
An Online Parallel Algorithm for Spectrum Sensing
in Cognitive Radio Networks

Yang Yang∗, Mengyi Zhang†, Marius Pesavento∗, Daniel P. Palomar‡
∗Communication Systems Group, Darmstadt University of Technology. Email: {yang, pesavento}@nt.tu-darmstadt.de
†Dept. of Computer Science and Engineering, The Chinese Univ. of Hong Kong. Email: zhangmy@cse.cuhk.edu.hk

‡Dept. of Electronic and Computer Engineering, The Hong Kong Univ. of Science & Technology. Email: palomar@ust.hk

Abstract—We consider the estimation of the position and trans-
mit power of primary users in cognitive radio networks based
on solving a sequence of �1-regularized least-square problems,
in which the unknown vector is sparse and the measurements
are only sequentially available. We propose an online parallel
algorithm that is novel in three aspects: i) all elements of the
unknown vector variable are updated in parallel; ii) the update
of each element has a closed-form expression; and iii) the stepsize
is designed to accelerate the convergence yet it still has a closed-
form expression. The convergence property is both theoretically
analyzed and numerically consolidated.

I. INTRODUCTION

Cognitive radio (CR) has been widely accepted as a enabling

technique for flexible and efficient use of the radio spectrum

[1], since it allows the unlicensed secondary users (SUs) to

access the spectrum provided that the licensed primary users

(PUs) are idle or the interference generated by the SUs to the

PUs is below a level that is tolerable for the PUs [2], [3].

One prerequisite to apply CR is the ability to obtain an

estimate of the position and transmit power of PUs so that the

SUs can avoid the areas in which the PUs are actively trans-

mitting [4], [5]. As a fundamental methodology for estimation,

the minimum mean-square-error (MMSE) criterion has a solid

root [6] and is adopted in a number of works [7], [8].

MMSE approach involves the calculation of the expectation

of a least-square (LS) function that depends on the so-called

regression vector and measurement output, both of which

are random variables. When the statistics of these random

variables are unknown, it is impossible to calculate the expec-

tation analytically. An alternative is to use the sample average

function as an approximation of the expectation, and this leads

to the well-known recursive least-square (RLS) algorithm [6].

In practice, the signal to be estimated may be sparse in

nature [4], [7], [8]. In a recent attempt to apply the RLS

approach to estimate a sparse signal, a sparsity regularization

function in terms of �1-norm is incorporated into the LS

function in each iteration [7], [8], leading to a sparsity-

regularized LS problem which has the form of least-absolute

shrinkage and selection operator (LASSO).

However, a closed-form solution to the �1-regularized LS

problem no longer exists because of the �1-norm regularization

function and the problem can only be solved iteratively [9].

Since the observations are sequentially available, and with

each observation, a �1-regularized LS problem is formed and

solved, the overall complexity of using solvers for the se-

quence of �1-regularized LS problems is no longer affordable.

To reduce the complexity, an online sequential algorithm is

proposed in [7]: the �1-regularized LS problem is solved with

respect to (w.r.t.) only a single element of the unknown vector

variable (instead of all elements as in a solver) while other

elements are fixed, and the element update has a closed-form

expression based on the soft-thresholding operator. After a new

sample arrives, a new l1-regularized LS problem is formed and

solved, but only w.r.t. the next element.

Intuitively, since the elements are updated sequentially and

only a single element is updated at each time instance, the

online algorithm proposed in [7] sometimes suffers from

slow convergence. It is tempting to use the parallel algorithm

proposed in [10], [11], but it converges for deterministic

optimization problems only. Besides, its convergence speed

heavily depends on the decay rate of the diminishing stepsize:

on the one hand, a slowly decaying stepsize is preferable

to make notable progress in each iteration and to achieve

satisfactory convergence speed; on the other hand, theoretical

convergence is guaranteed only when the stepsize decays fast

enough. In practice, it is a difficult task on its own to find the

decay rate that gives the optimal trade-off.

In this paper, we propose an online parallel algorithm

with provable convergence for recursive estimation of sparse

signals. In particular, our contributions are as follows:

1) At each time instance, all elements are updated in

parallel, and the convergence speed is thus greatly enhanced

compared with [7]. As a nontrivial extension of [7] from

sequential update to parallel update and [10], [11] from

deterministic optimization problems to stochastic optimization

problems, we rigorously show that the proposed algorithm

almost surely converges.

