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Abstract

Real-world graphs often manifest as a massive temporal
“stream” of edges. The need for real-time analysis of
such large graph streams has led to progress on low
memory, one-pass streaming graph algorithms. These
algorithms were designed for simple graphs, assuming
an edge is not repeated in the stream. Real graph
streams however, are almost always multigraphs i.e.,
they contain many duplicate edges. The assumption of
no repeated edges requires an extra pass storing all the
edges just for deduplication, which defeats the purpose
of small memory algorithms.

We describe an algorithm, MG-Triangle, for es-
timating the triangle count of a multigraph stream of
edges. We show that all previous streaming algorithms
for triangle counting fail for multigraph streams, de-
spite their impressive accuracies for simple graphs. The
bias created by duplicate edges is a major problem, and
leads these algorithms astray. MG-Triangle avoids
these biases through careful debiasing strategies and has
provable theoretical guarantees and excellent empirical
performance. MG-Triangle builds on the previously
introduced wedge sampling methodology. Another chal-
lenge in analyzing temporal graphs is finding the right
temporal window size. MG-Triangle seamlessly han-
dles multiple time windows, and does not require com-
mitting to any window size(s) a priori. We apply MG-
Triangle to discover fascinating transitivity and tri-
angle trends in real-world graph streams.

1 Introduction

Many massive graphs appear in practice as a temporal
stream of edges. People call each other on the phone,
exchange emails, or co-author a paper; computers ex-
change messages; animals come in the vicinity of each
other; companies trade with each other. Each such in-
teraction is modeled as an edge in the graph, and has a
natural timestamp.

Due to the need for real-time awareness despite the
volume of such transactions, there is much interest in
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processing temporal graphs using fast, limited-memory
algorithms. Formally, think of the input as a sequence
of edges e1, e2, . . . , em. Some of the edges may be
repeated, meaning that (say) e1 = e100 = e125 = (u, v).
We are interested in small space streaming algorithms
that make a single pass over the stream e1, e2, . . . , em.
Such an algorithm maintains data structures that are
many orders of magnitude smaller than the stream itself.
At every timestep t, these data structures are updated
rapidly (possible randomly). The algorithm computes
an accurate estimate for the property of interest on the
graph seen so far. Because of the single pass and small
space, the algorithm cannot revisit edges that it has
forgotten. Furthermore, it cannot always determine
if the new edge, et, has appeared before. This work
focuses on triangle counting in this setting.

Graph vs multigraph: Previous results assume
that the edge stream forms a simple graph, and no
edge is repeated in the stream. This is a useful
assumption for algorithmic progress; yet, often false in
practice. Real-world graph streams are multigraphs,
in that same edges can occur repeatedly in the data
stream. The simple graph representation is obtained
by removing duplicate edges. For example, the classic
Enron email dataset is really a multigraph with 1.14M
edges, while the underlying simple graph has only 297K
edges. Similarly, a DBLP co-authorship graph recently
collected is a multigraph with 3.63M edges, but the
underlying simple graph has only 2.54M edges. Close to
10 million edges in a popular dynamic Flickr network
dataset (see [22, 19]) are repeated.

The assumption of simplicity is implemented in
practice with an extra pass to remove duplicate edges.
This pass requires storage of the entire simple graph,
which is completely ignored in all previous work. Indeed,
if one can store the entire simple graph, there exist
much better algorithms for triangle counting [23, 29, 25].
We posit that for streaming algorithms to be actually
useful in practice, multiple edges must be dealt with
small space. There is much work on streaming graph
algorithms (see surveys [1, 17]). Yet this algorithmic
work ignores important issues such as repeated edges
and temporal aggregation that arise when looking at a
real-world graph stream, as demonstrated in Fig. 1a.

Aggregation over time: Given a stream of edges,
what is the actual graph? The most common answer is
to simply aggregate all edges ever seen. Again, this is a
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Figure 1: Previous works when run on multigraph DBLP converge (as storage increases) to an incorrect value. On the
simple graph DBLP, they converge correctly.

useful assumption for algorithmic progress, but ignores
the temporal aspect of the edges. Time is a complex
issue and there are no clear solutions. One may consider
sliding windows in time or have some decay of edges.
For simplicity, we focus on sliding time windows (like
edges seen in the past month, or past year). Even for
sliding windows, it is not clear what the width should
be. Observations can often be an artifact of the window
size [16]. Therefore, it is essential to observe multiple
time windows at the same time, instead of committing
to a single one.

