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Incentive design for learning in user-recommendation systems with

time-varying states

Deepanshu Vasal, Vijay Subramanian and Achilleas Anastasopoulos

Abstract— We consider the problem of how strategic users
with asymmetric information can learn an underlying time-
varying state in a user-recommendation system. Users who
observe private signals about the state, sequentially make a
decision about buying a product whose value varies with time
in an ergodic manner. We formulate the team problem as
an instance of decentralized stochastic control problem and
characterize its optimal policies. With strategic users, we design
incentives such that users reveal their true private signals, so
that the gap between the strategic and team objective is small
and the overall expected incentive payments are also small.

I. INTRODUCTION

In a classical Bayesian learning problem, there is a single

decision maker who makes noisy observations of the state

of nature and based on these observations eventually learns

the true state. It is well known that through the likelihood

ratio test, the probability of error converges exponentially

to zero as the number of observations increases and the

true state is learnt asymptotically. With the advent of the

internet, in today’s world, there are many scenarios where

strategic agents with different observations (i.e. information

sets) interact with each other to learn the state of the

system that in turn affects the spread of information in the

system. One such scenario was studied by the authors in

their seminal paper [1] where they studied the occurrence

of fads in a social network, which was later generalized by

authors in [2]. The authors in [1] and [2] study the problem

of learning over a social network where observations are

made sequentially by different decision makers (users) who

act strategically based on their own private information

and actions of previous users. It is shown that herding

(information cascade) can occur in such a case where a user

discards its own private information and follows the majority

action of its predecessors (fads in social networks). As a

result, all future users repeat this behavior and a cascade

occurs. While a good cascade is desirable, there’s a positive

probability of a bad cascade that hurts all the users in the

community. Thus from a social (i.e. team) perspective, it is

highly desirable to avoid such situations. Avoiding such bad

cascades is an active area of research, for example [3] and

[4] propose alternative learning models that aim at avoiding

such bad cascades. In this paper, our goal is to analyze this

model and design incentives to avoid bad cascades.

Most of the literature for this problem assumes time-

invariant state of the nature. However, there are situations
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where the state of the nature, for e.g. popularity of a product,

could change over time, as a consequence of endogenous or

exogenous factors (for e.g., owing to the entering of a new

competitor product or improvement/drop in quality of the

product). In this paper we consider a simple scenario where

users want to buy a product online. The product is either

good or bad (popular or unpopular) and the value of the

product (state of the system) is represented by Xt, which

is changing exogenously via a Markov chain. The state is

not directly observed by the users but each user receives

a private noisy observation of the current state. Each user

makes a decision to either buy or not buy the product, based

on its private observation and action profile of all the users

before its.

The strategic user wants to maximize its expected value

of the product. But its optimal action could be misaligned

with the team objective of maximizing the expected average

reward of the users. Thus the question we seek to address is

whether it is possible to incentivize the users to align them

with the team objective. To incentivize users to contribute

in the learning, we assume that users can also send reports

(at some cost) about their private observations after deciding

to buy or to not buy the product. The idea is similar to

leaving a review of the product. Thus users could be paid

to report their observations to enrich the information of

the future participants. Our objective is to use principles

of mechanism design to construct the appropriate payment

transfers (taxes/subsidies). Although, our approach deviates

from general principles of mechanism design for solution of

the game problem to exactly coincide with the team problem.

However, this analysis could provide the bounds on the gap

and an acceptable practical design.

We use uppercase letters for random variables and lower-

case for their realizations. We use notation at:t′ to represent

vector (at, at+1, . . . at′) when t′ ≥ t or an empty vector

if t′ < t. We denote the indicator function of any set A
by IA(·). For any finite set S, P(S) represents space of

probability measures on S and |S| represents its cardinality.

We represent the set of real numbers by R. We denote by P g

(or Eg) the probability measure generated by (or expectation

with respect to) strategy profile g. All equalities and inequal-

ities involving random variables are to be interpreted in a.s.

sense. We use the terms users and buyers interchangeably.

The paper is structured as follows. In section II, we

present the model. In section III, we formulate the team

problem as an instance of decentralized stochastic control

and characterize its optimal policies. In section IV, we

consider the case with strategic users and design incentives
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for the users to align their objective with team objective. We

conclude in section V.