2) The proposed stepsize is based on the so-called min-

imization rule, so notable progress is achieved all the time

and the trouble of parameter tuning in [10], [11] is saved.

Besides, both the update of each element and the stepsize can

be calculated in closed-form, so the algorithm is very easy to

implement and fast to converge.

3) The proposed algorithm can be implemented in both a

centralized manner and, if necessary, a distributed manner. In

the latter case, the signaling is much less than in state-of-the-

art techniques [4], [8].



II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a CR network composed of an unknown number

of PUs and N SUs. The PUs and SUs are located in a two-

dimensional geographical area A, and the positions of the PUs

are unknown to the SUs. To locate the PUs, we discretize

the geographical area A into K grid points, with gn,k being

the channel gain from position k to SU n, and xk being the

transmit power of PUs located at position k. With non-coherent

energy detectors, yn is the received power measured by SU n:

yn =
〈
gn,x

�
〉
+ vn, n = 1, . . . , N, (1)

where gn � {gn,k}Kk=1 ∈ R
K , x� � {x�

k}Kk=1 ∈ R
K , and

vn ∈ R is the additive estimation noise. Throughout the paper,

we make the following blanket assumptions on gn and vn:

(A1) gn are i.i.d. random variables with a bounded positive

definite covariance matrix;

(A2) vn are i.i.d. random variables with zero mean and

bounded variance, and it is uncorrelated with gn.

We assume gn is known at SU n; in practice, it can be

estimated by SU n using Kriged Kalman filtering as proposed

in [4], which is based on an interpolation process given the

training data sent by other SUs only. A detailed description

is out of the scope of this paper, but we remark that 1)

estimating gn does not require the cooperation of PUs, and

2) its complexity is independent of the number of grid points

K but depends only on the number of SUs N .
Given the linear model in (1), the problem is to esti-

mate x� from the set of measurement and regression vector

{gn, yn}Nn=1. Since both the regression vector gn and esti-

mation noise vn are random variables, the received signal yn
is also random. A fundamental approach to estimate x� is

based on the so-called minimum mean-square-error (MMSE)

criterion, and this MMSE approach has a solid root in adaptive

filter theory [6]. Note that it is advisory to estimate x jointly

from all of the measurements {gn, yn}Nn=1 to overcome the

so-called hidden node problem, since some of the SUs may

be in shadowed area and they may miss the presence of a PU

based on their own measurements only [5], [8], [12]. Given

the above statements, the cooperative estimation problem is

formulated as follows:

x� = argmin
x=(xk)Kk=1

E

[
N∑

n=1

(
yn −

〈
gn,x

〉)2]
, (2)

where the expectation is over {gn, yn}Nn=1.
In practice, the statistics of {gn, yn}Nn=1 are not necessarily

available to compute the expectation in (2) analytically, but

the samples of {gn, yn}Nn=1 are much easier to obtain, and

one alternative is to approximate the expectation in (2) by

the sample average function constructed from the samples

{g(τ)
n , y

(τ)
n }tτ=1 sequentially available up to time t [6]:

x
(t)
rls � argmin

x

1

t

t∑
τ=1

N∑
n=1

(
y(τ)n − 〈

g(τ)
n ,x

〉)2

= argmin
x

1

2

〈
x,G(t)x

〉− 〈
b(t),x

〉
, (3)

where

G(t) � 1

t

t∑
τ=1

N∑
n=1

g(τ)
n (g(τ)

n )T , b(t) � 1

t

t∑
τ=1

N∑
n=1

y(τ)n g(τ)
n .

(4)

In literature, (3) is known as RLS, and xt
rls is a strongly

consistent estimator of x�, i.e., limt→∞ x
(t)
rls = x�, almost

surely, under Assumptions (A1)-(A2) [7].

