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Distributed covariance estimation for compressive
signal processing

Matteo Testa and Enrico Magli
Department of Electronics and Telecommunications – Politecnico di Torino (Italy)

Abstract—In this paper we present a novel technique for the
distributed estimation of the covariance matrix of an additive
colored noise process affecting Compressed Sensing (CS) mea-
surements. The main application is in wireless sensor networks,
where nodes sense signals in CS format in order to save energy in
the computation and transmission stages. The proposed technique
enables a variety of compressive signal processing operations to
be performed at each node directly on the linear measurements,
such as detection, exploiting the knowledge of the noise statistics,
thereby achieving improved performance. The parametric ap-
proach we introduce promises to yield good results while keeping
the communication cost low. Hence, we validate our technique by
evaluating the error on the estimated covariance matrix, and by
including it in a compressive detection task.

Keywords—compressed sensing, autoregressive model, dis-
tributed estimation, detection.

I. INTRODUCTION

In recent years, wireless sensor networks (WSN) emerged
as an inexpensive way to collect spatially distributed data
such as temperature or gas concentrations. The aim of WSN
is not only that of collecting distributed data, but also that
of collaborating to accomplish a task (e.g., estimating the
covariance matrix of a process) given that each node has
only a portion of the whole data required for the task to be
accomplished.

Since signal transmission among nodes in a WSN is
limited due to energy consumption of the radio interface,
compressed sensing (CS) which allows to compress while
acquiring a signal, emerged as a viable solution to reduce
the communication load in WSN. Moreover, since the re-
covery of a compressed signal is computationally expensive
and often is not required (e.g., only some parameters of the
signals are needed), detection and estimation problems from
CS measurements [1] are extremely suitable to be performed
directly at nodes. A common assumption is to model the
noise affecting the signal with additive white gaussian noise
(AWGN), in which case the noise variance is a sufficient
statistic to perform signal processing operations. However,
when the noise affecting the signal is not AWGN, estimating
the covariance matrix of the noise process is fundamental to
improve the detection/estimation performance in a variety of
inference techniques [2].

The problem of distributed covariance estimation, which
has received a lot of attention recently in the non-compressed
case, is mainly addressed by the distributed estimation of
the principal eigenvectors or eigenvalues of the covariance
matrix. Moreover, a large number of techniques proposed in
literature tackle this problem using a fusion center to which the

This work has received funding from the European Research Council under
the European Communitys Seventh Framework Programme (FP7/2007-2013)
ERC Grant agreement no. 279848.

nodes send the measurements for processing, which however, it
introduces a single point of failure. Differently, the setting we
consider in this paper is a fully distributed one with no fusion
center and local computations at the nodes. The distributed
eigenvector problem is considered in [3] via distributed estima-
tion of the sample covariance matrix followed by local eigen-
decomposition. Other authors [4] propose instead algorithms
able to directly estimate the smallest (largest) eigenvectors.
Ad hoc algorithms for the distributed estimation of the largest
eigenvalues have also been proposed as in [5]. Moreover, very
few papers in literature consider the distributed architecture
when the covariance matrix is that of a noise process having
observation matrix Y , whose columns, distributed among the
nodes, contains different realizations of the process. This
setting is important for detection and estimation tasks because
the resulting covariance matrix captures the statistics of the
process common to the nodes. This model is considered in
[6] where the authors compare the centralized estimation with
two different fully distributed approaches based on the average
consensus protocol to estimate the largest eigenvector of the
covariance matrix of the process.

