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Abstract—Reliable estimation of the source power as well
as the direction of transmission (DoT) is required in a large
number of applications, e.g. radio environment mapping for
cognitive radios, security, system performance and interference
monitoring. In this paper, we develop a multi-sensor cooperative
estimation algorithm for joint power and DoT estimation of a
source with a known location and equipped with a directive
antenna pattern. The source signal is assumed to be known, e.g. a
training sequence, and the channel is modeled by the free-space
path loss. Simulation results show that the developed algorithm
can deliver a reliable estimation accuracy.

Index Terms—Direction of transmission (DoT), ML estimation,
spectrum cartography, cognitive radio, directive source

I. INTRODUCTION

Spectrum cartography or radio environment mapping

(REM) is considered as an enabling technique for large

cognitive radio networks implementation [1], [2]. REM can

be used as a database for cognitive radios to allocate the

available resources while adhering to the regulatory inter-

ference constraints. Several techniques are proposed in the

literature in order to obtain REM at a large scale. In [2],

the authors exploit the inherent sparsity in the frequency and

spatial domain in order to obtain the spectrum map of the

sources. Location estimation information is employed in [3]

in order to reconstruct the spectrum map. Different parameters

of the primary radio network are estimated in [4], and the

results are stored in a database for REM. The authors of

[5] follow a similar approach by estimation of the primary

network parameters as well as deriving the theoretical bounds

on the estimation accuracy of the proposed algorithms. The

majority of the current research works consider the source to

be omni-directional. While this assumption may be valid in

the lower part of the spectrum such as the TV whitespace,

due to the directive nature of communications in the higher

part of the spectrum (e.g. fixed-service terrestrial or satellite

links in 18 GHz and above [6]), the developed algorithms may

fail to achieve a good accuracy. Therefore, in order to obtain a

reliable spectrum map, it is necessary to estimate the direction

of transmission (DoT) (i.e., the direction of antenna with the

maximum gain) as well as the location and the transmitted

power.

It is important to note that DoT estimation is different

from the direction of arrival (DoA) estimation which is a well

studied technique in the literature [7]–[9], particularly when

it comes to near-field effects. To the best of our knowledge

except [4] and [5], there are no other work which takes the

antenna directivity into account for spectrum cartography. In

[4], an extensive set of measurements over different distances

and positions is used in order to estimate the direction of

transmission. Exhaustive search over multiple dimensions and

large number of sensors is performed to estimate the direction

of transmission in [5]. Further, the developed techniques only

consider the case with Gaussian shaped antenna radiation

patterns. Although, the main lobe of the symmetric antennas

(e.g. horn antenna) can be modeled approximately as Gaussian,

however not all the sensors may be located in the main lobe,

and further not all the antenna patterns are symmetric, and

thus a more general model need to be considered.

In this paper, a joint power and DoT estimation algorithm is

developed which can be applied to any antenna with a known

radiation pattern. We particularly consider a case where a few

number of sensors are distributed around a transmitter and col-

lects measurement samples. They send the samples to a fusion

center (FC) which is responsible to infer them, and estimate

the power and DoT of the source. The sensors are assumed

to be fixed during the measurements, and their locations are

known to the FC. Further, the location and the signal of the

transmitter are known to the FC, e.g. a training sequence, (the

case with the unknown random signal is considered in [10]).

This information can be either obtained through databases with

minimal information about the incumbent users, or estimated

beforehand [11]. The FC solves a maximum-likelihood (ML)

problem in order to estimate the underlying parameters. As

shall be shown later, for a given DoT, the power can be

estimated by a closed-form solution. This solution is then

used by the ML estimator to jointly estimate the power and

DoT which maximizes the likelihood function. It is clear that

knowing the location, the transmission power, and the DoT, the

spectrum map of the source over the considered geographical

area can be produced.

The remainder of the paper is organized as follows. The sys-

tem model and problem formulation is discussed in Section II.

We provide the solution to the problem in Section III. The

related Cramer-Rao Bound (CRB) is derived in Section IV.