If the unknown signal x� is furthermore sparse by nature or

by design, x
(t)
rls given by (3) may not be a good estimate be-

cause it is not necessarily sparse, unless when t is sufficiently

large. To overcome this shortcoming, a sparsity encouraging

function in terms of �1-norm is incorporated into (3), leading

to the �1-regularized loss function [7]:

L(t)(x) � 1

2

〈
x,G(t)x

〉− 〈
b(t),x

〉
+ μ(t) ‖x‖1 , (5)

where μ(t) > 0. Then by minimizing the sample average

function L(t)(x), we obtain the estimate x
(t)
lasso given by

x
(t)
lasso � argmin

x
L(t)(x), (6)

In literature, problem (6) for a fixed t is known as the least-
absolute shrinkage and selection operator (LASSO).

Compared with (2) whose objective function is stochastic

and whose calculation depends on unknown parameters, (6)

is a well-defined deterministic optimization problem whose

theoretic and algorithmic properties are well investigated and

understood. The connection between x
(t)
lasso in (6) and the

unknown variable x� is given in the following lemma [7].

Lemma 1. Suppose Assumptions (A1)-(A2) as well as the
following assumption are satisfied for (6):
(A3)

{
μ(t)

}
is a positive sequence converging to 0, i.e.,

μ(t) > 0 and limt→∞ μ(t) = 0.
Then limt→∞ x

(t)
lasso = x� almost surely.

Note that x� in (1) is the power vector and thus always

nonnegative by definition. However, to make the proposed

algorithm applicable in an even broader context, we do not

make this assumption. We will show later how this nonnegative

property can be exploited to further strengthen the results.

III. THE ONLINE PARALLEL ALGORITHM

Lemma 1 not only states the connection between x
(t)
lasso and

x� from a theoretical perspective, but also offers valuable

insights on the estimation of x� from the algorithmic point of

view: it is clear that the recursive estimation of the unknown

signal x� is achieved by solving a sequence of deterministic

optimization problems, each of which has the form (6) and can

be solved by numerous solvers, e.g., FISTA [9]. Actually, this

methodology has been adopted in a number of works [8].

However, solving (6) completely w.r.t. all elements of x at

each time instance is computationally impractical. To reduce

the complexity, an “online” recursive algorithm is proposed

in [7]: at each iteration t, (6) is only solved approximately. In

particular, only a single element xk with k = mod(t−1,K)+1



is updated by minimizing L(t)(x) w.r.t. xk only while the

remaining elements {xj}j �=k are assumed to be fixed; then

in the next iteration t + 1, a new sample average function

L(t+1)(x) is constructed with the newly arrived samples, and

the (k + 1)-element is updated by minimizing L(t+1)(x)
w.r.t. xk+1 only, while the remaining elements again are

fixed. Although it is easy to implement, this sequential update

scheme suffers from slow convergence, and the incurred delay

is even larger when K is large.

To overcome the slow convergence, we propose an online

parallel update scheme in which all elements are updated

simultaneously. At the t-th iteration of the proposed algorithm,

when updating xk where 1 ≤ k ≤ K, we follow a two-

step procedure. In the first step, the update direction of xk

at xk = x
(t)
k , denoted as x̂

(t)
k − x

(t)
k , is determined based on

the so-called nonlinear best-response, i.e., x̂
(t)
k is given by:

x̂
(t)
k � argmin

xk

{
L(t)(xk,x

(t)
−k) +

1

2
c
(t)
k (xk − x

(t)
k )2

}
, ∀ k,

(7)

where x−k � {xj}j �=k and an additional quadratic proximal

term with c
(t)
k ≥ 0 is included for numerical simplicity and

stability [10], [13]. Note that in (7), remaining elements x−k

are fixed to their values of the preceding iteration x−k = x
(t)
−k.

Then in the second step, given the update direction x̂(t)−x(t),

an intermediate variable x̃(t+1) is defined according to:

x̃(t+1) = x(t) + γ(t)(x̂(t) − x(t)), (8)

where γ(t) ∈ [0, 1] is the stepsize. The intermediate variable

x̃(t+1) plays an important role in the construction of x(t+1),

and their connection, as well as the selection of the stepsize

γ(t+1), will be discussed shortly later.