The drawback of such approaches is the potential increase
of the exchanged data among nodes and hence energy con-
sumption. In particular, the aforementioned techniques requires
the nodes to exchange (with all the other nodes or with a
smaller subset) signals whose length is the same as the one
of the acquired signal. In this paper we also consider the
problem of distributed covariance estimation. Specifically, we
aim at developing estimation techniques that require a small
communication load to perform the distributed estimation task,
thereby requiring much less energy than existing techniques.
Consequently, the proposed method differs markedly from ex-
isting methods for two main reasons: instead of estimating the
eigenvectors of the covariance matrix we estimate the whole
covariance matrix but in a parametric fashion in order to reduce
the communication load; moreover, we estimate the covari-
ance matrix of a noise process corrupting CS measurements
instead of the original signal samples. This latter difference,
besides complicating the estimation process, has interesting
practical implications. In fact, once the covariance has been
estimated, each node can perform signal processing operations
on the compressed data, e.g., inference and detection tasks
[1] exploiting the knowledge of the noise statistics to obtain
improved accuracy. In particular, in this paper we propose a
new distributed algorithm for the estimation of the covariance
matrix of a colored noise process affecting CS measurements
using a parametric approach. In fact, we propose to model the
colored noise with an autoregressive process (AR) of order
p since this model is able to characterize the colored noise
process using only few parameters. Hence, given that we model
the colored noise with only few parameters, the approach
we propose is extremely parsimonious on the communication
cost among the nodes. Moreover, the noise covariance matrix
estimate obtained with the proposed algorithm can be used



to improve the performance of compressive detection and
estimation tasks in non-AWGN noise. In order to show this,
we derive a compressive detector and assess its performance,
showing that with the distributed estimation of the covariance
matrix indeed improves the detection accuracy.

II. PRELIMINARIES

A. Model and assumptions

The topology of the sensor network we are considering
throughout this paper is represented by a graph G = (V,E).
For each node of the network v ∈ V a signal is acquired
according to the model

y(v) = Φ(v)x(v) + n(v), (1)

where x(v) ∈ Rn is a sparse or compressible signal in some
domain (e.g., Fourier or DCT) and Φ(v) ∈ Rm×n with m < n
is the sensing matrix: the operator which performs the dimen-
sionality reduction. According to CS theory [7] Φ is chosen
to be a random sensing matrix whose entries are distributed
according to N ∼ (0, 1

m ). Then, Φ(v)x(v) can be approximated
as white noise [8]. The vector n(v) ∈ Rm is assumed to be a
colored noise process that corrupts the linear measurements. In
this paper, the colored noise is approximated with a parametric
model, i.e., an autoregressive process of a order p, denoted
as AR(p). The goal of this paper is to perform distributed
estimation of the covariance matrix of the noise given that
each node is corrupted by a different realization of the same
noise process. Having the colored noise n approximated with
an AR(p) process, we can formally define the time-varying

nature of such a process as nt =
p∑

i=1
nt−iai + wt being

a = [a1 . . . ai ap]⊤ the coefficients of the regression and w
the driving noise process. Then the covariance matrix of the
process can be written as C = A−1A−ᵀ, where (·)−ᵀ denotes
the transpose of the inverse operator, A = tril(toeplitz(u)) and
u = [1 a 0 . . . 0]ᵀ ∈ Rm. In order to estimate C we need
to estimate the parameter vector a. Although many estimators
have been proposed in literature [9], our work relies on the
least squares estimator as it allows us to obtain closed form
expression for the covariance estimator.

B. Unbiased least-squares estimate

For notation simplicity let us drop the superscript (v) and
consider a single node in this subsection. Given a realization
n ∈ Rm of an AR(p) process and the associated regression
vector nᵀ

t = [nt−1 . . . nt−p], the t-th sample can be written as
nt = nᵀ

t a+wt, where wt ∼ N(0,σ2
v) is the t-th sample of the

driving noise process vector w. The least-squares estimator of
the regression coefficient vector a is then given by

aLS = min
a

∥n−NaLS∥22 where N =

⎡

⎢⎣
nᵀ
p+1
...

nᵀ
m

⎤

⎥⎦ . (2)

By means of the bias compensation principle [10], the least-
squares estimate can be decomposed in the unbiased estimate
term a and the bias term as

a = aLS + σ2
wR

−1a, (3)

where R =
∑m

t=1 ntn⊤
t and σ2

w = var(Φx). As we can see
from (3), there are two unknowns: a and σ2

w. Therefore we

have developed an iterative algorithm based on alternating
the estimation of the unknowns. The distributed algorithm we
introduce in Section III-A unbiases the least-squares estimate
relying on the technique developed in [10], where the authors
obtain the unbiased estimate âILS according to Algorithm 1.