Simulation results are plotted in Section V. Finally, we draw



our conclusions as well as future lines of work in Section VI.

II. PROBLEM STATEMENT

We consider a source which employs a directive antenna

with a known radiation pattern. The transmission occurs

in a deterministic but unknown direction. The direction of

transmission (DoT) is denoted by angle φ towards a specific

reference line and represents the direction of the main lobe.

We denote Ps as the unknown source transmission power, and

G as the antenna gain. We denote by M > 1 the number

of sensors which are located at different angles towards the

reference line denoted by θi, i = 1, · · · ,M . The sensors

observations are assumed to be independent. We consider a

scenario where the sensors are aware of their own locations

(and thus the angles θi, i = 1, · · · ,M ) as well as the location

of the other sensors and the source. The sensors send their

observations to the FC. The goal of the FC is to estimate Ps

and φ. Further, we assume that the sensors and the source are

fixed during the estimation period. Fig. 1 depicts the setup of

the sensors, as well as the cooperative estimation configuration

of the sensors and the FC.

Fig. 1: Schematic configuration of the considered system

model.

Denoting xi[n], i = 1, · · · ,M to be the received signal at

time n and sensor i, we have

xi[n] =
√

PsG(φ, θi)h(di)s[n] + wi[n], (1)

where

• h(di) is the path-loss gain,

• G(φ, θi) is the antenna gain in the direction of sensor i,
• s[n] is the known transmitted signal (e.g. the training

sequence of a communication system) with E
[

s2[n]
]

=
1, where E

[

·
]

denotes the expectation,

• and w[n] is the i.i.d. additive-white-Gaussian-noise

(AWGN) with zero-mean and variance σ2
w.

The path-loss gain is obtained by h(di) = (4πdi/λ)
−γ , where

λ is the source signal wavelength, and γ is the path-loss

exponent. Note that this channel model does not represent the

instantaneous channel variations in wireless communications,

however provides a good approximation of attenuation. For

sake of simplicity, we consider real-valued signals. Based on

the defined system model, xi[n] is an i.i.d. real-valued random

Gaussian variable with mean value of
√

PsG(φ, θi)h(di)s[n]
and variance σ2

w. Therefore, the probability density function

(pdf) of the received signal at sensor i and time n denoted by

P (xi[n]) becomes

P (xi[n]) =
1

√

2πσ2
w

e
− (xi[n]−

√
PsG(φ,θi)h(di)s[n])2

2σ2
w , (2)

where e denotes the exponential function. Before going

through the underlying estimation algorithm in Section III, in

the following proposition, we provide the identifiability condi-

tions for the data model in (1), which is proved in [10]. Recall

that a model parameter in (1) is identifiable if for the error

and noise free scenarios, from P t
sG(φt, θi) = PsG(φ, θi), we

obtain Ps = P t
s , and φ = φt, where φt and φ denote the true

and estimated DoT, respectively, and P t
s and Ps denote the

true and estimated transmission power.

Proposition 1. The model in (1) is identifiable, if the

following conditions are satisfied,

1) ∀φ 6= φt : ∃θi : G(φ, θi) 6= G(φt, θi).
2) ∀∆ 6= 1 and φ 6= φt : ∃θi : G(φ, θi) 6= 1

∆G(φt, θi),
where ∆ = Ps

P t
s

.

The first condition means that there is always at least one

sensor which observes a different gain when the DoT changes,

and in the second condition, there is always at least one sensor

which its received gain does not change in the reverse pro-

portion of the change in the power. Meanwhile, for symmetric

antenna patterned sources, we obtain the following proposition

which is proved in [10],

Proposition 2: If the source is equipped with a non-linear

symmetric antenna gain pattern which is a one-to-one non-

linear decreasing function over |φ − θi| ∈ [0, ω], the model

parameters are identifiable if θi = (i − 1) 2π
M
, i = 1, · · · ,M ,

with M > 2π
ω
, and ω ≤ π.

