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Abstract

We study generalizations of the Hegselmann-Krause (HK) model for opinion dynamics, in-
corporating features and parameters that are natural components of observed social systems.
The first generalization is one where the strength of influence depends on the distance of the
agents’ opinions. Under this setup, we identify conditions under which the opinions converge in
finite time, and provide a qualitative characterization of the equilibrium. We interpret the HK
model opinion update rule as a quadratic cost-minimization rule. This enables a second gener-
alization: a family of update rules which possess different equilibrium properties. Subsequently,
we investigate models in which a external force can behave strategically to modulate/influence
user updates. We consider cases where this external force can introduce additional agents and
cases where they can modify the cost structures for other agents. We describe and analyze some
strategies through which such modulation may be possible in an order-optimal manner. Our
simulations demonstrate that generalized dynamics differ qualitatively and quantitatively from
traditional HK dynamics.

1 Introduction

Multiple disciplines have studied the dynamics of agents in distributed and networked systems.
Whether studying the swarming/flocking behavior of animals, messaging among individuals and
institutions in online social networks, or interactions among members in a village community,
these studies typically build and rely on a model that captures interactions among agents. These
models are diverse across disciplines, but they share some common ground - for instance, typically,
individual agents in the system incorporate information they gain from their neighbors and take
actions based on the information gained. Such commonalities between diverse sets of scenarios
involve interacting agents enables us to develop and study mathematical models that can apply to
several disciplines.

In this paper, we take a renewed and closer look at such a cross-cutting mathematical model
called the Hegselmann-Krause (HK) model of opinion formation [1]. In the HK model, agent opin-
ions are modeled as a point in a metric space and an agent can observe the opinions of other agents
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Figure 1: Qualitative differences in the equilibrium behavior between the original and modified HK
dynamics.

whose opinions are within a certain radius ε of their own opinion. Each agent then synchronously
updates its opinion by replacing it with the average of its neighbors’ opinions. This process con-
tinues either ad nauseam or until the system reaches an equilibrium. In the case where agents’
opinions can be modeled as points within R, this rule is known to converge to an equilibrium,
wherein each agent’s opinion lies in a finite set of points.

The HK dynamics capture interactions where agents with a bounded difference in opinions -
called neighbors (for agent i, Ni would be considered neighbors) exchange opinions and interact
with one another. Currently, HK dynamics treats opinions within an agent’s neighborhood evenly,
and does not differentiate between them when modeling their influence on the particular agent. In
general, however, the impact that neighboring opinions may have on a particular agents could be
widely varying, and a more general model is needed that allows for variations in the manner in
which an agent is affected by its neighbors. To this end, our first generalization of HK dynamics
is to enable each node to take a weighted average of its neighbors’ opinions. The particular model
we study in detail is one in which the weights are functions of the differences in opinions between
the agent and its neighbor. In this setting, we show that our modified dynamics also converge in
finite time under certain mild assumptions; moreover, we provide a qualitative characterization of
the equilibrium.

We can reinterpret the conventional HK update rule as an optimization problem: each agent
is minimizing a disagreement function that depends on its own opinion and those of its neighbors.
Given such an reinterpretation of the HK update rule, we note that the traditional HK dynamics
correspond to a case where agents act greedily to minimize a quadratic cost function. In this paper,
we generalize the cost function structure to other convex cost functions. In this more general setting,
we provide analytic conditions on the disagreement functions that imply asymptotic convergence of
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the dynamics. In general, changing the cost function will alter the speed convergence as well as the
properties of the equilibrium. For example, consider the situation as illustrated in Figure 1, where
the cost decays with distance. This corresponds to a situation where an agent is less sensitive to
larger disagreements, and as a result, opinions within the population may coalesce into (possibly
multiple) equilibrium points.

Finally, given a model for opinion formation and dynamics, it is only natural to ask if external
influence on the system may be possible, driving the entire system towards a desired point of
operation. Such an external influencer is designed to model inputs to the system, including election
campaigns, leaders and opinion-shapers that influence the agents within the system but are not
themselves influenced by opinions within the system. By formulating the HK dynamics as the
solution of a local greedy optimization framework, we incorporate scenarios where external forces
can endeavor to influence agents within the system. In the first scenario, an external force influences
the agents by introducing a fake external agent at each time to influence the updates other agents. In
the second scenario, this influencer offers incentives to agents in order to effect changes in opinions.
Effectively, this alters the cost structure for disagreement minimization within the optimization
formulation. While exactly optimal solutions are difficult to obtain in these settings, we identify
greedy strategies that perform well (in an order-optimal manner).

1.1 Related Work

Models for opinion dynamics have been studied in a variety of fields, including sociology, physics,
computer science, and engineering. The wide range of models [2] can be divided into two broad
approaches: dynamical systems and agent-based modeling. Agent-based models in which each
social element or entity acts based on actions or positions of others have been studied extensively.
Agents take actions to pursue an objective such as social welfare maximization, individual benefit,
or learning [3, 4, 5, 6].

Bounded-confidence opinion dynamics [1, 7] have been proposed as agent-based dynamics for
modeling opinion formation. Unlike previous models for social dynamics where interactions among
social agents are governed by an underlying graph (fixed or random, but independent of opin-
ions), bounded confidence models make interactions opinion-dependent. In the Hegselmann-Krause
model [1] every agent updates its opinion (modeled as a scalar) by averaging all other opinions
within a certain distance (threshold) from its own. This dynamics has been studied extensively via
numerical techniques as well as analytically. Tsitsiklis et al. [8] proved that this dynamics converges
in finite time and provided upper and lower bounds for the convergence times in terms of number
of agents. Bhattacharyya et al. [9] and Nedic and Touri [10] studied multi-dimensional (vector)
Hegselmann-Krause dynamics.

Multiple variations of this dynamics and their evolutions have been studied, e.g., effect of
different initial conditions [11], noise in the updates [12, 13], heterogeneous thresholds among
agents [14], or mediating interactions using an underlying social graph [15]; Lorenz [16] presents a
survey of this line of work. Lorenz [17] also proposed a weighted Hegselmann-Krause dynamics with
opinion dependent weights, and Hendrickz [18] studied conditions for order-preservation of opinions
in this dynamics. In this work we consider Hegselmann-Krause dynamics with opinion-dependent
weighted updates and study convergence time of this dynamics.