Algorithm 1 Iterative AR(p) LS estimate unbiasing

1: k2 =
σ2
v

σ2
w

2: Ĵ(aLS) = σ2
w(k

2 + 1 + aᵀ
LSa)

3: while not stopIter do
4: σ̂2

w(i)← Ĵ(âLS)
k2+1+âᵀ

LS âILS(i−1)

5: âILS(i)← âLS + σ̂2
w(i)R

−1âILS(i− 1)
6: σ̂2

n(i)← k2σ̂2
w(i)

7: end while

III. DISTRIBUTED COVARIANCE ESTIMATION ALGORITHM

A. Proposed method

As introduced in section II-A, the estimation of the covari-
ance matrix can be reduced to the estimation of the common
parameter vector a of the AR(p) process realizations among
the nodes. The idea of using a parametric representation for
the covariance matrix of the process allow us to distribute the
estimation task keeping the communication cost low. Namely,
at each iteration the nodes only need to exchange with their
neighbors a small parameter vector of length p ≪ m. To do so,
we split the problem into sub-problems to be iteratively solved
at each node, in such a way that at the end of the iterations
each node v has a consistent estimate of the covariance matrix
Ĉ across the whole network.

Let us start by defining a global functional in which
we have a term related to the node-dependent least-squares
estimation of the AR parameters â(v)LS and a second term,
derived from (3), for bias removal which contains the vector
variable a that is common to all nodes. In fact, since the
noise component affecting the nodes corresponds to a different
realization of the same noise process, the consensus is on the
parameters a(v)∀v ∈ V that are the local unbiased coefficients
vector estimates. Since the local least-squares estimates at each
node are biased according to the compressed measurements the
node has acquired, this parameter is updated and kept local.
Hence, the functional F is defined as:

(4)F(a, a(1)
LS , . . . , a

(v)
LS , . . . , a

(|V |)
LS ) = min

∑

v∈V

f (v)(a, a(v)
LS) =

= min
∑

v∈V

∥y(v)
+ − [0 Y (v)]ā(v)∥2

︸ ︷︷ ︸
least squares term

+λ ∥[(I − σ2
w

(v)
R−1(v)) − I] ā(v)∥2

︸ ︷︷ ︸
unbiasing term

,

given ā(v) = [a(v)LS a]ᵀ, y(v)
+ = [y(v)p+1 . . . y(v)m ] and

Y (v) = [y(v)ᵀ
p+1→1 . . . y(v)ᵀ

m→m−p+1]
ᵀ, where ya→b !

[ya ya−1 . . . yb+1 yb]. In particular, the first term of the
functional, which only updates the least-squares component
a(v)LS of the vector ā(v), is equivalent to (2) as its solution
corresponds to the AR(p) least-square estimate. The second
term instead links the local least-squares estimates with the
unbiased estimate a (that is common to all nodes) thought
σ2
w
(v) and R−1(v). Hence, this latter term is defined as the

least-squares solution of the bias equation (3). Moreover, a
regularization parameter λ is used to weight the second term.



To distribute the functional F we use the subgradient consen-
sus method proposed in [11], where each node v alternates
between a gradient descent step towards the minimum of the
function f (v) and a consensus step. Since, as already pointed
out, by nature of the noise process all the nodes share the
same unbiased coefficients, the consensus step is performed
on the coefficients a(v). Therefore, in order to perform the
consensus, each node v only needs to exchange a vector made
of p parameters with its Nv neighbors corresponding to the
coefficients vector a(v). The resulting step to be performed at
each node at each iteration is then:

a(v)(i+ 1) =

|V |∑

j=1

[W ]hvj(a
(v)(i)− τg(v)(a(v)(i))), (5)

where g(v)(a(v)) = ∂f (v)(a(v)(i)), τ is the gradient descent
step size and the notation [W ]h indicates that h consensus
iterations are performed according to the adjacency matrix W .
However, computing the step in (5) requires the knowledge
of σ2

w
(v) due to its dependency on g(v). Since this variable is

assumed to be unknown, it is iteratively estimated according
to step 5 of the unbiasing algorithm described in Algorithm
1. The distributed algorithm procedure is summarized in Al-
gorithm 2.