III. MAXIMUM-LIKELIHOOD ESTIMATION ALGORITHM

As mentioned before, all the sensors send their observations

xi[n]s sequentially to the FC. The FC then estimates the power

and the DoT of the source using maximum likelihood (ML)

estimation. Denoting N to be total number of samples, the

joint likelihood function denoted by L is obtained as follows

L(φ, Ps) =

N
∏

n=1

M
∏

i=1

P (xi[n]), (3)

and after some simplifications, the log-likelihood (LL) func-

tion becomes

LL(φ, Ps) = MN log
1

√

2πσ2
w

(4)

− 1

2σ2
w

[ M
∑

i=1

N
∑

n=1

(

xi[n]−
√

PsG(φ, θi)h(di)s[n]
)2
]

.

Since MN log 1√
2πσ2

w

and 1
2σ2

w
do not depend on Ps or φ,

for estimation purposes we consider a reduced version of LL



function in (4) denoted by LLr as follows

LLr(φ, Ps) = −
[ M
∑

i=1

N
∑

n=1

(xi[n]−
√

PsG(φ, θi)h(di)s[n])
2

]

.

(5)

In order to estimate Ps and φ, we consider the following ML

estimation problem defined as

max
Ps,φ

LLr(φ, Ps)

s.t. Ps ≥ 0, 0◦ ≤ φ < 360◦, (6)

where LLr(φ, Ps) is obtained from (5). To solve (6), first we

assume that the φ is given and find the optimal Ps, and then

we insert the optimal Ps in (6) to find the optimal φ. As shall

be shown later, for a given φ denoted by φg, there is a unique

Ps which maximizes (5). For φg , (6) becomes

max
Ps

−
[ M
∑

i=1

N
∑

n=1

(

xi[n]−
√

PsG(φg, θi)h(di)s[n]
)2
]

s.t. Ps ≥ 0. (7)

We obtain the following theorem which provides the closed

form solution of Eq. (7) denoted by P ∗
s (φg).

Theorem 1: The optimal solution of Eq. (7) is obtained by

• If
∑M

i=1 Ri

√

G(φg, θi)h(di) > 0, then

P ∗
s (φg) =

(

∑M
i=1 Ri

√

G(φg, θi)h(di)

N
∑M

i=1 G(φg, θi)h(di)

)2

, (8)

where Ri =
N
∑

n=1
xi[n]s[n].

• If
∑M

i=1 Ri

√

G(φg, θi)h(di) ≤ 0, then

P ∗
s (φg) = 0.

Proof. The proof is provided in Appendix A.

We can now rewrite Eq. (6) as follows

max
φ

LLr(φ, P
∗
s (φ))

s.t. 0◦ ≤ φ < 360◦, (9)

where P ∗
s (φ) is the optimal Ps coming from Theorem 1. After

some simple algebraic simplifications, we obtain the following

Theorem.

Theorem 2: The function to be maximized in Eq. (9) can

be rewritten as follows

max
φ

U

(

M
∑

i=1

Ri

√

G(φ, θi)h(di)

)

×

(

∑M
i=1 Ri

√

G(φ, θi)h(di)
)2

M
∑

i=1

G(φ, θi)h(di)

where U(•) is the Heavyside function, i.e., U(x) = 1 if x ≥ 0
and U(x) = 0 otherwise. Therefore, in order to solve (6)

optimally, a line search over φ as in Theorem 2 is sufficient

to find the optimal φ, and consequently the optimal Ps using

the expression in Theorem 1.

IV. CRB ANALYSIS

In order to compare the performance of the developed

technique, here we obtain the Cramer-Rao-Bound (CRB) of

the estimation technique developed in this paper. The CRB

provides a lower-bound on the mean-square-error (MSE) of an

unbiased estimator and thus MSE(Ps, φ)≥ CRB(Ps, φ) [12].

Assuming that LL(Ps, φ) satisfies the regulatory condi-

tions, after algebraic manipulations presented in Appendix

B, we obtain the following Theorem which calculates

CRB(Ps,φ)=CRB(Ps)+CRB(φ).

