hk) Re(hk)

]
=

[
hR,k,1 hR,k,2

]
,

xR =

[
Re(x)
Im(x)

]
,

nR,k =

[
Re(nk)
Im(nk)

]
,

yR,k =

[
Re(yk)
Im(yk)

]
=

[
yR,k,1

yR,k,2

]

where

hR,k,1 =

[
Re(hk)
Im(hk)

]
, hR,k,2 =

[
−Im(hk)
Re(hk)

]
.

Then the input-output relation can be rewritten as

yR,k =

√
ρ

Nt

HT
R,kxR + nR,k. (1)

The vectorized version of the quantizedŷk in the real domain
is given as

ŷR,k =

[
sgn(Re(yk))
sgn(Im(yk))

]
=

[
ŷR,k,1

ŷR,k,2

]
.

We also letSR be

SR =

{[
Re(s1)
Im(s1)

]
, · · · ,

[
Re(sM )
Im(sM )

]}
.

Based on̂yR,k, the fusion center generates thesign-refined
channel matrix

H̃R,k =
[
h̃R,k,1 h̃R,k,2

]

whereh̃R,k,i is defined as

h̃R,k,i = ŷR,k,ihR,k,i.

With these definitions, the ML receiver is defined in [11] as

x̂R,ML = argmax
x′

R
∈SNt

R

2∏

i=1

K∏

k=1

Φ

(√
2ρ

Nt

h̃T
R,k,ix

′
R

)
(2)



where Φ(t) =
∫ t

−∞
1√
2π

e−
τ
2

2 dτ and SNt

R
is the Nt-ary

Cartesian product set ofSR. We can also define the ML
estimator by relaxing the constraintx′

R
∈ SNt

R
in (2) as

x̌R,ML = argmax
x
′

R
∈R

2Nt ,

‖x′

R
‖2

=Nt

2∏

i=1

K∏

k=1

Φ

(√
2ρ

Nt

h̃T
R,k,ix

′
R

)
. (3)

Note that the optimization problem in (3) is not convex
because of the norm constraint onx′

R
.

The following lemma, which is derived in [11], shows the
performance of the ML estimator.

Lemma 1. For arbitrary ρ > 0, x̌R,ML converges to the true
transmitted vectorx in probability, i.e.,

x̌R,ML

p
−→ xR

asK → ∞.

The lemma can be proved by using the weak law of large
numbers and the stochastic dominance theorem. Please see
Lemma 2 in [11] for details.

B. ZF-type receiver

The low-complexity ZF-type receiver is developed in [11],
which is given as

x̌ZF =
(
HH

)†
ŷ.

Based onx̌ZF, the fusion center can perform symbol-by-
symbol detection as

x̂ZF,i = argmin
x′∈S

|x̌ZF,i − x′|2

wherex̌ZF,i is the i-th element of̌xZF.
To show the performance of the ZF-type estimator, we first

define the mean-squared error (MSE) betweenxR and x̌R,ZF

as
MSEZF =

1

Nt

E
[
‖x− x̌ZF‖

2
]

where the expectation is taken over the realizations of channel
and noise. With reasonable assumptions, the MSE of the ZF-
type estimator is derived in [11], which is rewritten in the
following lemma.

Lemma 2. If we approximate the quantization error using an
additional Gaussian noisew as

ŷ =

√
ρ

Nt

HHx+ n+w,

with w ∼ CN (0K , σ2
q

ρ

Nt

IK) and assume1
K
HHH = INt

, the
MSE of the ZF-type estimator is given as

MSEZF =
Ntρ

−1 + σ2
q

K
.

.

The lemma can be shown using the analytical tools devel-
oped in frame expansion [12]. Please see Lemma 4 in [11] for
details.

Note that the assumption1
K
HHH = INt

holds when
K → ∞. Moreover, Lemma 2 shows that the MSE of the
ZF-type estimator can be made arbitrary small by increasing
the number of receive nodes.