In this paper we interpret the Hegselmann-Krause dynamics in terms of utility optimization.
There is a significant body of work on utility-maximization in multi-agent settings. Huang et al. [19]
considers a large population linear Quadratic Gaussian (LQG) problem where agents interact via
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coupled cost. There are other works involving control theoretic, game theoretic and optimization
based approaches. Cao et al. [20] presents a survey of recent developments. Here we study an
engineering problem where the society follows Hegselmann-Krause dynamics and a strategic entity
wants to form opinions in its favor. This problem of opinion modulation/modification is analogous
to marketing and political campaigns.

2 Generalizing HK dynamics

Notation. For a positive integer n let [n] = {1, 2, . . . , n}. Vectors will typically be denoted in
boldface, and sets in calligraphic script. We use the standard “big-O” and “big-Ω” notation for
expressing upper and lower bounds.

There are n agents in the system, indexed by [n]. The system evolution is discrete-time. At a
time t ∈ Z+, each agent i has an opinion xi(t) taking values in R. We write the opinions of the
agents collectively by the n dimensional vector x(t) = (x1(t), x2(t), · · ·xn(t)). At time 0 the agents
have initial opinion x(0). The original Hegselmann-Krause dynamics are formally given as follows:

Ni(t) = {j : |xj(t)− xi(t)| ≤ γ}, (1)

xi(t+ 1) =
1

|Ni|
∑

j∈Ni(t)

xj(t)

= xi(t) +
1

|Ni|
∑

j∈Ni(t)

(xj(t)− xi(t)). (2)

In HK dynamics, each agent determines those agents whose opinions are within a distance γ of
theirs to form a neighbor set Ni(t) at time t given by (1); we adopt the convention that i ∈ Ni(t). All
agents then simultaneously update their opinions by adding the average of the differences between
their opinions and those of their neighbors. Note that in this formulation, each agent gives equal
weight to all other agents that are in the neighbor set.

We say an opinion dynamics process converges if xi(t) is a converging sequence for each i. It
converges in finite time if there exists a finite T s.t. the set xi(t+ 1) = xi(t) for all i ∈ [n] and all
t ≥ T . The original Hegselmann-Krause dynamics converges in finite time [8, 10]; more specifically
its convergence time is lower bounded as Ω(n) and upper bounded as O(n2).

In this section we generalize the Hegselmann-Krause dynamics in an attempt to capture other
aspects of social interactions. Towards this we take two different approaches that pertain to the
real social systems. In the first approach, we understand that in real-world social systems, an
individual is typically influenced by those whose opinions are ‘close’ to theirs, although they may
not value all such opinions equally. The HK dynamics use a binary model of closeness; all agents
in Ni(t) have equal influence. We first generalize HK dynamics by introducing non-uniform and
distance-dependent weighting of the opinions of other agents. Subsequently, we interpret the agent
update rules as an optimization problem and propose to generalize the opinion updation process
by considering different optimization objectives.

2.1 Non-uniform weights and its convergence

We generalize the update rule (2) to reflect the observation that in real life the importance (or
weight) an agent gives to another agent’s opinions is not a 0 − 1 function of their difference in
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opinion; instead, the weight gradually decreases with increase in difference. We correspondingly
modify the update rule (2):

xi(t+ 1) = xi(t) +
1

|Ni|
∑

j∈Ni(t)

f (|xj(t)− xi(t)|) (xj(t)− xi(t)), (3)

where f : R+ → [0, 1] is non-increasing and f(0) = 1. The function f and the threshold γ depend
on the level of interactions in a society; some societies may de-value differing opinions more strongly
than others. It may also depend on the particular issue regarding which the opinion is evolving
and other socio-economic and political factors.

Our first question is how introducing f affects the evolution of the dynamics: do they converge
to an equilibrium, and if so, what is the convergence time? For the original HK dynamics, a
theoretical guarantee on convergence as well as time to convergence is presented by Blondel et. al.
[8]. Later Touri and Nedic [10] improved the upper-bound on convergence time from n3 to n2 using
advanced techniques from matrix-valued stochastic processes. These techniques do not directly
extend to general HK dynamics with non-uniform weights. We analyze the general HK dynamics
using a simpler analytical approach which also applies to original HK dynamics.

We characterize our generalized real-valued dynamics by tracking the maximum and minimum
of opinions; in order for the opinions to converge, these two must converge. The following lemma
characterizes the sequence of the range of opinions over time, and is analogous to Proposition 2 of
Blondel et al. [8].

Lemma 2.1. The sequences M(t) = {maxk xk(t)} and m(t) = {mink xk(t)} are non-decreasing
and non-increasing respectively.

Proof. It is clear from the update equation that the drift for m(t) have all positive terms and that
for M(t) have all negative terms respectively. Hence the Lemma follows.

The following proposition follows from Lemma 2.1.

Proposition 2.2. The generalized Hegselmann-Krause dynamics (3) converges. That is, for any
ε > 0 there exists a t0 s.t. ∀t ≥ t0, 1 ≤ i ≤ n, |xi(t)− xi(t0)| < ε.

Proof. Note that m(t) ≤ M(t) and also M(t) ≤ M(0), as m(t) (resp. M(t)) is non-decreasing
(resp. non-increasing). Hence m(t) (resp. M(t)) converges. When m(t) converges to a point m(∞)
there is a set of agents A converging to m(∞) and all other agents must have opinions greater
than m(∞) + γ. Similarly, when M(t) converges to a point M(∞) there is a set of agents A with
opinions converging to M(∞) and all other agents must have opinions smaller than M(∞)− γ.

Thus there exists an ε > 0 such that there is no agent within γ + ε of m(∞) converges. Let the
agents that do not converge to m(∞) be the set S. Then we can say that lim inft→∞mini∈S xi(t)
is at least m(∞) + γ + ε. Therefore there exists a t0 such that for t > t0, m(t) < m(∞) + ε

2 and

inf
t>t0

min
i∈S1

xi(t) > lim inf
t→∞

min
i∈S1

xi(t)−
ε

2
.