Theorem 3: The CRB(Ps, φ) for deterministic signal is given

by

CRB(Ps, φ) =
4Psσ

2
w

N
∑M

i=1 G(φ, θi)h(di)

+
4σ2

w

NPs

∑M
i=1 h(di)

G
′2(φ,θi)
G(φ,θi)

, (10)

where G
′

(φ, θi) = ∂G(φ,θi)
∂φ

, and individual CRB(Ps) and

CRB(φ) are

CRB(Ps) =
4Psσ

2
w

N
∑M

i=1 G(φ, θi)h(di)
, (11)

CRB(φ) =
4σ2

w

NPs

∑M
i=1 h(di)

G
′2(φ,θi)
G(φ,θi)

. (12)

Note that the calculation of individual CRBs is merely pro-

vided to gain more insights. Otherwise, as the estimation is

jointly performed over Ps and φ, the individual CRBs can

not be a good benchmark for comparison. From (10), it is

clear that increasing the noise power, increases the total CRB,

but the effect of Ps on the total CRB is not exactly clear.

Increasing Ps increases the CRB(Ps) but reduces the CRB(φ).

Additionally, increasing the number of samples reduces the

total CRB linearly and thus the expected MSE. Furthermore,

we can see that as the number of sensors increases, the CRB

decreases but its effect is not linearly scaled as is the case

for the number of samples N . Finally, it is clear that as the

distance of the sensors to the source increases, CRB increases.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the de-

veloped algorithm in terms of the normalized mean square

error (NMSE). Without loss of generality, we assume that the

sensors are located with the same distance to the source, and

further they are equally distanced from each other over a circle

with radius d, and centered on the source, and s = 1. In all

figures we assume the antenna gain is modeled by

G(φ, θi) =

{

100 exp(−|φ− θi|) if 0◦ ≤ |φ− θi| ≤ 180◦,
0 else,

(13)

where |·| denotes the absolute value. Note that this model is an

approximation of a symmetric antenna gain pattern, e.g. Horn

antennas, and can provide good insights in the behavior of

the proposed estimation algorithm. Each result is obtained by



averaging over 1000 runs. Further, in order to make sure the

simulation setups are identifiable, we follow the identifiability

analysis provided in Proposition 2.

The convergence of the proposed technique with the number

of samples is evaluated in Fig. 2 for a case of 3 sensors. In this

figure, the NMSE versus the number of samples is depicted

for both Ps and φ. It is clear that the proposed ML algorithm

converges after few samples and estimation error is very low.
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Fig. 2: Normalized mean square error (NMSE) with number

of samples, φ = 60◦, d1 = d2 = d3 = 100 m, θ1 = 0◦,

θ2 = 120◦, θ3 = 240◦, Ps = 0 dBW, and σ2
w = −136 dBW.

We follow the simulations in Fig. 3 by compar-

ing NMSE(Ps, φ) = NMSE(Ps) + NMSE(φ), with

NCRB(Ps, φ) = NCRB(Ps) + NCRB(φ) as the number of

samples increases. The simulation setup remains the same as in

Fig. 2. We can see that the estimation accuracy of the proposed

algorithm is close to the CRB.
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Fig. 3: Normalized mean square error (NMSE) versus nor-

malized CRB (NCRB), φ = 60◦, d1 = d2 = d3 = 100 m,

θ1 = 0◦, θ2 = 120◦, θ3 = 240◦, Ps = 0 dBW, and

σ2
w = −136 dBW.

In Figures 4 and 5, for the same antenna pattern as in

Fig. 2, we study the estimation accuracy as it changes with the

distance of the sensors to the source. From these figures, we

can see that the cooperative estimation technique developed in

this paper can reliably estimate Ps and φ, and as the number of

sensors increases, the estimation accuracy improves. Further,

we can see that the distance to the source has a relatively

significant impact on the estimation accuracy. In these two

figures, the angular position of the sensors for the case with 3

sensors is the same as Fig. 2, while for the case with 4 sensors

θ1 = 0◦, θ2 = 90◦, θ3 = 180◦, θ4 = 270◦.
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Fig. 4: Normalized mean square error of Ps estimation, φ =
60◦, di = 100− 1000 m, Ps = 0 dBW, σ2

w = −136 dBW.
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Fig. 5: Normalized mean square error with φ estimation, φ =
60◦, di = 100− 1000 m, Ps = 0 dBW, σ2

w = −136 dBW.