Fig. 2 shows how our algorithm MG-Triangle can
analyze different time windows with a single run. Our
algorithm estimates the triangle counts for any time
window without altering its data structures, as the time
window is only used in calculating the estimate.

1.1 Triangle counting The abundance of triangles
has been observed in networks arising in numerous sce-
narios, such as social sciences [7, 21, 6, 30], spam de-
tection [10], community detection [11], finding common
topics on the web [4], bioinformatics [18], and modeling
and characterizing real-world networks [24, 9]. Subse-
quently, there has been a lot of work on triangle count-
ing in graph streams [13, 5, 3, 14, 28, 20, 12, 2], and
in various other settings (see e.g., [26] and references
therein). The result of Ahmed et al. [2] is arguably
the state-of-the-art, with a storage significantly smaller
than previous algorithms. None of these results explic-
itly deal with multigraphs.

Formally, we are processing a multigraph stream
e1, e2, . . . , em. At every time t, consider the underlying
simple graph Gt formed by edges et−∆t, . . . , et. So take
all these edges, and remove duplicates. We wish to
output the triangle count (alternately, the transitivity)
of Gt for all times t. The window length ∆t may be

defined in different ways. It could either be in terms of
number of edges (say, the past 10K edges), or in terms of
the semantics of timestamps (say, edges seen in the past
month). Most importantly, we want a single-pass small
space algorithm to handle multiple windows lengths and
do not want different passes for each window length.

A reader may wonder why we only output estimates
for the underlying simple graph. Ideally, we would
like to compute measures that involve the multigraph
structure. We agree that this is an interesting problem,
and duplicates have their own significance. Currently,
it is standard to focus on simple graphs, and there
is no consensus on how to define triadic measures on
multigraphs. This is an exciting avenue for future work.

Why is this a difficult problem? Multigraphs
are a major challenge for triangle counting algorithms.
Edges appears with varying frequencies, and (in our set-
ting) we do not wish to be biased by this. Further-
more, triangles can be formed in different ways. Con-
sider edges a, b, and c that form a triangle. These
edges may appear in the multigraph stream in many
different ways. For example, these edges could come
as a, a, . . . , b, b, . . . , c, c, . . ., or as a, b, c, a, b, c, a, b, c, . . ..
(Observe how this is not an issue for simple graphs.)
These patterns create biases for existing triangle count-
ing algorithms, which we explain in more detail later.

For now, it suffices to say that existing algo-
rithms [5, 12, 20, 28, 2] will give different estimates
for triangle counts of different multigraphs streams that
contain the same simple graph. This is demonstrated in
Fig. 1a, where we run previous streaming triangle count-
ing algorithms on the raw DBLP multigraph stream. Pre-
vious algorithms converge to an incorrect value as their
storage increases. They all perform extremely well if
all duplicates were removed from the stream (Fig. 1b).
Previous work on multigraph mining explicitly states



(a) DBLP: transitivity (b) DBLP: triangles (c) Enron: Transitivity (d) Enron: triangles

Figure 2: Transitivity and triangles estimates for varying window lengths for DBLP coauthorship and Enron email networks:
Our algorithm stores less than 3% of the multigraph stream yet produces fine-grained triangle results.

triangle counting of streaming multigraphs as an open
problem [8].

1.2 Preliminaries The edge stream is denoted by
e1, e2, . . . , em. We focus on undirected graphs, so each
edge is an unordered pair of vertex ids. The simple
graph formed by edges et′ , . . . , et is denoted by G[t′, t].
A wedge is a path of length 2. The set of wedges
in a simple graph G is denoted W (G), and the set
of triangles by T (G). A wedge in W (G) is closed if
it participates in a triangle and open otherwise. The
transitivity is the fraction of closed wedges, τ(G) =
3|T (G)|/|W (G)|. Our aim is to maintain the transitivity
and triangle count (for all t) of the graph G[t − ∆t, t],
where ∆t is the desired window of aggregation. The
window is usually specified as a fixed number of edges or
a fixed interval of time (like month, year, etc.), though
the algorithm works for windows lengths that change
with time. For convenience, we denote Gt = G[t−∆t, t],
Et = E(Gt), Wt = W (Gt), Tt = T (Gt), and τt = τ(Gt).