This fact, together with the bounds derived above imply that for t > t0,

m(t) < min
i∈S

xi(t) + γ.
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Thus for t > t0 the agents S evolve according to dynamics independent of those converging to
m(∞). Hence this can be treated as a HK dynamics staring with initial opinions xi(t0) which has
a minimum opinion mS(t). Similarly we can show that mS1(t) converges and there exists S2 ⊂ S1
satisfying similar conditions. Thus we can continue to split the dynamics into parts S1, S2, · · · until
for some k Sk =. Note that k ≤ n. For each of this subset Sj with j < k, agents in Sj+1\Sj
converges to limt→∞mSj (t). Hence this shows that overall dynamics converges.

After proving the convergence of the generalized Hegselmann-Krause dynamics, we are inter-
ested in characterizing the convergence time. Tsitsiklis et al. [8] presents lower and upper bounds
of Ω(n) and O(n3), the latter of which was improved by Touri [10] to O(n2). These results imply
that there exist constants c, c′ > 0 such that for any τ > 0, and for all t ≥ cn2, xi(t) = xi(t+ τ) for
1 ≤ i ≤ n and for any t < c′n there exists i such that xi(t+ 1) 6= xi(t). So far we have proved only
asymptotic convergence of the general HK dynamics. We can also prove finite time convergence of
the general HK dynamics under some mild assumptions on the function f .

To bound the convergence time, we make the following assumptions:

(i) There exists a positive constant ε < γ such that f(x) = f(0) = 1 for x ≤ ε.

(ii) The function f is strictly positive: f(γ) > 0.

(iii) The product xf(x) is non-decreasing in x for 0 ≤ x ≤ γ.

Note that convergence of the dynamics is guaranteed for any general f . These assumptions are
required for finite-time convergence.

Intuitively, the first assumption means that an agent gives same importance to all its very close
neighbors or friends as it gives to itself. The second assumption requires that there exists a strict
gap between a neighbor (or friend) and a non-neighbor; this assumption is widely prevalent in
different kinds literature including social networks and graphical models [21], where two variables
are considered to be neighbors in a dependence graph only if they have a correlation more than a
strictly positive number. With the above two assumptions on the function f we can prove finite
time convergence for the generalized HK dynamics. The following theorem summarizes our result
on the convergence time.

Theorem 2.3. Consider the generalized HK dynamics under the update rule in (3) where f satisfies
assumptions (i)–(iii) above. Then the convergence time of the minimum opinion m(t) is O(n2) and
that of the generalized HK dynamics is O(n3). That is, for some k1, k2 > 0 m(t) and the generalized
dynamics converges within a time k1n

2 and k2n
3 for all n sufficiently large. Also, the convergence

time of the generalized dynamics is Ω(n). That is, there exists a k3 > 0 such that convergence time
is no less than k3n for all n sufficiently large.

To prove this theorem we need the following lemma, which states that the ordering of opinions
in the general HK dynamics remains unchanged.

Lemma 2.4. Suppose the initial opinions are ordered as x1(0) ≤ x2(0) ≤ · · · ≤ xn(0) and the
function f be such that xf(x) is non-decreasing in x for 0 ≤ x ≤ γ, then for all t ∈ Z+, x1(t) ≤
x2(t) ≤ · · · ≤ xn(t).
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Proof. First note that change in opinion for any node i, xi(t+ 1)−xi(t) can be written as the sum
of positive and negative drifts, defined as follows:

1

|Ni|
∑

j:xj(t)∈[xi(t),xi(t)+γ)

f(|xj(t)− xi(t)|)(xj(t)− xi(t))

1

|Ni|
∑

j:xj(t)∈[xi(t),xi(t)−γ)

f(|xj(t)− xi(t)|)(xj(t)− xi(t)).

Consider any two agents k and k′ with xk′(t) > xk(t) and there are no other agents in between
them. To prove the order preserving nature of the update it is sufficient to ensure that xk′(t+ 1) ≥
xk(t+ 1).

Note that the right neighbors (neighbors with strictly higher opinion values) of k are also right
neighbors of k′ (except k′ itself) and left neighbors (neighbors with strictly lesser opinion values)
of k′ are also left neighbors of k (except k itself). We denote right and left neighbor set of an agent
i by RN i and LN i respectively.

We want to show that the order of opinions cannot change. Were the order to change at time
t, the worst neighborhood condition is the case where the neighbors of k and k′ are same. This
follows because the function f is such that xf(x) is non-decreasing for x ≤ γ. Thus if k′ has an
extra neighbor then it must be a right neighbor that gives an additional positive drift where as if
k has an extra neighbor it must be left neighbor that gives an additional negative drift.

Let N = |Nk| = |Nk′ |. For simplicity of notation we shall drop indexing by t and consider the
drift in opinion of agent k. We have

N(xk(t+ 1)− xk(t)) =
∑

j∈RN k′

f(xj − xk)(xj − xk)−
∑

r∈LN k

f(xk − xr)(xk − xr)

+ f(xk′ − xk)(xk′ − xk) (4)

=
∑

j∈RN k′

f(xj − xk)(xj − xk′) +
∑

j∈RN k′

f(xj − xk)(xk′ − xk)

−
∑
l∈LN k

f(xk − xl)(xk′ − xl) +
∑
l∈LN k

f(xk − xl)(xk′ − xk)

+ f(xk′ − xk)(xk′ − xk) (5)

≤
∑

j∈RN k′

f(xj − xk′)(xj − xk′) +
∑

j∈RN k′

f(xj − xk)(xk′ − xk)

−
∑
l∈LN k

f(xk′ − xl)(xk − xl) +
∑

r∈LN k

f(xk′ − xk)(xk′ − xk)

+ f(xk′ − xk)(xk′ − xk) (6)

=N(xk′(t+ 1)− xk′(t)) +
∑

j∈RN k′

f(xj − xk)(xk′ − xk)∑
r∈LN k

f(xk − xr)(xk′ − xk) + 2f(xk′ − xk)(xk′ − xk) (7)

≤N(xk′(t+ 1)− xk′(t)) +N(xk′ − xk) (8)

The equality (4) follows from the update equation for the Hegselmann-Krause dynamics. By
writing (xj−xk) = (xj−xk′)−(xk′−xk) and (xk′−xr) = (xk−xr)−(xk−xk′) we obtain the equality
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(5). As f is non-increasing function and xj −xk′ > xj −xk for j ∈ RN k′ and xk′ −xl > xk−xj for
l ∈ LN k, the inequality (6) follows. Finally, (7) follows from the update equation for generalized
HK dynamics. The last step (8) follows from the fact that f(x) ≤ 1 and |LN k∪RN k′ | = N−2.