IV. CHANNEL ESTIMATION TECHNIQUES

Note that the analytical results in the previous section
are based on the assumption of perfect channel knowledge
at the fusion center. In practice, global channel knowledge
should be estimated using training signals. Moreover, channel
estimation techniques should be based on simple operations
at the receive nodes as for distributed reception. Because the
channel between the transmitter and each receive node can be
estimated separately, we focus on the channel vector ofk-th
receive nodehk.

To develop channel estimation techniques, we consider
a block-fading channel, i.e., the channel is static for the
coherence block length ofL channel uses and changes inde-
pendently from block-to-block. Then the input-output relation
at thek-th receive node can be rewritten as

yk,m[ℓ] =

√
ρ

Nt

hH
k,mxm[ℓ] + nk,m[ℓ]

for the ℓ-th channel use in them-th fading block.
We assume that the firstT < L channel uses are used for

a training phase and the remainingL − T channel uses are
dedicated to a data communication phase. We can write the
first T received signals into a vector form as

yk,m,train =

√
ρ

Nt

XH
m,trainhk,m + nk,m,train

where

yk,m,train =
[
yk,m[0] yk,m[1] · · · yk,m[T − 1]

]H
,

Xm,train =
[
xm[0] xm[1] · · · xm[T − 1]

]
,

nk,m,train =
[
nk,m[0] nk,m[1] · · · nk,m[T − 1]

]H
.

Note that yk,m,train ∈ C
T , Xm,train ∈ C

Nt×T , and
nk,m,train ∈ CT . In the training phase,Xm,train is known to
both the transmitter and the fusion center whilehk,m needs to
be estimated at the fusion center. We focus on unitary training
and assumeXm,train satisfies [13]

XH
m,trainXm,train = IT if Nt ≥ T,

Xm,trainX
H
m,train =

T

Nt

INt
if Nt < T.

The normalization termT/Nt in the case ofNt < T ensures
the average transmit SNR is equal toρ in each channel use.

Similar to Section III-A, we can reformulate these expres-
sions into the real domain as

yR,k,m,train =

√
ρ

Nt

XT
R,m,trainhR,k,m + nR,k,m,train (4)



where

yR,k,m,train =

[
Re (yk,m,train)
Im (yk,m,train)

]
,

XR,m,train =

[
Re(Xm,train) −Im(Xm,train)
Im(Xm,train) Re(Xm,train)

]
,

hR,k,m =

[
Re (hk,m)
Im (hk,m)

]
,

nR,k,m,train =

[
Re (nk,m,train)
Im (nk,m,train)

]
.

It is easy to show thatyR,k,m,train ∈ R2T , XR,m,train ∈
R2Nt×2T , hR,k,m ∈ R2Nt , andnR,k,m,train ∈ R2T .

It is important to point out that (4) has the same form as
(1) while the roles of the channel and the training signal are
reversed. Thus, using the same techniques in Section III, we
can develop channel estimators based on the knowledge of the
quantized signal̂yR,k,m,train andXR,m,train.

We define thei-th column ofXR,m,train as xR,m,train,i

and
ŷR,k,m,train,i = sgn(yR,k,m,train,i)

whereyR,k,m,train,i is the i-th element ofyR,k,m,train. Then
the sign-refinement based on̂yR,k,m,train,i is performed as

x̃R,m,train,i = ŷR,k,m,train,ixR,m,train,i,

and the ML channel estimator is given as

ȟR,k,m,ML = argmax
h′

R
∈R2Nt

2T∏

i=1

Φ

(√
2ρ

Nt

x̃T
R,m,train,ih

′
R

)

= argmax
h′

R
∈R2Nt

2T∑

i=1

log

(
Φ

(√
2ρ

Nt

x̃T
R,m,train,ih

′
R

))
.