VI. CONCLUSION

In this paper, we developed a cooperative estimation algo-

rithm to jointly estimate the source power and DoT. Assuming

a known signal model, a closed form solution for the source

power estimation was provided for a given DoT. Afterward,

DoT can be easily estimated by a line search over φ. Several



simulations results were provided in support of the proposed

algorithm. It was shown that the algorithm can reliably esti-

mate the desired parameters and performs close to the CRB.

In this work, we assumed a simplistic channel model by only

taking path loss into account. Considering more realistic signal

and channel models are subjects of the future work.

APPENDIX A

PROOF OF THEOREM 1

In order to find the maximum of Ps 7→ LLr(Ps, φg), we

would like to analyze the shape of the function. To do that,

we will calculate its derivative function. For any Ps 6= 0, we

easily get

∂LLr(Ps, φg)

∂Ps

=
1√
Ps

M
∑

i=1

Ri

√

G(φg, θi)h(di)

− N

M
∑

i=1

G(φg, θi)h(di).

• If
∑M

i=1 Ri

√

G(φg, θi)h(di) > 0, then the derivative

function is positive as Ps → 0. And thus the function

LLr(•, φg) increases with Ps until the point P ∗
s such

that

1
√

P ∗
s

M
∑

i=1

Ri

√

G(φg, θi)h(di) = N

M
∑

i=1

G(φg, θi)h(di).

Beyond the point P ∗
s , the derivative function becomes

negative and the function LLr(•, φg) decreases. There-

fore the optimal point is P ∗
s and so we get Eq. (8).

• If
∑M

i=1 Ri

√

G(φg, θi)h(di) ≤ 0, then the deriva-

tive function is always negative and so the function

LLr(•, φg) is monotonic decreasing in Ps. Therefore the

optimal point is zero.

APPENDIX B

PROOF OF THEOREM 3

We recall that the CRB for parameters [Ps, φ] is the trace of

the inverse of the Fisher Information Matrix F ( [12]) defined

as

F = E

[

∂LL
∂Ps

∂LL
∂Ps

∂LL
∂Ps

∂LL
∂φ

∂LL
∂φ

∂LL
∂Ps

∂LL
∂φ

∂LL
∂φ

]

, (14)

where LL(Ps, φ) is given by (4). After some calculations we

can derive each term of the F matrix as follows,

E

(

∂LL

∂Ps

∂LL

∂Ps

)

=
N
∑M

i=1 G(φ, θi)h(di)

4Psσ2
w

, (15)

E

(

∂LL

∂φ

∂LL

∂φ

)

=
NPs

∑M
i=1 h(di)

G
′2

(φ,θi)
G(φ,θi)

4σ2
w

, (16)

with G
′

(φ, θi) =
∂G(φ,θi)

∂φ
, and

E

(

∂LL

∂Ps

∂LL

∂φ

)

= E

(

∂LL

∂φ

∂LL

∂Ps

)

= 0. (17)

This way, the inverse of F denoted by F
−1 becomes

F
−1 =







4Psσ
2
w

N
∑

M
i=1 G(φ,θi)h(di)

0

0
4σ2

w

NPs

∑
M
i=1 h(di)

G
′2

(φ,θi)

G(φ,θi)






,

(18)

and thus we obtain

CRB(Ps, φ) =trace(F−1) =
4Psσ

2
w

N
∑M

i=1 G(φ, θi)h(di)

+
4σ2

w

NPs

∑M
i=1 h(di)

G
′2(φ,θi)
G(φ,θi)

, (19)

and

CRB(Ps) =
4Psσ

2
w

N
∑M

i=1 G(φ, θi)h(di)
, (20)

CRB(φ) =
4σ2

w

NPs

∑M
i=1 h(di)

G
′2(φ,θi)
G(φ,θi)

, (21)

which concludes our proof.
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