We can now prove Theorem 2.3.

Proof of Theorem 2.3. To prove the upper bound first we derive an upper bound on the convergence
time for the minimum value of the opinion. Because the opinions are ordered, we can find such an
upper bound by lower-bounding the increase in opinion of agent 1.

Note that in the general HK dynamics if the opinion of an agent i has converged to x∗i by time
t∗, this means for all time t ≥ t∗, for any agent j 6= i either xj(t) = x∗i or |xj(t) − x∗i | > γ. This
is because if there is an agent within γ neighborhood of agent i then by the update rule of the
dynamics and by the assumptions on f , xi(t+ 1)− xi(t) 6= 0.

Thus for proving the upper-bound if we can show that a subset of agents have converged by
certain finite time, then we can consider the remaining agents (outside this subset) as a new system
and analyze convergence time of these agents. This allows us to inductively prove the final upper-
bound.

Our goal is to upper bound the convergence time of x1(t), the minimum value of the agents (this
is because ordering of opinions is preserved by the dynamics). There are three cases to consider.

We could have (i) N1(t) = {1}, so agent 1 has converged, (ii) |N1(t)| ≥ 2 and there exists
an agent k with xk(t) ∈ (x1(t) + ε, γ] and (iii) |N1(t)| ≥ 2 but there exists no agent k with
xk(t) ∈ (x1(t) + ε, x1(t) + γ].

Case (i) : In this case there is nothing to prove.
Case (ii): As x1(t) ≤ xk(t) for all n ≥ k ≥ 2, from the update equation (3) of the generalized

HK dynamics it is clear that the increase in the opinion value of the agent 1 is given by

1

|N1|
∑

j∈N1(t)

f(xj(t)− x1(t))(xj(t)− xi(t)).

By assumption, we have xk(t) ∈ (x1(t) + ε, x1(t) + γ], so

x1(t+ 1)− x1(t) ≥
1

n
inf

x∈(ε,γ]
xf(x).

Case (iii): We consider two sub-cases. First, suppose the neighbors of agent 1 form a clique
with agent 1 that is disjoint from rest of the system. That is, for j ∈ N1 we have Nj = N1. In that
case, |xi(t)− xj(t)| < ε for all i, j ∈ N1. In this case, the update in (3) is identical for all i, j ∈ N
and x1(t+ 1) = xi(t+ 1) for all i ∈ N1.

In the second sub-case, let k ∈ N1 be the farthest neighbor of agent 1 and note that xk(t) −
x1(t) ≤ ε. Suppose there is a k′ ∈ Nk such that k′ /∈ Nk. In that case, agent k′ is at least (γ − ε)
away from agent k, otherwise agent k′ would have been a neighbor of agent 1. Therefore

f(xk′(t)− xk(t))(xk′(t)− xk(t)) ≥ f(γ − ε)(γ − ε).

Hence at this time step an increase in opinion of k caused by agent k′ is lower bounded by
1
n infx∈(ε,γ] xf(x). This is due to the fact that k can have at most n − 1 neighbors and xf(x)
is increasing with x for x ∈ [0, γ].
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Therefore at time t+ 1, we have

xk(t+ 1)− x1(t+ 1) ≤ 1

n
f(γ − ε)(γ − ε).

Hence in the next time step t+ 2

x1(t+ 2)− x1(t+ 1) ≥ 1

n2
f(γ − ε)(γ − ε).

Hence we observe that at any t either x1(t) converges in one step (case (iii), first sub-case) or
it increases by at least 1

n2 infx∈(ε,γ] xf(x) every two time steps. Because f is non-increasing and
f(γ) > 0, infx∈(ε,γ] xf(x) is a positive constant.

Note that agent 1 converges to an opinion no more (less) than M(0) (m(0)), as M(t) (m(t))
is non-increasing (non-decreasing). Because the initial spread of the opinions M(0) − m(0) (=
xn(0)− x1(0)) is finite, the convergence time for the agent 1 is O(n2).

Once agent 1 converges all the other agents that have not converged yet must be outside γ
neighborhood of agent 1. Hence all these agents can be thought as a different generalized HK
dynamics starting at that time and we can reduce the problem to a smaller set of agents, repeating
the same argument for the minimum. There are at most n such reductions that we may have to
consider, since at each step at least one agent converges. Thus a (possibly loose) upper bound on
the convergence time of the dynamics is O(n3).

The proof of the lower bound is similar to [8].

We can improve the dependence on n in the upper bound on the convergence time at the expense
of a dependence on the neighborhood radius γ.

Corollary 2.5. Under the assumptions of Theorem 2.3, the upper bound on the convergence time
of the generalized HK dynamics is O(n2/γ), i.e., ∃k > 0 such that for all n sufficiently large

convergence happens within kn2

γ .

Proof. Instead of identifying the agents based with their indices, we can identify them with their
locations. In previous theorem we show that x1(t) (and hence m(t)) converges in finite time, more
precisely in time O(n2). Convergence of m(t) in a finite time T1 implies that there is no agent i
with opinion xi(t) ∈ (limt→∞m(t), limt→∞m(t)+γ] for t > T1. This in turn with the monotonicity
of the sequence m(t) implies that there is no agent with opinions in (m(0),m(0) + γ]. Note that
T1 ≤ k2n2 for some k2 > 0 and this constant is independent of the initial configuration of opinions
(as proved in previous theorem).

Thus we can say that after time T1, the rest of the agents whose opinions are more than m(0)+γ
at time T can be considered as a new system starting with initial opinions xi(T ). The minimum
opinion of this new system converges in additional time T2 and any agent whose opinion has not
converged has an opinion more than m(0) + 2γ.

Thus for a sequence of time T1, T2, · · · where Ti ≤ k2n
2 for all i, all the agents that have not

converged by time
∑j

i=1 Ti have opinion more than m(0) + jγ at that time. Note that as M(t) is a
decreasing sequence, at no time an agent can have opinion more than M(0). Hence all agents must

have converged by time
∑l

i=1 Ti where l = dM(0)−m(0)
γ e.

As Ti ≤ k2n
2 for each i, the overall convergence time of the dynamics is O

(
(M(0)−m(0)+1)n2

γ

)
.