1.3 Our Contributions We design a small space
streaming algorithm, MG-Triangle, to estimate tran-
sitivity and triangle counts for multiple time windows
on multigraphs. As mentioned earlier, the main techni-
cal contribution is in handling repeated edges without
a separate storage-intensive deduplication process. We
consider this work as a first step towards small space
streaming analytics for real-world graph streams.
• The multiedge problem: We applied previ-

ous streaming triangle algorithms [20, 12, 2] on multi-
graph streams, and showed that they fail to give cor-
rect answers. Fig. 1a shows how all these algorithms
converge as their storage increases to an incorrect es-
timate on a DBLP multigraph stream. Of course, these
algorithms were designed with the assumption of simple
graph streams, and have excellent convergence proper-
ties (Fig. 1b). These results show how repeated edges
are a problem and why we need new algorithms for
multigraph streams.

• Theoretical and empirical proofs of con-
vergence: We give proofs of convergence for MG-
Triangle. Our algorithm is based on wedge sam-
pling [23, 25] and borrows ideas from [12, 2]. It is
provably correct on expectation. We also prove vari-
ance bounds, but MG-Triangle shows much better
performance in practice than such bounds would indi-
cate. We perform detailed experiments to prove that
our algorithm gives accurate estimates with little stor-
age (less than 5% of the stream in all instances). In
Fig. 1a, we observe how MG-Triangle converges to
the correct value storing at most 60K edges (the stream
size is 3M).
• Low storage required on real-world graphs:

Our algorithm stores less than 5% of the stream in all
instances, and gives accurate estimates for transitivity
and triangles counts. For example, we converted a 223M
edge orkut graph [27] to a 500M edge multigraph, where
our algorithm produced triangles estimates within 1%
relative error. The storage required was just 1.2M edges,
less than 0.5% of the stream. Our algorithm’s worst
performance (on a livejournal social network) only led
to 0.04 additive error in transitivity, and 8.7% relative
error in triangle count.
• Multiple time window estimates in real-

world graph streams: Fig. 2 presents an example
output of MG-Triangle on a DBLP coauthorship graph
stream. MG-Triangle makes a single pass and stores
less than 100K edges (< 3% of total stream). It
gives estimates for transitivity and triangles count at
every year for window sizes of 5, 10, 15, 20 years,
and all of time. In other words, at year (say) 2013,
it gives triangle estimates for the simple graphs that
aggregates edges in the following intervals: 2009–2013,
2004–2013, 1999–2013, 1994–2013, and 1938–2013. We
immediately detect specific trends for different windows,
like increasing window size decreases transitivity (even
though triangle count naturally goes up). Also note
the overall decrease of transitivity over time. We also



perform such analyses on an email network and a social
network, and observe differences between these graphs.

2 Effects of repeated edges on triangle
counting

We describe previous practical streaming triangle algo-
rithms and explain why repeated edges is a challenge.
We hope that this provides better context for our work
and explains how important the assumption of simple
graphs is for previous work. Our focus is on the neigh-
borhood sampler of Pavan et al. [20], the wedge sampler
of Jha et al. [12], and the sample-and-hold algorithm of
Ahmed et al. [2]. To the best of our knowledge, these are
the algorithms with established practical performance
and good theoretical guarantees. (We omit the algo-
rithm of Buriol et al. [5], since its practical performance
is not good even for million edge streams [12].) For
the sake of exposition, we formulate and describe the
algorithms in slightly different terms from the original
papers.

Reservoir sampling vs hashing: All algorithms
sample uniform random edges from the stream, ei-
ther by reservoir sampling or sampling an edge with
fixed probability, which poses a problem in multigraph
streams, since frequent edges have a higher probabil-
ity of being sampled. This problem can be mitigated
by using random hash functions. Suppose we wish to
store each edge of the underlying simple graph from the
stream with probability α. Each edge should be equally
likely to be selected, independent of its frequency. Let
hash be a uniform random function into the range (0, 1).
When the algorithm sees an edge e in the stream, it
stores the edge if hash(e) < α. Observe that the proba-
bility that an edge is selected only depends on its hash
value and is independent of its frequency. We also stress
that, for simple graph streams, hash based sampling
is essentially equivalent to any other uniform random
method.

Hashing provides an easy fix for the basic sampling
problem, and is actually a convenient implementation
method even for simple graphs. (We implemented
all previous algorithm using hashing.) But the real
challenge is debiasing, which comes next.