(5)

BecauseΦ(·) is a log-concave function, we can efficiently
solve (5) using standard convex optimization methods [14].
However, ifT is not large enough, the ML channel estimator
returns an inaccurate channel estimate because there are not
enough samples to estimate the true channel. For example, if
we only consideri = 1, then there are many possible choices
for h′

R
that giveΦ(·) equals to one. This trend is shown by

numerical studies in Section V.
We can also define the ZF-type channel estimator as

ȟR,k,m,ZF =
(
XT

R,m,train

)†
ŷR,k,m,train. (6)

If Nt < T , then (6) can be also written as

ȟR,k,m,ZF =
Nt

T
XR,m,trainŷR,k,m,train

becauseXm,trainX
H
m,train = T

Nt

INt
. Note that the norm

of ȟR,k,m,ZF highly depends on the norm of̂yR,k,m,train.
However,ŷR,k,m,train is based on the sign function and does
not have any norm information ofyR,k,m,train. Thus, we
consider the MSE of the normalized channel estimate, which
is defined as

MSEx,h =
1

Nt

E

[∥∥∥∥
hR,k,m

‖hR,k,m‖
−

ȟR,k,m,x

‖ȟR,k,m,x‖

∥∥∥∥
2
]
,
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Fig. 2: The MSEs of the normalized channel estimates with
Nt = 4 and different values ofT (training channel uses) and
ρ (transmit SNR).

for the performance metric of a receiverx in Section V.
Although similar, we are not able to apply Lemma 1 to

analyze the performance of the ML channel estimator because
Lemma 1 is based on the norm constraint onx′

R
while the ML

channel estimator does not have such a constraint. However,
we can still analyze the performance of the ZF-type channel
estimator with the same assumption of quantization error as
in Lemma 2.

Corollary 1. If Nt < T and we approximate the quantization
error of the firstT received training signals in them-th fading
channel at thek-th receive node using an additional Gaussian
noisewk,m,train as

ŷk,m,train =

√
ρ

Nt

XT
m,trainhk,m + nk,m,train +wk,m,train

with wk,m,train ∼ CN (0T , σ
2

q,train
ρ

Nt

IT ), the MSE of the
ZF-type channel estimator is given as

MSEZF,train =
N3

t ρ
−1 +N2

t σ
2

q,train

T
.

The result is a direct consequence of Lemma 2. The lemma
shows that we can make the MSE of the ZF-type channel
estimator arbitrary small by increasing the length of the
training phaseT . Numerical studies in Section V shows the
same result holds for the ML channel estimator as well.

V. SIMULATION RESULTS

We perform Monte-Carlo simulations to evaluate the pro-
posed channel estimation techniques. In Fig. 2, we first com-
pare the MSEs of the normalized channel estimates of the ML
and ZF-type channel estimators, i.e.,MSEML,h andMSEZF,h,
defined in the previous section. The results are averaged over
10000 channel realizations of a single receive node with
Nt = 4. As expected, the MSEs of both channel estimators
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Fig. 3: Symbol error rate (SER) vs. SNR in dB scale for the
ZF-type receiver with different levels of channel estimation
quality. We setNt = 4 and 8PSK forS.

go to zero asT increases. The convergence rate of the ZF-
type channel estimator (and the ML channel estimator as well)
is proportional to 1

T
as derived in Corollary 1. Note that

the ML channel estimator is inferior to the ZF-type channel
estimator whenT is small, which is explained in Section IV.
However, the ML channel estimator outperforms the ZF-type
channel estimator asT becomes large. The gap between the
two channel estimators is not significant with 10dB SNR but
there is a notable gap between the two with 20dB SNR.

In Fig. 3, we plot the SER of the ZF-type receiver2 based
on the ZF-type channel estimator. The SER is defined as

SER =
1

Nt

Nt∑

n=1

E [Pr (x̂n 6= xn | x sent,H,n, ρ,Nt,K,S)]

where the expectation is taken overx, H, andn. We again fix
Nt = 4 and adopt 8PSK constellation forS. As T increases,
the SER performance approaches to the case of perfect channel
knowledge. Although the ZF-type receiver suffers from an
error rate floor in high SNR regime, the error floor can be
mitigated by having more receive nodes for both cases of
perfect and estimated channel knowledge.