In view of the analytical expression of L(t)(x) in (5), the

best-response defined in (7) can be expressed in closed-form:

x̂
(t)
k = argmin

xk

{
1
2G

(t)
kkx

2
k + r

(t)
k · xk

+μ(t)|xk|+ 1
2c

(t)
k (xk − x

(t)
k )2

}

=
1

G
(t)
kk + c

(t)
k

Sμ(t)(r
(t)
k − c

(t)
k x

(t)
k ),

(9)

where Sa(b) � [−b− a]+ − [b− a]+ is the well-known soft-

thresholding operator [9], r(t) � G(t)x(t) − diag(G(t))x(t) −
b(t), and diag(X) is a diagonal matrix whose diagonal el-

ements are obtained from X. Besides, since G(t) � 0 and

G
(t)
kk ≥ 0, c

(t)
k should be selected such that G

(t)
kk + c

(t)
k > 0.

The update direction x̂(t) − x(t) is a descent direction of

L(t)(x) in the sense specified by the following proposition,

whose proof is omitted due to page limit [14].

Proposition 2. For the update direction x̂(t)−x(t) while x̂(t)

is given in (9), the following holds for any γ ∈ [0, 1]:

L(t)(x(t)+γ(x̂(t) − x(t)))− L(t)(x(t)) ≤
−γ

(
c
(t)
min −

1

2
λmax(G

(t))γ

)∥∥x̂(t) − x(t)
∥∥2

2
, (10)

where c
(t)
min � mink

{
G

(t)
kk + c

(t)
k

}
> 0.

Now we discuss how to select the stepsize γ(t) so that

fast convergence is observed. As shown in Proposition 2,

L(t)(x(t) + γ(x̂(t) − x(t))) < L(t)(xt) when γ is sufficiently

small, so one natural choice of the stepsize rule is the so-called

“minimization rule” [15, Sec. 2.2.1]:

γ(t) = argmin
0≤γ≤1

L(t)(x(t) + γ(x̂(t) − x(t)))

= argmin
0≤γ≤1

⎧⎪⎨
⎪⎩

1
2

〈
x̂(t) − x(t),G(t)(x̂(t) − x(t))

〉 · γ2

+
〈
G(t)x(t) − b(t), x̂(t) − x(t)

〉 · γ
+μ(t)

∥∥x(t) + γ(x̂(t) − x(t))
∥∥
1

⎫⎪⎬
⎪⎭ .

(11)

That is, the stepsize is selected such that the objective value

is decreased to the largest extent: for any γ ∈ [0, 1],

L(t)(x(t) + γ(t)(x̂(t) − x(t))) ≤ L(t)(x(t) + γ(x̂(t) − x(t))).
(12)

But the difficulty with this minimization rule is the complexity

of solving (11), since the presence of the �1 makes it impossi-

ble to find a closed-form solution and (11) can only be solved

numerically by a solver such as MOSEK [16].

To find a stepsize which yields fast convergence but is much

easier to calculate, we propose a simplified minimization rule

based on the convexity of vector norms. To see the insight,

we split L(t)(x) defined in (5) into a smooth part f (t)(x) and

a nonsmooth part h(t)(x):

f (t)(x) � 1

2

〈
x,G(t)x

〉− 〈
b(t),x

〉
, (13a)

h(t)(x) � μ(t) ‖x‖1 . (13b)

It follows from the convexity of ht(x) that for any γ ∈ [0, 1]:

h(t)(x(t) + γ(x̂(t) − x(t))) =

≤ (1− γ)ht(x(t)) + γht(x̂(t))

= h(t)(x(t)) + γ(h(t)(x̂(t))− h(t)(x(t))), (14)

while the right hand side of (14) is linear in γ, and equality is

achieved either when γ = 0 or γ = 1. As a result, the function

L̄(t)(γ) � f (t)(x(t) + γ(x̂(t) − x(t)))

+ γ(h(t)(x̂(t))− h(t)(x(t))) + h(t)(x(t)) (15)

is a tight upper bound of L(t)(x(t) + γ(x̂(t) − x(t))).
Then in the simplified minimization rule, instead of directly

minimizing L(t)(x(t) + γ(x̂(t) − x(t))) over γ, we minimize

its upper bound L̄(t)(γ) and γ(t) is accordingly given by

γ(t) = argmin
0≤γ≤1

L̄(t)(γ)

= argmin
0≤γ≤1

⎧⎪⎪⎨
⎪⎪⎩

1
2

〈
x̂(t) − x(t),G(t)(x̂(t) − x(t))

〉 · γ2

+
〈
(G(t)x(t) − b(t), x̂(t) − x(t)

〉 · γ
+μ(t)(

∥∥x̂(t)
∥∥
1
− ∥∥x(t)

∥∥
1
) · γ

⎫⎪⎪⎬
⎪⎪⎭ .