Note that M(0) −m(0) is finite and does not scale with n (in most cases it is assumed to be 1),
hence the order bound follows.
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With regards to a qualitative characterization of the equilibrium point, we identify two im-
portant cases: bounded and unbounded influence. Bounded influence is the scenario where the
influence function f has a finite support. This was an assumption in the transient analysis that
we presented above. In case of unbounded influence, agents’ influence function has an unbounded
support, i.e., f(x) > 0 for all x ∈ R+.

In case of influence functions with finite supports we show that the convergence time is finite,
more specifically in O(n2) steps the opinions converge to an equilibrium and do not change any
more. The following Lemma characterizes the equilibrium in the bounded influence case.

Lemma 2.6. For any set of influence functions with finite supports there exists an initial opinion
values of agents {xi(0)} for which the equilibrium opinion values {x∗i } are such that at least two of
the agents have different equilibrium opinion values.

Proof. We simply consider an initial condition where the opinions of the agents are ordered as
x1(0) ≤ x2(0) · · · ≤ xn(0) and there exists a 1 ≤ j < n such that xj+1(0) − xj(0) > γ. This
implies that agents i ≤ j and agents i > j are non-interacting and the agents above and below
evolve according to non-interacting dynamics. Note that as M(t) (resp. m(t)) is non-increasing
(resp. non-decreasing), x∗i ≤ xj(0) for i ≤ j (x∗i ≥ xj+1(0)) for i > j). This completes the
proof.

This means that in case of bounded support influences there are cases where equilibrium is not
a consensus, i.e., there may be groups of agents where agents within a group reach consensus but
across groups there is no consensus.

On the other hand, in case of influences with unbounded supports there is always a consensus
of all agents. The following lemma states this formally.

Lemma 2.7. For any unbounded influence opinion dynamics the equilibrium opinion values {x∗i }
is such that x∗i = x∗j for all 1 ≤ i ≤ j ≤ n.

Proof. This lemma can be proved by contradiction. Let us assume that the lemma is not true. Then
at an equilibrium x∗ there exists an agent (say 1) such that x∗1 ≤ minj 6=1 x

∗
j and x∗1 < minj∈S x

∗
j

for some non-empty S. At the configuration x∗, by the update rule of the dynamics, opinion of
agent 1 is updated to x∗1 + 1

n

∑
j(x
∗
j −x∗1)f(x∗j −x∗1). As f(x) > 0 for x > 0 (by unbounded support

property), all terms in the summation are non-negative and there is at least one strictly positive
term. Hence the updated value is strictly more than x∗1 which contradicts the fact that x∗ is an
equilibrium.

It is also relatively simple to find examples of influence functions f and initial opinions such
that the convergence is only asymptotic. That is, at any finite time t there is an agent whose
opinion changes to a new value at time t+ 1. The specific properties of the influence function have
a strong impact on the nature of the equilibrium as well as on the convergence time, and the HK
model of simple averaging and finite-time convergence is a special case.

2.2 A cost-minimization perspective

In this section we interpret the HK dynamics as each agent choosing a new opinion that minimizes
a cost function that depends on its opinion and its neighbors’ opinions. In the standard HK update
rule each agent picks a new opinion that is the centroid of its neighbor’s opinions. For agent i,
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given its neighbor set and Ni(t) = {j : |xi(t)− xj(t)| < γ} and their opinions, the HK update rule
xi(t+ 1) = 1

|Ni(t)|
∑

j∈Ni(t)
xj(t) is the minimizer for the quadratic cost function∑

j∈Ni(t)

(x− xj(t))2 = (x− xi(t))2 +
∑

j∈Ni(t)\i

(x− xj(t))2.

In this section we examine more general cost functions instead of squared-distance. In particular,
we look at the following update rule:

xi(t+ 1) = argmin
x

gi (|x− xi(t)|) +
∑

j∈Ni(t)\i

hi (|x− xj(t)|)

 . (9)

For an agent i, we call the cost function that captures the cost incurred due to change of its own
opinion as the inertial cost and denote that by gi. The cost incurred by agent i for its difference
in opinion with any of its neighbor is denoted by hi and we call it the disharmonic cost. In a
general scenario at each time t an agent i tries to minimize (greedily) the total cost by choosing
the minimizer in (9). The special case where gi(x) = hi(x) = x2 for all i is the case of original HK
dynamics. As a first step we want to investigate convergence of this dynamics.

In a society there is always a cost incurred by a social agent when it differs in opinion from
its neighbors or it moves its own opinions to a new value. As discussed above HK dynamics
model this scenario by assuming the cost incurred by an agent due to difference in opinion with
its social neighbors as well as the cost to move its own opinion to be quadratic in difference (or
change of opinion). In general this cost may be any arbitrary function. Moreover, the cost function
that captures the difference with neighbors (disharmonic cost) and the cost function that captures
change of its own opinion (inertial cost) may be different.

Lemma 2.8. Suppose that for each i, the inertial cost gi and disharmonic cost hi are strictly
increasing functions. Then as t → ∞, the dynamics given by (9) converge to an equilibrium of
opinions.

Proof. This proof is similar to the proof for that of the previously discussed generalization of the HK
dynamics. Note that when gi, hi are strictly increasing for all i, the sequence x̃(t) = maxi xi(t) is
a decreasing sequence and the sequence x̂(t) = mini xi(t) is an increasing sequence. The remainder
of the argument follows similarly.

The assumption that gi and hi are increasing for each i means that within the set of neighbors of
an agent i, larger disagreements cost more than small disagreements. While the opinions converge
to an equilibrium, the convergence time is not finite as in the HK dynamics. To see this, consider
the example of two agents. In case of HK dynamics with quadratic cost if the two agents are within
the threshold distance ε of each other convergence happens in one time step. This is because
the minimizer for both agents’ costs is x1+x2

2 . It is not hard to check that this is also true when
g1 = g2 = h1 = h2 = h for a function h whose derivative h′ is strictly increasing. On the other
hand, if g1(x) = g2(x) = x4 and h1(x) = h2(x) = x2 then this is not true and the convergence is
asymptotic, i.e., for any t, x1(t+ 1)− x1(t) > 0 if 0 < |x1(0)− x2(0)| < ε.
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3 Externally Influencing the dynamics

Given a society of individuals whose opinions update according to a generalized HK dynamics, how
can the society be influenced by a single node? This problem of external influence is interesting from
the perspective of viral marketing, election campaigns, public policies and other phenomena where
strategic agents attempt to influence a crowd. As opposed to the static optimization problems that
we considered earlier in this paper, influencing public opinions is a dynamic control problem, and
its solution depends on the allowable actions of the influencing agent. In this work we consider
two cases with different control actions. In one case we consider strategically placing an external
agent that can influence others according to the generalized HK dynamics, while in the other case
we consider manipulating the utility an agent sees.