Once the algorithm has reached the convergence, namely
∥â(v)(i) − â(v)(i − 1)∥2< α given the arbitrary parameter
α ≪ 1, each node can hence locally build the estimate of
the covariance matrix Ĉ(v).

The parameter h specifies the number of the consensus
iterations of the algorithm and it is a trade-off parameter
between consistency of the estimates and communication cost
across the network. More formally, the communication cost
(expressed in exchanged data samples) can be written as

D = h(|V ||Nv|Rp), (6)

where |Nv| is constant and R is the number of iterations
of the algorithm. As we experimentally show in Sec. IV,
h = 2 is a good compromise between estimation quality and
communication cost.

Algorithm 2 Distributed parametric covariance matrix estimation
Intialize:

ā(v) ← 0
σw

2(v) ← var(y(v))

k2(v) =
σ2
v

σ2
w

(v)

while not stopIter do
For each node v ∈ V
ā(v)(i+ 1)← ā(i)− τg(ā(v)(i),σ2

w
(v)(i))

σ̂w
2(v)(i+ 1)← Ĵ(ā(v)(i))

k(v)2+1+aᵀ
LS

(v)(i)a(i)(v)

a(v)(i+ 1) =
∑

v∈Nv
Wa(v)(i)

ā(v)(i+ 1) = [a(v)(i+ 1) a(v)
LS(i+ 1)]ᵀ

end while
Â(v) ← tril(toeplitz([1 a(v) 0 . . . 0])), Ĉ(v) ← Â(v)−1Â(v)−ᵀ

B. Convergence

Although in this paper we are not presenting a proof of
convergence of the proposed algorithm, we discuss its conver-
gence properties by separately analyzing the two directions in
which the algorithm moves that are: the subgradient consensus

step and the variance estimation. At first, let us assume that
σ̂2
w is known at each node. Then the following theorem can

be stated:

Theorem 1. Having the sequence {ā(i)(1), . . . , ā(i)(|V |)}∞i=0
generated by algorithm 2, with h ≥ (log(β)− log(4NM(β +
αC)))/log(γ) and f∗ > −∞ we have that:

lim
i→∞

inf f(a(i)(v)) ≤ f∗ + αNC2/2 + 3ncβ , ∀v ∈ V

Proof: This theorem comes from Th. 1 in [11], we hence
need to prove that in our case all the related assumptions
are satisfied. Assumption 1 is satisfied since we have that
∥g(v)(a)∥≤ C = (2∥Y ᵀY ∥+∥λSᵀS∥)∥a∥+∥2Y ᵀy+∥ with
S = [(I − σ2

w
(v)

R−1(v)) − I], then if ∥a∥≤ ∞ we have that
C ≤ ∞. Assumption 2 is satisfied for the topology we are
mainly considering throughout this paper: the ring topology.
Lastly, Assumption 3 is satisfied since the problem we are
considering is unconstrained.

In the proposed algorithm we are assuming that σ2
w is

not known at each node and hence must be estimated. The
unbiasing estimator given by the Algorithm 1 is proven to
converge in [10] to the unbiased estimate and hence σ2

w
converges to σ2

w
∗. Differently from this estimator, the proposed

algorithm does not have the knowledge of the true least squares
estimate a(v)LS . It has instead, at each step, a local estimate of
a(v)LS given by the subgradient step which is going towards
the optimum a(v)LS

∗. As we numerically show in the next
section, the proposed algorithm shows empirical convergence.
Intuitively we can hence say that, even though the convergence
is not proved when σ2

w is not known in advance, the alternated
estimation of least squares term and the noise variance, tends
to go towards the optimum of the functional defined in (4).