II. MODEL

We consider a discrete-time dynamical system over infinite

horizon. There is a product whose value varies over time as (a

slowly varying) discrete time Markov process (Xt)t, where

Xt takes value in the set {0, 1}; 0 represents that product was

bad (has low intrinsic value) and 1 represents and product is

good (has high intrinsic value).

P (x1) = Q̂(x1) (1a)

P (xt|x1:t−1) = Qx(xt|xt−1), (1b)

such that Qx(xt|xt−1) = ǫ if xt 6= xt−1, for 0 < ǫ < 1.

There are countably infinite number of exogenously se-

lected, selfish buyers that act sequentially and exactly once

in the process. Buyer t makes a noisy observation of the

value of the product at time t, vt ∈ V
△
= {0, 1}, through

a binary symmetric channel with crossover probability p
such that these observations are conditionally independent

across users given the system state (i.e. noise is i.i.d.) i.e.

P (vt|x1:tv1:t−1) = Qv(vt|xt) = p if vt 6= xt. Based on

actions of previous buyers and its private observation buyer

t takes two actions: at ∈ A
△
= {0, 1}, which correspond

to either buying or not buying the good, and bt ∈ B
△
=

{∗, 1} where * represents not reporting its observation and

1 represent reporting truthfully. Based on these actions and

the state of the system, the buyer gets reward R(xt, at, bt)
where

R(xt, at, bt)

= −c · I(bt = 1) +











1/2, xt = 1, at = 1

−1/2, xt = 0, at = 1

0, at = 0

, (2)

where c is cost of reporting its observation truthfully. The

actions are publicly observed by future buyers whereas the

observations (vt)t are private information of the buyers.

III. TEAM PROBLEM

In this section we study the team problem where the buyers

are cooperative and want to maximize the expected average

reward per unit time for the team. At time t, buyer t’s
information consists of its private information vt and publicly

available information a1:t−1, b1:t−1. It takes action at, bt
though a (deterministic) policy gt : A

t−1×Bt−1×V → A×B
as

(at, bt) = gt(a1:t−1, b1:t−1, vt). (3)

The objective as a team (or for a social planner) is to

maximize the expected average reward per unit time for all

the users i.e.

J
△
= sup

g
lim sup
τ→∞

1

τ

τ
∑

t=1

E
g{R(Xt, At, Bt)}. (4)

Since the decision makers (i.e. the buyers) have differ-

ent information sets, this is an instance of a decentralized

stochastic control problem. We use techniques developed

in [5] to find structural properties of the optimal policies.

Specifically, we equivalently view the system through the

perspective of a common agent that observes at time t, the

common information a1:t−1, b1:t−1 and takes action γt :
V → A×B, which is a partial function that, when acted upon

buyer’s private information vt, generates its action (at, bt).
The common agent’s actions (γt)t are taken through common

agent’s strategy ψ = (ψ)t as γt = ψt[a1:t−1, b1:t−1] where

ψt : At−1 × ×Bt−1 → (V → A× B). The corresponding

common agent’s problem is

Jc
△
= sup

ψ

lim sup
τ→∞

1

τ

τ
∑

t=1

E
ψ{R(Xt, At, Bt)}. (5)

This procedure transforms the original decentralized stochas-

tic control problem of buyers to a centralized stochastic

control problem of the common agent. Thus an optimal

policy of common agent can be translated to optimal policy

for the buyers. In order to characterize common agent’s op-

timal policies, we find an information state for the common

agent’s problem. We define a belief state πt at time t as a

probability measure on current state of the system given the

common information i.e. πt(xt)
△
= Pψ(xt|a1:t−1b1:t−1γ1:t).

The following lemma shows that the common agent faces a

Markov decision problem (MDP).

Lemma 1: (Πt,Γt)t is a controlled Markov process with

state Πt and action Γt such that

Pψ(πt+1|π1:tγ1:t) = P (πt+1|πtγt) (6a)

E
ψ{R(Xt, At, Bt)|a1:t−1b1:t−1γ1:t}

=E{R(Xt, At, Bt)|πtγt} (6b)

=:R̂(πt, γt) (6c)

and there exists an update function F , independent of ψ such

that πt+1 = F (πt, γt, at, bt).
Proof: See Appendinx.