3.1 Placing an external agent

We first turn to a model in which agents follow the original HK dynamics in (2), but at each time
step we may insert an additional agent whose opinion influences the other agents, but who does
not themselves follow the update rule. As earlier we denote the opinions of truthful agents at time
t by xi(t), where 1 ≤ i ≤ n. At each time, we may introduce an additional agent with opinion
x0(t). The goal is to select {x0(t) : t ≥ 1} to drive the equilibrium value of the opinions to a value
larger than a target θ as fast as possible. More formally, given a target opinion θ, we consider the
following problem:

T ∗ = min
x0(t):t≥1

{T : ∀t ≥ T and 1 ≤ i ≤ n xi(t) ≥ θ} . (10)

First, we prove a lower bound (in an order sense) on T which is independent of the agent-placement
scheme. Then we propose a simple greedy scheme whose time matches the same order-bound.

Lemma 3.1. There exists a constant c > 0 and an initial configuration of opinions such that for
any agent placement scheme T ≥ c(n/γ) for all n sufficiently large. That is, T = Ω(n/γ).

Proof. Consider the initial condition where all agents have the same opinion, i.e., x1 = x2 · · · = xn.
By the law of the dynamics opinions of these agents cannot be separated by placing an external
agent, since all of the agents have the same neighborhood. Thus this dynamics can be represented
as a dynamics of a single agent x′ with the following update rule:

x′(t+ 1) =
1

n+ 1 (|x0(t)− x′(t)| ≤ γ)

(
nx′(t) + 1

(
|x0(t)− x′(t)| ≤ γ

)
x0(t)

)
.

The goal is to place agent x0(t) to solve the following problem

min
x0(t):t≥1

{
T : ∀t ≥ T, x′(t) ≥ θ

}
From the dynamics it is apparent that the increase in x′(t) at time t does not depend on

x′(t) and only depends on x0(t) − x′(t). The maximum possible increase corresponds to choosing
x0(t) = x′(t) + γ at each time t. In this case,

x′(t+ 1) = x′(t) +
γ

n+ 1
.

So x′(t) increases by at most γ
n+1 , making the time to pass θ at least Ω(n/γ).
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In the general case, we analyze a scheme which we call greedy-recursive for placing the external
agent x0(t). At t = 0, define

k∗ = min{i ≥ 1 : |xn−i(0)− xn−i+1(0)| > γ}.

Then agents n− k∗ ≤ i ≤ n have no interaction with rest of the agents. Our method attempts to
greedily “herd” groups of agents across the threshold through a divide-and-conquer strategy. At
time t we place the agent 0 at a position x0(t) = xn−k∗(t) + γ until xn−k∗(t) ≥ θ. Then recursively
apply the same strategy for the remaining n− k∗ agents.

Lemma 3.2. For the greedy-recursive scheme of placing an external agent, for n sufficiently large
and finite θ, the time at which all agents have opinion greater than θ is upper-bounded by c′ nγ for

a constant c′ > 0. That is, T ∗ = O(n) in (10).

Proof. Agents n − k∗ ≤ i ≤ n have no interaction with the rest of the agents. Hence, due to the
greedy-recursive scheme no agent i < n − k∗ is influenced by agent 0 and they operate according
to ordinary Hegselmann-Krause dynamics.

For the agents i ≥ n − k∗, note that, for any placement of agent 0 the order of opinions are
not disturbed. This follows from the order preservation in HK dynamics. Hence it is sufficient to
consider the time when agent i = n−k∗ crosses θ. Note that due to the greedy-recursive placement
of the external agent at any time the agent n − k∗ increases by at least γ

k∗ . Hence this group of

agents crosses θ within
(θ−xn−k∗ (0))k

∗

γ steps.
By same steps, for the next group agents (total n+ k∗ − 1), there exists a k∗1 ≤ n+ k∗− 1 such

that agent n− k∗− k∗1 is γ away from agent n− k∗− k∗1 − 1. Hence by the same argument as above
due to greedy placement of external agent for agents n− k∗ − 1 to n− k∗ − k∗1, these agents cross

θ within
(θ−xn−k∗−k∗1

)k∗1
γ . Similarly we get bounds for remaining agents and so on.

Note that θ − xj(0) ≤ θ − x1(0) for all j . Also note for any sequence k∗, k∗1, k
∗
2, · · · such that

agents [n : n− k∗] are γ away from [n− k∗ − 1 : n− k∗ − k∗1] and so on, k∗ + k∗1 + k∗2 + · · · ≤ n.
Thus by adding all the times taken by greedy placements to move all the isolated group of

agents beyond θ is no more than (θ−x1(0))n
γ .

3.2 Incentive schemes

A different manner in which to externally influence dynamics is to modify the update rule at
each time. As discussed in Section 2.2 the generalized HK dynamics can be thought as a social
interaction where at each time t an agent greedily minimizes a cost due to inertia and opinion
differences with neighbors. These cost functions shape the way the agent updates its opinion. One
way to move opinions of the system faster towards a desired point is to offer incentives to the agents
to adjust their inertial cost functions. For example, offering some economic or social reward for
adopting an opinion would reduce the inertial cost of agents. As the disharmonic cost depends
on the society rather than the individual, it is not apparent how an agent can be manipulated to
change its disharmonic cost. In this section we discuss the case where the external force can only
change the inertial cost.

Let Gi be the set of possible inertial functions for an agent i. An example Gi may be the set
of all functions of the form gi(x) = x + a, x ≥ 0, i.e., Gi = {x + a : a ≥ 0}. For any agent i, the
external force has to pay an incentive to convince i to choose a particular inertial cost. We measure
this cost by a function ri : Gi → R+.
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There is another cost that the external force incurs per agent which is associated with the
opinion of the agent. As before, the external force’s goal is to take opinion of every agent to a
desired opinion θ and the external force incurs a cost per agent depending on how far the agent’s
opinion is from θ. For an agent i we denote the cost by φi(θ − xi(t)) at time t.