VI. CONCLUSION

We studied the scenario that combines spatial multiplexing
and cloud MIMO for distributed reception in this paper. To
relax the ideal assumption of perfect global channel knowledge
considered in [11], we proposed practical channel estimation
techniques that rely on very simple operations at the receive
nodes. We showed that even with very coarse quantization at
the receive nodes, the fusion center can estimate the channel
with high accuracy if the length of the training phase is
sufficiently large. To reduce the overhead of the training phase,

2Because we consider the normalized channel estimates, we donot compare
the SER of the ML receiver.

we can exploit long-term channel statistics, i.e., spatialand/or
temporal correlation of channels as in [15], which would be
an interesting future research topic.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Elsevier Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,”Computer Networks, vol. 38, no. 4, pp. 393–
422, Mar. 2002.

[3] V. Mhatre and C. Rosenberg, “Design guidelines for wireless sensor net-
works: Communication, clustering and aggregation,”Ad Hoc Networks,
vol. 2, no. 1, pp. 45–63, Jan. 2004.

[4] R. Viswanathan and P. K. Varshney, “Distributed detection with multiple
sensors: Part I-fundamentals,”Proceedings of the IEEE, vol. 85, no. 1,
pp. 54–63, Jan. 1997.

[5] D. J. Love, J. Choi, and P. Bidigare, “Receive spatial coding for
distributed diversity,” Proceedings of IEEE Asilomar Conference on
Signals, Systems, and Computers, Nov. 2013.

[6] J. Choi, D. J. Love, and P. Bidigare, “Coded distributed diversity:
A novel distributed reception technique for wireless communication
systems,” IEEE Transaction on Signal Processing, submitted for
publication. [Online]. Available: http://arxiv.org/abs/1403.7679

[7] T.-Y. Wang, Y. S. Han, P. K. Varshney, and P.-N. Chen, “Distributed
fault-tolerant classification in wireless sensor networks,” IEEE Journal
on Selected Areas in Communications, vol. 23, no. 4, pp. 724–734, Apr.
2005.

[8] T.-Y. Wang, Y. S. Han, B. Chen, and P. K. Varshney, “A combined
decision fusion and channel coding scheme for distributed fault-tolerant
classification in wireless sensor networks,”IEEE Transactions on Wire-
less Communications, vol. 5, no. 7, pp. 1695–1705, Jul. 2006.

[9] T. L. Marzetta, “Noncooperative cellular wireless withunlimited num-
bers of base station antennas,”IEEE Transactions on Wireless Commu-
nications, vol. 9, no. 11, pp. 3590–3600, Nov. 2010.

[10] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, E. O,
and F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with
very large arrays,”IEEE Signal Processing Magazine, vol. 30, no. 1, pp.
40–60, Jan. 2013.

[11] J. Choi, D. J. Love, D. R. Brown III, and M. Boutin, “Distributed
reception with spatial multiplexing: MIMO systems for the Internet
of Things,” IEEE Transaction on Signal Processing, submitted for
publication. [Online]. Available: http://arxiv.org/abs/1409.7850

[12] V. K. Goyal, M. Vetterli, and N. T. Thao, “Quantized overcomplete ex-
pansions inRn: Analysis, synthesis, and algorithms,”IEEE Transactions
on Information Theory, vol. 44, no. 1, pp. 16–30, Jan. 1998.

[13] W. Santipach and M. L. Honig, “Optimization of trainingand feedback
overhead for beamforming over block fading channels,”IEEE Trans-
actions on Information Theory, vol. 56, no. 12, pp. 6103–6115, Dec.
2010.

[14] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2009.

[15] J. Choi, D. J. Love, and P. Bidigare, “Downlink trainingtechniques for
FDD massive MIMO systems: Open-loop and closed-loop training with
memory,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,
no. 5, pp. 802–814, Oct. 2014.

http://arxiv.org/abs/1403.7679
http://arxiv.org/abs/1409.7850

	I Introduction
	II System Model
	III Review of ML and ZF-type Receivers
	III-A ML receiver
	III-B ZF-type receiver

	IV Channel Estimation Techniques
	V Simulation Results
	VI Conclusion
	References