Lemma 1 implies that for common agent’s problem, it

can summarize the common information a1:t−1, b1:t−1 in the

belief state πt. Furthermore there exists an optimal policy for

the common agent of the form θt : P(X ) → (V → A× B)
that can be found as solution of the following dynamic

programming equation in the space of public beliefs πt as,

∀π, γ∗ = θ[π] is the maximizer in the following equation

ρ+ V (π) = max
γ

R̂(π, γ) + E{V (Π′)|πγ}, (7)

where the distribution of π′ is given through the kernel

P (·|πγ) in (6a) and ρ ∈ R, V : P(X ) → R are solution of

the above fixed point equation. Based on this public belief

πt and its private information xt, each user t takes actions

as

(at, bt) = mt(πt, vt) = θt[πt](vt). (8)

We note that since states, actions and observations belong

to a binary set, there are sixteen partial functions γ possible

that are shown in Table I below where γ =

[

γ(vt = 0)

γ(vt = 1)

]

=



[

at, bt(vt = 0)

at, bt(vt = 1)

]

. Since the common belief is updated as

πt+1 = F (πt, γ, γ(vt)) and vt is binary valued, there exist

two types of γ functions: learning (γL) and non-learning

(γNL). γL leads to update of belief through F (·) in (6a)

that is informative of the private observation vt, whereas

γNL leads to uninformative update of belief. Eight of them

are dominated in reward for example vt need not be reported

if it is revealed through at, or if it can be revealed indirectly

by absence of reporting.

TABLE I

γ
L

[

0, ∗

1, ∗

] [

1, ∗

0, ∗

] [

1, 1

1, ∗

] [

1, ∗

1, 1

] [

0, 1

0, ∗

] [

0, ∗

0, 1

]

�
��❅
❅❅

[

0, 1

1, 1

]

�
��❅
❅❅

[

1, 1

0, 1

]

�
��❅
❅❅

[

0, 1

1, ∗

]

�
��❅
❅❅

[

1, 1

0, ∗

]

�
��❅
❅❅

[

0, ∗

1, 1

]

�
��❅
❅❅

[

1, ∗

0, 1

]

�
��❅
❅❅

[

0, 1

0, 1

]

�
��❅
❅❅

[

1, 1

1, 1

]

γ
NL

[

0, ∗

0, ∗

] [

1, ∗

1, ∗

]

IV. GAME PROBLEM

We now consider the case when the buyers are strategic.

As before, buyer t observes public history a1:t−1, b1:t−1

and its private observation vt and thus takes its actions as

(at, bt) = gt(a1:t−1, b1:t−1, vt). Its objective is to maximize

its expected reward

Jt = max
gt

E
g{R(Xt, At, Bt)}. (9)

Since all buyers have different information, this defines a

dynamic game with asymmetric information. An appropriate

solution concept is Perfect Bayesian Equilibrium (PBE) [6]

that requires specification of an assessment (g∗t , µ
∗
t )t of

strategy and belief profile where g∗t is the strategy of buyer

t, g∗t : At−1 × Bt−1 × V → P(A × B), and µ∗
t is a belief

as a function of buyer t’s history on the random variables

not observed by it till time t i.e. µ∗
t : At−1 × Bt−1 × V →

P(X t × Vt). In general, finding a PBE is hard [6] since

it involves solving a fixed point equation in strategies and

beliefs that are function of histories although there are few

cases where there exists an algorithm to find them [7],

[8]. For this problem, since users act exactly once in the

game and are thus myopic, it can be found easily in a

forward inductive way, as in [1], [2]. Moreover, a belief

on Xt, µ
∗
t (x)

△
= P g

∗

(Xt = x|at−1, bt−1, vt), x ∈ {0, 1}
is sufficient and any joint belief consistent with µ∗

t (x) along

with equilibrium strategy profile g∗ constitute a PBE. For

any history, users compute a belief equilibrium strategy

depending on vt and πt as

γ∗t = φ[πt] = argmax
γt

R̂(πt, γt) (10)

With φ[·] defined through (10), for every history

(a1:t−1, b1:t−1, vt), πt is updated using forward recursion

through πt+1 = F (πt, φ(πt), at, bt) and equilibrium

strategies are generated as g∗t (a1:t−1, b1:t−1, vt) = φ[πt](vt).

Finally the beliefs µ∗
t can be easily derived from πt and

private information vt through Bayes rule.