Given sufficient time and a good initial condition, an external force can choose policies to
offer incentives to agents so that they eventually reach the opinion θ. In real situations, however,
the external force may only have a finite time in which to achieve this, and may also be budget-
constrained in the sense that the total amount spent in offering incentives is upper-bounded. Under
these constraints, it may not be possible to bring the entire society to the opinion θ. We therefore
model the external force’s goal as minimizing the aggregate cost over the whole time window.

Denote the inertial cost function and corresponding incentive of agent i by gti and rti respectively.
Given a budget constraint ρ and time horizon T , the following is the problem that an external force
solves for optimal operations:

min
{gti}

T∑
t=1

∑
i

φi(θ − xi(t))

s.t.
∑
t

∑
i

rti ≤ ρ

xi(t+ 1) = arg min
x
gi(|x− xi|) +

∑
j∈Ni(t)\i

hi(|x− xj |). (11)

First, note that to take an action at t (here gti , r
t
i) the external force can only observe variables

(here xi(t)) and actions up to time t. Because the dynamics are deterministic and we are interested
in a finite time window, the entire strategy can be chosen off-line. This turns the control problem
into an optimization constrained by the operation of the HK dynamics.

To understand the nature of this control problem we first consider a simpler version of the
problem (11) for a single time slot, i.e., for time horizon T = 1. We further simplify the problem
by taking the set of inertial costs Gi for agent i to be the set of all quadratic functions: Gi = {ax2 :
0 ≤ a < 1}. We define the incentive function for agent i to be ri = 1 − gi(x)/x2 for a given gi.
Thus for gi(x) = ax2 the incentive is ri = (1− a). We will assume hi and φ are quadratic as well,
so hi(x) = φ(x) = x2 The general control problem in (11) becomes the following:

min
{ri}

∑
i

(θ − xi(2))2

s.t.
∑
i

ri ≤ ρ

xi(2) = arg min
x

(1− ri)(x− xi(1))2 +
∑
j∈Ni\i

(x− xj(1))2

↔ xi(2) =
1

Ni − ri

∑
j∈Ni

xj(1)− rixi(1)

 (12)

Without loss of generality, we can assume that the initial opinions are non-negative. This is
because all the cost functions depend on relative differences of opinions rather than the values of
opinions. As any function of the form αx

C−x is a convex function for 0 ≤ x < C, we have that
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1
Ni−ri

(∑
j∈Ni

xj(1)− rixi(1)
)

is a convex function of ri for 0 ≤ ri ≤ 1. Thus the optimization

problem (12) is a convex optimization problem. So we can write a Lagrangian relaxation to the
optimization problem and check the Karush-Kuhn Tucker (KKT) conditions for optimality to find
the optimal solution:

F (r) =

n∑
i=1

θ − 1

|Ni| − ri

−rixi +
∑
j∈Ni

xj

2

+ λ

(
n∑
i=1

ri − ρ

)
(13)

where λ ≥ 0 is the Lagrangian multiplier for the budget constraint. KKT conditions imply that
the subgradient set of the dual function should contain 0. Because the Lagrangian is differentiable,
this is equivalent to checking that all the partial derivatives of Lagrangian with respect to ris and
λ are 0:

∂F

∂ri
= −2xi

θ − 1

|Ni| − ri

−rixi +
∑
j∈Ni

xj

 ∂

∂ri

ri
|Ni|+ ri

+ λ

= −2xi

θ − 1

|Ni|+ ri

rixi +
∑
j∈Ni

xj

 |Ni|
(|Ni|+ ri)

2 + λ

In the special case where the external force has unlimited capacity of altering other agents’ cost
functions, then we do not have the budget constraint and henceθ − 1

|Ni|+ ri

rixi +
∑
j∈Ni

xj

 = 0,

which in turn implies that

ri(θ − xi) =
∑
j∈Ni

xj − |Ni|θ.

In the general case, where there is a budget constraints, the solution involves solving third-order
polynomials; while analytic solutions do exist, they will yield incentives {ri} in terms of fractional
powers of λ. Applying the constraint

∑
i ri(λ) = ρ to solve for λ is not possible in closed-form but

numerical methods can yield a solution. We leave a more detailed investigation of these solutions
and their structure for future work.

The one-step greedy strategy here can be repeated to yield a greedy strategy for the original
optimization problem with time horizon T > 1. Directly finding the optimal strategy is challenging
because the dynamics yield non-convex constraints on the strategy. It may be possible to reduce
the search space or provide convex relaxations of the general problem. This might give some insight
into complex path-planning algorithms for large distributed autonomous networks.

4 Simulations

In this paper we present several variants and extensions of the Hegselmann-Krause opinion dynam-
ics. In this section, we examine the empirical effect of changing the HK model for passive dynamics
as well as our strategies for externally influencing a network of dynamically updating agents. These
simulations are intended to validate our theoretical results and provide further insights into how
changing optimizations lead to different qualitative and quantitative behavior.
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(a) Original HK dynamics f = 1.
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(b) Non-uniform HK with f = exp(−x2).

5 10 150

0.2

0.4

0.6

0.8

1

Time

O
pi
ni
on
s

(c) Non-uniform HK with f = exp(−|x|).
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(d) Non-uniform HK with f = exp(−
√
|x|).

Figure 2: Trajectory of generalized HK dynamics for different f(·)

4.1 Equilibrium behavior with non-uniform weights

Our first extension of the HK dynamics is to introduce a non-uniform weighting for the individual
node updates. Nodes assign a higher weight to opinions ’close’ to their own, resulting in an
“inertia” that diminishes the impact of neighbors whose opinions are close to the boundary of
the neighborhood. We compare the trajectories of original HK dynamics and that of generalized
HK dynamics (non-uniform weights) with different weight functions f (i.e., difference dependence
of weights on opinion-difference).

Figure 2 shows evolution of opinions for four different choices of the function f(·) in the general-
ized HK dynamics of (3). We simulated 200 agents with opinions in [0, 1] and show the evolution of
their opinions according to the different choices of f(·) using neighborhoods of size γ = 0.2. In our
simulation, agents fall into two clusters – interactions at the borders of these clusters is mediated
by the decay of the function f(·). Figure 2(a) plots the evolution under the original HK dynamics;
in this case the opinions converge to a single equilibrium. Figure 2(b) shows the trajectory for
non-uniform weighted dynamics with f(x) = exp(−x2). Here, the opinions converge to a single
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(a) g = x2 and h = x4.
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(b) g = h = x4.