IV. EXPERIMENTAL RESULTS

A. Estimation of AR coefficients

For the purpose of numerical evaluation of the proposed
algorithm, at first we consider the estimation error and the
consensus reached on the parameters of the AR process in
a given network after a suitable number of iterations. The
considered network is arranged in a ring topology and is given
by the graph G with |V |= 10, and |Nv|= 2. Each node acquires
a signal y(v) = Φ(v)x(v) where Φ(v) are gaussian random
sensing matrices whose entries are drawn from N ∼ (0, 1

m )
and x(v) are sinusoidal signals (sparse in frequency domain)
for which different signal to noise ratios are taken into account.
The length of x(v) is n = 800, and that of y(v) is m = 200. For
the experiments, along with AR noise, we also considered pink
noise. This kind of noise, which is a non-white gaussian noise,
exhibits a decreasing spectrum and is present in many physical,
biological and economical systems. Hence, for this experiment
we considered both synthetic AR noise of order p = 3 and pink
noise which is approximated with an AR process. Since from
our experiments the pink noise is well approximated with an
AR process of third order, we choose p = 3. When considering
pink noise, since the true AR coefficients are not available,
the relative error we consider is given by ∥a∗−â(v)∥

∥a∗∥ where a∗

is the estimate obtained in a centralized fashion. The results
in Fig. 1 show that a relatively small number of exchanged
data samples (160000 samples) are sufficient to reach very
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iteration.
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Fig. 2. Trade-off curve for different values of consensus parameter h.

low errors on the estimates â(v). Along with a low estimation
error, we also show that the local estimates at each node reach
consensus. More in detail, for the AR process with SNR =
−3dB, the maximum distance among the nodes reduces down
to 9e−3 as the number of iterations are bigger than 80.

Since the number of consensus iterations h is a trade-off
between closer estimates and higher communication cost, we
experimentally evaluate the role of the parameter h. We can
see from Fig. 2 that, given a fixed error on the AR coefficients
estimates to be reached, increasing this consensus parameter
leads to closer estimates but at a higher communication cost.
For the experiments we show in the following sections, we
chose h = 2 as it is a good trade-off for keeping the
communication cost low while maintaining accurate estimates
across the network.

B. Estimation of covariance matrix

Starting from the good results obtained for the AR pa-
rameters estimates, in this section we present some results
on the estimated covariance matrix in order to assess the
performance of the proposed technique. The distance metric
we use to compare the estimate is the Forstner distance [12],
a widely used method for evaluating the distance of two
positive semi-definite covariance matrices. It is defined as
d(A,B) = tr(ln2(

√
A−1B

√
A−1)), where in our setting A

is C, the sample covariance matrix of the process (averaged
over 5000 realizations), and B is the local estimate of the
covariance Ĉ(v). As shown in Fig. 3, the distance between
the matrices C and Ĉ(v) decreases as the proposed algorithm
iterates, moreover the local distances (i.e., computed using the
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Fig. 3. Forstner distance between Ĉv and C computed for each estimate
Ĉ(v)∀v ∈ V . This figure only shows the Forstner distance up to 70 iterations
since in the remaining iterations the distance does not change having reached
convergence.

nodes local estimates) tend to converge. Then, we compare
our technique with the one proposed in [6] for the estimation
of the eigenvector associated with the largest eigenvalue of
the covariance matrix in a distributed setting. More in detail,
among the techniques the authors propose, we use the tech-
nique adapt then combine that, according to their experiments,
leads to better results. The setting we use for the comparison
is the same as described above, and the number of iterations
for the compared algorithm is fixed to 200. The metric used
in this experiment is the angle between the principal axes of
the true and estimated covariance matrices.

In Table I we summarize the results of the comparison. As
can be seen, the proposed technique leads to lower angles be-
tween the principal axes while keeping the communication cost
extremely low. Moreover, the proposed technique estimates the
whole covariance matrix of the noise process instead of just
the principal eigenvector and hence it allows a wider range of
applications.