We numerically solve (7) using value iteration to find

team optimal policy, shown in Figure 1, for parameters

p = 0.2, ǫ = 0.001 and c = 0.05. For the same parameters,

Figure 2 shows optimal policy for a strategic user that solves

(10).
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A. Incentive design for strategic users

Our goal is to align each buyers’ objective with the team

objective. In order to do so, we introduce incentives (tax or

subsidy) for user t, t : P(X ) × A × B → R such that its

effective reward is given by R̂(πt, γt)− t(πt, at, bt).
We first note that a user can not internalize social reward

through incentives as is done in a pivot mechanism [9]–[12],

i.e. there does not exist an incentive mechanism such that

the following equation could be true

R̂(π, γ)− t(π, a, b) = R̂(π, γ) + E{V (Π′)|πγ} (11)

i.e. t(π, a, b) = −E{V (Π′)|πγ} (12)

for V (·) defined in (7) and the distribution of π′ is given

through the kernel P (·|πγ) in (6a). The left side of (11) is



buyers’ effective reward and right side is the objective of the

team problem as in (7). Such a design is not feasible because

while t(·) can depend only on public observations (π, a, b),
the second term in the RHS of (11) depends on γ as well

which is not observed by the designer.

We observe in Figures 1, 2 that team optimal policy

coincides with the strategic optimal policy for a significant

range of π(1). Let S be the set consisting of π(1) where

the team optimal policy coincides with the strategic optimal

policy and Sc be the complement set. In order to align the

two policies, we consider the following incentive design such

that a user is paid c units by the system planner whenever

the public belief π(1) belongs to the set Sc and user reports

its observation,

t(π, at, bt) = −c · I(π(1) ∈ S)I(bt = 1). (13)

These payments are made after any report for enforcement

purposes. This is agreed upon, i.e., system planner commits

to this. With these incentives, the optimal policy of the

strategic user is shown in Figure 3. Figure 4 compares the

time average reward achieved through these policies, found

through numerical results. This shows that the gap between

the team objective and the one with incentives is small.

Intuitively, this occurs because the buyers learn the true

state of the system relatively quickly (exponentially fast)

compared to the expected time spent by the Markov process

Xt in any state. Equivalently, the time spent by the process

(Πt(1))t in the set Sc is small. Yet it is crucial for the social

objective that learning occurs in this region. Also in Figure 4,

the gap between the mechanism (including incentives) and

the mechanism where incentives are subtracted signifies the

expected average payment made by the designer, which is

relatively small.
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Fig. 3: Strategic optimal policy with incentives

V. CONCLUSION

We considered a sequential buyers game where a countable

number of strategic buyers buy a product exactly once in the

game. The value of the product is modeled as a Markov

process and buyers privately make noisy observation of the
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Fig. 4: Expected time average cost comparison for different

policies

value. We model the team problem as an instance of decen-

tralized stochastic control problem and characterize structure

of optimum policies. When users are strategic, it is modeled

as a dynamic game with asymmetric information. We show

that for some set πt ∈ S that occurs with high probability,

the strategic optimal policy coincides with the team optimal

policy. Thus only outside this set, i.e., when πt ∈ Sc,
buyers need to be incentivized to report their observations so

that higher average rewards can be achieved for the whole

team. Since numerically Sc occurs with low probability, the

expected incentive payments are low. However, even though

infrequent, these incentives help in the learning for the team

as a whole, specifically for the future users. This suggests

that using such a mechanism for the more general case could

be a useful way to bridge the gap between strategic and team

objectives.

Future work involves characterizing team-optimum poli-

cies analytically and studying the resulting social utility

through approximations or bounds on the induced Markov

chain statistics. This would also characterize the gain from

introducing “structured” incentives. Finally, incentives de-

signs could be studied that minimize total expected incentives

and guarantee voluntary participation.

APPENDIX

Claim 1: There exists an update function F , independent

of ψ such that πt+1 = F (πt, γt, at, bt).

Proof: Fix ψ

πt+1(xt+1) =P
ψ(xt+1|a1:tb1:tγ1:t) (14a)

=
∑

xt

Pψ(xt+1, xt|a1:tb1:tγ1:t) (14b)

=
∑

xt

Pψ(xt|a1:tb1:tγ1:t)Q̂(xt+1|xt) (14c)



Now,

Pψ(xt|a1:tb1:tγ1:t)

=
Pψ(xt, at, bt|a1:t−1b1:t−1, γ1:t)

∑

x̂t
Pψ(x̂t, at, bt|a1:t−1b1:t−1, γ1:t)

(15a)