Figure 3: Trajectory of local optimization dynamics for different g and h

equilibrium, but the convergence is much faster than the original dynamics in Figure 2(a). Because
the opinions are in [0, 1], the squared distance between agents with close opinions is much smaller
than 1. Therefore f(x) is close to 1 for nearby agents but significantly smaller for farther agents.
Nearby agents coalesce faster and coalesced masses of agents interact more strongly to attract other
agents to form two major clusters. We can see that in the original HK dynamics some agents agents
move between the two main clusters (in the initial state) and slow down the overall convergence
rate.

The results are quite different for other choices of f(·). In Figure 2(c) we plot the trajectory
for non-uniform weighted dynamics with f(x) = exp(−|x|). Note that as opinions are in [0, 1],
exp(−|x|) decays faster than exp(−x2). This reduces exchange of opinions among farther agents
and hence the two clusters do not interact sufficiently strongly to cause a single coalescent point. As
a result, the opinions converge to two distinct equilibria. The rate of convergence is slower because
interaction among nearby agents is also weaker (since |x| > |x|2 in (0, 1)). A similar phenomenon
is shown in Figure 2(d), where we show the trajectory for dynamics with f = exp(−

√
|x|). Here

the weights decay even faster with the separation between agents’ opinions, and so the convergence
rate is slowest. However, in all cases, although the convergence is slower with faster decaying f , in
all cases convergence happens in finite time.

4.2 Local optimization rules and dynamics

We now turn to our generalized model in which agents perform local optimizations based on the
opinions of their neighbors as in (9). The HK dynamics is a special case of this dynamics with
cost functions with all gi(·) and hi(·) being quadratic. We simulate dynamics with same initial
conditions, choosing gi(·) = g(·) and gi(·) = h(·) for all 1 ≤ i ≤ n. Our goal is to see the difference
between the original dynamics and the dynamics with different optimizations.

We simulate two different dynamics starting with the same initial condition as above, (i) g(x) =
x2 and h(x) = x4 and (ii) g(x) = h(x) = x4. Note that in case (i) we have the same inertial cost as
original HK dynamics but lower disharmonic cost because opinions are in [0, 1]. For this dynamic,
the agents’ movements should be slower, as observed from the trajectory in Figure 3(a). As proved
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(a) Initial opinions are separated.
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(b) Initial opinions are not separated.

Figure 4: Trajectory of agents under greedy algorithm. Red stars track placements of the external
agent.

in our theoretical results, the convergence happens in asymptotic sense as opposed to in finite
time. In case (ii) both the inertial and disharmonic costs are lower than the original HK dynamics.
As inertial cost is a more binding factor in an agent’s mobility, this dynamics converges faster,
as shown in Figure 3(a). Also note that in both of these dynamics opinions converge to a single
equilibrium. In both the dynamics, though h(x) = x4 causes agents to discount farther opinions
while updating opinions, the discount factor is not as small as in the case of non-uniform dynamics
with f(x) = exp(−x2).

In Section 3.1 we show the order-optimality of greedy external agent placement. Here we want
to understand how the opinions actually change under this greedy placement and what the position
of the external agent looks like. We use γ = 0.09 and target opinion θ = 1. We present trajectories
of opinions for two different initial conditions. In Figure 4(a) the initial condition is such that for
each agent i /∈ {1, 200}, there are j, j′ ∈ Ni(0) such that xj > xi and xj′ < xi, i.e., there are no
agents u, v such that xu − xv > η (threshold) and {i : xi ∈ (xv, xu)} = ∅. On the other hand, in
Fig. 4(b), initially there is a pair of agents u, v such that xu − xv > η and {i : xi ∈ (xv, xu)} = ∅.
That is is one case agents initially form a connected graph (in the sense that (i, j) is an edge if
i ∈ Nj and j ∈ Ni) where as in the other case the initial graph is not connected. We observe that
in the case where agents are connected, the external agent placement is monotonic and opinions
of all agents merge before reaching the target value. In the disconnected case we observe that the
external agent placement is piecewise monotonic and in each such monotonic piece, the external
agent takes one connected component (of initial graph) to the target opinion.

5 Discussion

In this paper, we generalize the Hegselmann-Krause (HK) model of opinion formation [1] in several
directions. We first modify the weighting of neighbor opinions to be distance-dependent. This
causes the dynamics to exhibit different qualitative behavior: there may be a loss in finite-time
convergence, and the convergence times may depend on influence functions. We also interpret the
HK update rule as a special case of agents greedily minimizing a cost associated to their differences
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in opinions. The HK dynamics correspond to quadratic cost functions; and more generally, the
cost may be understood as the sum of two quantities - an inertial cost representing the effort of an
agent to change their opinion, and a disharmonic cost representing the friction caused by having an
opinion differing from their neighbors. In this more general setup, while we can prove convergence,
such convergence need not happen in finite-time. These results show the somewhat delicate nature
of convergent behavior in HK dynamics, in that even slight perturbations in the model can prevent
finite-time convergence.

Our second contribution is to understand influence modulation in such dynamics, where an
external influencer seeks to drive the opinions of all agents past a target threshold. In the first
variant, an external force can place an agent at each time who can influence the dynamics without
changing their own opinion. We showed matching upper and lower bounds on the time to drive
opinions past a target that are both O(n). In the second variant, we revisit the optimization
framework and considered a case where an external force can alter the inertial costs of agents by
offering incentives (at a cost). This external force has finite time and finite budget to drive the
agents past a target θ, but this problem in general is non-convex and appears intractable. It is
possible that a deeper understanding of heuristic strategies may provide further insights into the
structure of this problem; we plan to study this as future work.

Our work shows that there is a rich set of problems to explore beyond the original HK dynamics,
especially in the context of control and optimization. The question more generally, is this: given
a system evolving according to simple laws, how should we efficiently introduce external incentives
that leverage the internal dynamics to achieve a certain goal? While the social network model
suggests this problem applies to marketing, politics, and propaganda, the real benefit may be in
robotics, micro electro-mechanical systems (MEMS), and cellular and other biological systems.
Applying insights from the study of simple local dynamic rules may shed light on how to design
scalable and efficient methods for controlling complex systems.
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