(16)

The scalar problem (16) is convex quadratic with a bound

constraint and it has a closed-form solution given by (17) at

the top of the next page, where [x]10 � min(max(x, 0), 1). At



γ(t) =

[
−
〈
G(t)x(t) − b(t), x̂(t) − x(t)

〉
+ μ(t)(

∥∥x̂(t)
∥∥
1
− ∥∥x(t)

∥∥
1
)〈

x̂(t) − x(t),G(t)(x̂(t) − x(t))
〉

]1

0

(17)

Algorithm 1: The Online Parallel Algorithm

Data: x(0) = 0; set t = 0.

Step 1: If x(t) satisfies a suitable termination criterion: STOP.

Step 2: Calculate x̃(t+1) according to

x̃(t+1) = (1− γ(t))x(t) + γ(t)x̂(t),

where x̂(t) and γ(t) is determined according to (9) and (17),

respectively.

Step 3: If L(t)(x̃(t+1)) ≤ 0, x(t+1) = x̃(t+1); otherwise

x(t+1) = 0.

Step 4: t← t+ 1 and go back to Step 1.

the same time, it can also yield a strict decrease in L(t)(x) at

x = x(t) as the standard minimization rule does in (12). We

can see this from the following inequalities:

L(t)(x̃(t+1)) = L(t)(x(t) + γ(t)(x̂(t) − x(t)))

≤ L̄(t)(γ(t)) < L̄(t)(γ)
∣∣
γ=0

= L(t)(x(t)),

where the first inequality comes from the convexity of h(t)(x)
as in (14), and the second strict inequality comes from the

uniqueness of the optimal solution of (16) and the fact that

γ(t) 	= 0.

Furthermore, it is sometimes possible to obtain an estimate

with an even smaller objective value than L(t)(x̃(t+1)). A look

at the definition of L(t)(x) in (5) reveals that L(t)(x
(t)
lasso) ≤

L(t)(0) = 0 for all t, because x
(t)
lasso defined in (6) is the

minimizing variable of L(t)(x) while x = 0 is just a feasible

solution. Depending on the value of L(t)(x̃(t+1)), we update

x as follows:

x(t+1) =

{
x̃(t+1), if L(t)(x̃(t+1)) ≤ 0,

0, otherwise.
(18)

To summarize the above analysis, the proposed online

parallel algorithm is formally described in Algorithm 1, and

its convergence properties are given in the following theorem,

whose proof is omitted due to page limit [14].

Theorem 3. Suppose Assumptions (A1)-(A3) as well as the
following assumptions are satisfied:
(A4) Both gn and vn have bounded moments;
(A5) G

(t)
kk + c

(t)
k ≥ c for some c > 0;

(A6) The sequence {μ(t)} is decreasing, i.e., μ(t+1) ≤ μ(t).
Then the sequence

{
x(t)

}
t

produced by Algorithm 1 converges
to x� almost surely.

Assumption (A4) is a standard assumption on random

variables and can usually be satisfied in practice. Assumption

(A5) is satisfied if c
(t)
k is lower bounded by some positive

scalar for all t. As for Assumption (A6), it is satisfied by the

previously mentioned choices of μ(t), e.g., μ(t) = α/tβ with

α > 0 and β > 0. Typical choices of β are β =0.5 and 1 [7].

In what follows, we comment on some of the novel features

of Algorithm 1 that make it appealing in practice:

1) Algorithm 1 is an instance of online algorithms where

problem (6) is solved only approximately. Compared with [8]

where (6) is solved exactly in each iteration, the complexity is

greatly reduced without jeopardizing the convergence property.

2) Algorithm 1 is an instance of parallel algorithms where

all elements are updated simultaneously in each iteration.