TABLE I.

exchanged data (samples) angle (rad)
Proposed algorihtm 160000 0.24
Ghadban et al. [6] 2000000 0.45

C. Compressive detection in distributed setting

The proposed algorithm allows us to estimate in a dis-
tributed fashion the covariance matrix of a non-white noise
process keeping the communication cost very low. Hence, we
further validate the proposed technique by including it in a
compressive signal processing task. More in detail we consider
the detection of a compressed signal given its CS measure-
ments corrupted by additive colored noise as introduced in
[1]. Similarly to Sec. IV-A, let us assume to have a wireless
sensor network represented by the graph G arranged in a ring
topology with |V |= 10. Then, we assume that each node v
acquiring a CS signal is then connected to its neighbors given
|Nv|= 2. We are now interested in the signal detection problem
at node v⋆, more in detail we want to distinguish between the
hypotheses:

{
H0 : y(v

⋆) = n(v⋆)

H1 : y(v
⋆) = Φ(v⋆)x(v⋆) + n(v⋆),

where Φ(v⋆), x(v⋆) are known, and n(v⋆) ∼ N (0, C) is the
colored noise with unknown covariance matrix C.



In order to improve the performance of the detector, the
knowledge of the noise statistics is required. In particular
we need the covariance matrix of the noise process. Hence,
assuming that the node v⋆ needs an estimate of the covariance
matrix of the noise process to accurately solve the detection
problem, it runs together with its neighbors the distributed
covariance estimation algorithm described in Algorithm 2.
From now on, assuming that the node v⋆ has obtained the
estimate Ĉ⋆, we will drop the superscript “⋆′′

to improve
readability.

Relying on standard detection theory [2] we can show
that, in our setting, the Neyman-Pearson (NP) optimal de-
tector, namely the likelihood ratio test, can be written as
t = yᵀĈᵀΦx. Then, denoting the probability of false alarm
as PF and that of detection as PD, it can be shown that the
PD in function PF = α is given by:

PD = Q

(√
V0Q−1(α) + µᵀĈ−1Φx− E1√

V1

)
, (7)

where

µ = E[n], V0 = σ2xᵀΦᵀ(ĈĈᵀ)−1Φx− (µᵀĈ−1Φx)2,

E1 = xᵀΦᵀĈ−ᵀ(Φx+ µᵀ),

V1 = xᵀΦᵀĈ−ᵀΦx− xᵀΦᵀĈ−ᵀµᵀµC−ᵀΦx.

We hence show the receiver operating characteristics (ROC)
curves for the detection problem we introduced. We compare
the covariance matrix estimate Ĉ with those obtained by
assuming the noise to be white and hence having no knowledge
of noise statistics averaging the results over 50 different runs
of the algorithm. Using the estimated covariance Ĉ, we show
both theoretical results in (7) and experimental ROC curves
obtained by running 500 Monte Carlo (MC) tests. Then, we
compare them with those obtained by a standard detector
assuming the noise to be white, hence being unaware of the
noise statistics.

The results we present are for two different compression
ratio values, namely m

n = {0.11, 0.22}. Moreover, the SNR
we consider is extremely low SNR = −19dB, this choice
is made to show the detection performances for extremely
noisy signals, using the proposed setup. It is worth noting that
when higher SNRs are considered, the ROC curve reaches
the optimality. As we can see from Fig. 4, the compressive
signal detection using the estimated covariance matrix ac-
cording to the proposed method, outperforms a compressive
signal detection algorithm unaware of the noise covariance
matrix. Moreover it can be seen that even though the number
of measurements m and the SNR value are very low, the
detection task is efficiently solved. Lastly, we can see that the
experimental results confirm the theoretical performance.

V. CONCLUSIONS

In this paper we proposed a new technique for distributed
estimation of the covariance matrix of a colored noise process
corrupting CS measurements. The main advantage of the
proposed method relies in its parametric structure, removing
the dependence of the communication cost from the size of the
data samples at each node. Moreover, when compared to other
techniques, the proposed algorithm is able to achieve both
lower errors and data samples to be transmitted in the network.
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Fig. 4. ROC performance comparison of noise unaware signal detection
(AWGN) and using the proposed covariance matrix estimate.

In fact, our results showed that the number of parameters
to be transmitted in order to get an accurate estimate of the
noise covariance matrix is much smaller than the number of
samples acquired by each node. Lastly, since the numerical
results we presented showed that we are able to accurately
estimate the covariance matrix of the noise process (with low
communication cost) we were also able to show that our
estimate of the covariance matrix performs well when used
in compressive signal processing tasks.
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