= Pψ(xt|a1:t−1b1:t−1, γ1:t)×
∑

vt
Pψ(at, btvt|a1:t−1b1:t−1, γ1:t, xt)

∑

x̂t
P (x̂t, at, bt|a1:t−1b1:t−1, γ1:t)

(15b)

=
Pψ(xt|a1:t−1b1:t−1, γ1:t−1)

∑

vt
I{γt(vt)}(at, bt)Qv(vt|xt)

∑

x̂t
Pψ(x̂t|a1:t−1b1:t−1, γ1:t−1)
∑

vt
I{γt(vt)}(at, bt)Qv(vt|x̂t)

(15c)

where first part in numerator in (15c) is true since given

policy ψ, γt can be computed as γt = ψt(a1:t−1b1:t−1).

We conclude that

P (xt|a1:t, γ1:t)

=
πt(xt)

∑

vt
I{γt(vt)}(at, bt)Qv(vt|xt)

∑

x̂t
πt(x̂t)

∑

vt
I{γt(vt)}(at, bt)Qv(vt|x̂t)

, (16)

thus,

πt+1 = F (πt, γt, at, bt) (17)

where F is independent of policy ψ.

Claim 2: (Πt,Γt)t is a controlled Markov process with

state Πt and action Γt such that

Pψ(πt+1|π1:tγ1:t) = P (πt+1|πtγt) (18)

E
ψ{R(Xt, At, Bt)|γ1:ta1:t−1b1:t−1}

= E{R(Xt, At, Bt)|γtπt} (19)

=: R̂(πt, γt) (20)

Proof:

Pψ(πt+1|π1:t, γ1:t)

=
∑

at,bt

Pψ(πt+1, at, bt|π1:t, γ1:t) (21a)

=
∑

at,bt

1{F (πt,γt,at,bt)}(πt+1)
∑

vt

Pψ(at, btvt|π1:t, γ1:t)

(21b)

=
∑

at,bt,xt

1{F (πt,γt,at,bt)}(πt+1)P
ψ(xt|π1:t, γ1:t)

∑

vt

I{γt(vt)}(at, bt)Qv(vt|xt) (21c)

=
∑

at,bt,xt

πt(xt)1{F (πt,γt,at,bt)}(πt+1)

∑

vt

I{γt(vt)}(at, bt)Qv(vt|xt) (21d)

= P (πt+1|πt, γt) (21e)

E(R(Xt, At, Bt)|π1:t, γ1:t)

=
∑

xt,at,btvt

R(xt, at, bt)P (xt, at, bt, vt|π1:t, γ1:t) (22a)

=
∑

xt,at,bt

R(xt, at, bt)P (xt|π1:t, γ1:t)

∑

vt

I{γt(vt)}(at, bt)Qv(vt|xt) (22b)

=
∑

xt,at,bt

R(xt, at, bt)πt(xt)

∑

vt

I{γt(vt)}(at, bt)Qv(vt|xt) (22c)

= R̂(πt, γt) (22d)
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tion based markov perfect equilibria for stochastic games with asym-
metric information: Finite games,” IEEE Trans. Automatic Control,
vol. 59, no. 3, pp. 555–570, March 2014.

[8] D. Vasal, V. Subramanian, and A. Anastasopoulos, “A systematic
process for evaluating structured perfect Bayesian equilibria in
dynamic games with asymmetric information,” Tech. Rep., Aug.
2015. [Online]. Available: http://arxiv.org/abs/1508.06269

[9] W. Vickrey, “Counterspeculation, auctions, and competitive sealed
tenders,” The Journal of finance, vol. 16, no. 1, pp. 8–37, 1961.

[10] E. H. Clarke, “Multipart pricing of public goods,” Public choice,
vol. 11, no. 1, pp. 17–33, 1971.

[11] T. Groves, “Incentives in teams,” Econometrica: Journal of the Econo-

metric Society, pp. 617–631, 1973.
[12] D. Bergemann and J. Valimaki, “The dynamic pivot mechanism,”

Econometrica, vol. 78, no. 2, pp. 771–789, mar 2010.

http://www.jstor.org/stable/2138632
http://dx.doi.org/10.1111/1468-0262.00113
http://restud.oxfordjournals.org/content/78/4/1201.abstract
http://arxiv.org/abs/1508.06269

	I Introduction
	II Model
	III Team problem
	IV Game problem
	IV-A Incentive design for strategic users

	V Conclusion
	Appendix
	References