Compared with sequential algorithms where only one element

can be updated while the others have to remain fixed [7],

the improvement in convergence speed is presumably notable,

especially when the signal dimension is large.

3) The implementation of Algorithm 1 is very easy, since

both the computations of the best-response and the stepsize

have closed-form expressions. With the proposed stepsize rule,

notable decrease in objective function value is guaranteed in

all iterations, and this saves the trouble of tuning the free

parameters as required in [10].

4) Algorithm 1 converges under milder assumptions than

state-of-the-art. For example, we do not require the regression

vector gn and noise vn to be uniformly bounded, which was

however assumed in [17] but cannot be satisfied if they follow,

e.g., the Gaussian distribution.

Note that Algorithm 1 can be implemented in a distributed

manner among SUs with limited signaling. We omit the details

due to page limit and interested readers are referred to [14]

for more details.

A. Estimation of the nonnegative power vector

Indeed, the unknown vector x� in (1) represents the transmit

power of PUs which is always nonnegative, and the analysis

can thus be simplified. Specifically, the best-response x̂
(t)
k in

(9) is simplified to

x̂
(t)
k =

[
−(r(t)k − h

(t)
k x

(t)
k )− μ(t)

]+
G

(t)
kk + h

(t)
k

.

Furthermore, since both x(t) and x̂(t) are nonnegative, we

have x(t) + γ(x̂(t) − x(t)) ≥ 0 for γ ∈ [0, 1] and
∥∥x(t) +

γ(x̂(t)−x(t))
∥∥
1
=

∑K
k=1 x

(t)
k + γ(x̂

(t)
k −x

(t)
k ). Therefore one

can directly adopt the minimization rule and the stepsize is

accordingly given as

γ(t) =

[
−
〈
G(t)x(t) − b(t) + μ(t)1, x̂(t) − x(t)

〉〈
x̂(t) − x(t),G(t)(x̂(t) − x(t))

〉
]1

0

,

where 1 is a vector with all elements equal to 1.
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Figure 1. Convergence behavior in terms of objective function value

IV. NUMERICAL RESULTS

In this section, we test the convergence behavior of Algo-

rithm 1 with the online sequential algorithm proposed in [7].

In this example, the parameters are selected as follows:

• N = 1, so the subscript n is omitted.

• the dimension of x�: K = 100;

• the density of x�: 0.1;

• Both g and v are generated by i.i.d. standard normal

distributions: g ∈ CN (0, I) and v ∈ CN (0, 0.2);
• The sparsity regularization gain μ(t) =

√
K/t = 10/t;

• Unless otherwise stated, the simulations results are aver-

aged over 100 realizations.

We plot in Figure 1 the iteration t versus the relative error in

objective value (L(t)(x(t)) − L(t)(x
(t)
lasso))/L

(t)(x
(t)
lasso), where

1) x
(t)
lasso is defined in (6) and calculated by MOSEK [16]; 2)

x(t) is returned by Algorithm 1 in the proposed online parallel

algorithm; 3) x(t) is returned by [7, Algorithm 1] in online

sequential algorithm; and 4) x(0) = 0 for both parallel and

sequential algorithms. Note that L(t)(x
(t)
lasso) is by definition

the lower bound of L(t)(x) and L(t)(x(t)) − L(t)(x
(t)
lasso) ≥ 0

for all t. From Figure 1 it is clear that the proposed algorithm

converges to a precision of 10−2 in less than 200 iterations

while the sequential algorithm needs more than 800 iterations.

The improvement in convergence speed is thus notable. If one

sets the precision as 10−4, the online sequential algorithm

does not even converge in a reasonable number of iterations.

Therefore, the proposed online parallel algorithm outperforms

in both convergence speed and solution quality.

V. CONCLUSIONS

In this paper, we have proposed an online algorithm with

provable convergence for the recursive estimation of sparse

signals. Since all elements are updated in parallel and in

closed-form, the convergence speed is greatly enhanced. The

proposed simplified minimization stepsize rule makes notable

progress possible in all iterations while it can still be calculated

in closed-form, achieving a good trade-off between complexity

and performance. The fast convergence speed of the proposed

algorithm is also consolidated numerically.
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