Neighborhood sampling [20]: Let edge f be
a neighbor of e, if e and f intersect. The main
idea of [20] is to pick a uniform random edge e, and
then pick a uniform random neighbor f of e from the
subsequent edges. This provides a wedge {e, f}, which
is then checked for closure to provide a triangle. This
process samples triangles non-uniformly. Pavan et al.
cleverly debias by counting the number of following
edges adjacent to e. (Equivalently, keeping track of
the degree of vertices after storing e.) The algorithm

takes a number of independent samples to get a low-
error estimate. The method is provably correct and has
excellent behavior in practice.

But multigraphs affect this debiasing. Tracking
(simple) degrees of a vertex v is a non-trivial task, and
requires counting the number of distinct edges incident
to v. This itself requires a space overhead and it is not
clear how to get a complete small-space extension of this
approach for multigraphs.

Sample-and-hold [2] and wedge sam-
pling [12]: Ahmed et al. give an elegant algorithm
for triangle counting. Simply store every edge with
some fixed (small) probability. For every edge e in
the stream, count the number of triangles formed by
e and a wedge among the stored edges. The sum of
these counts can be used to estimate the total number
of triangles. The final algorithm is simple, converges
extremely rapidly, and is space efficient (To date,
it is arguably the best streaming triangle counting
algorithm). The wedge sampling algorithm of Jha et
al [12] can also be thought of in this framework, except
that it tracks a subset of the wedges created by stored
edges.

Without getting into details, it suffices to say that
the correctness of these algorithms hinges on a criti-
cal fact. Every triangle (in a simple graph) stream
has a unique wedge that closes in the future. Sup-
pose edges {e, f, g} form a triangle, and edges appear
in order e, . . . , f, . . . , g. Then the wedge {e, f} is closed
subsequently by edge g. It can be shown that both
algorithms sample triangles uniformly, leading to unbi-
ased estimates. This is not true for multigraph streams.
If they appear in the stream as e, f, g, e, f, g, e, f, g, . . .,
there is no unique wedge closed in the future. (Indeed,
all wedges are closed in the future.) This is a significant
problem and increasing storage does not mitigate this
problem. As demonstrated in Fig. 1a, these algorithms
converge to an incorrect estimate as storage increases.

3 Proposed algorithm

Our algorithm MG-Triangle takes as input sampling
rates α, β ∈ (0, 1) and a window ∆t. The window is
specified as a fixed number of edges or a fixed interval
of time (like month, year, etc.). We describe the data
structures used by MG-Triangle.
• Lists e-list, w-list: These are lists consisting of

random edges and wedges, respectively. The sizes of
these lists are controlled by α and β.
• Flags Xw: For each wedge w ∈ w-list, we have a

boolean flag Xw supposed to denote whether it is open
or closed.
As mentioned earlier, it is convenient to think of hash
as a uniform random function into the range (0, 1).



Abusing notation, we will use hash to map various
different objects1 such as edges, wedges, etc.

Algorithm 1: MG-Triangle(α, β,∆t)

1 foreach edge et in the stream do
2 Call update(et).
3 foreach wedge w in w-list do
4 Let w = {(u, v), (u,w)}.
5 if et is the closing edge (v, w) then
6 Set Xw to 1.

7 else if et ∈ {(u, v), (u,w)} then
8 Reset Xw to 0. // bias-correction

9 Let W ⊆ w-list be the set of wedges that
formed in time [t−∆t, t].

10 Output T̂t = (α2β)−1
∑

w∈W Xw.

11 Output Ŵt = (α2β)−1|W| and τt = 3T̂t/Ŵt

(if Ŵt = 0, set τt = 0).

Algorithm 2: update(et)

1 if hash(et) ≤ α and et /∈ e-list then
2 Insert et in e-list.
3 foreach wedge w = (e, et) where e ∈ e-list

do
4 if hash(w) ≤ β and w /∈ w-list then
5 Insert w in w-list.

3.1 High level description The first step on en-
countering edge et is to update the lists e-list and w-list.
This is done in procedure update. The idea is based on
standard hash-based sampling. We add et to e-list if
hash(et) ≤ α and et is not already in e-list. Then,
we look at all the wedges that et creates with existing
edges in e-list. We apply another round of hash-based
sampling to put these wedges in w-list.

Critically, if an edge e enters e-list, it never leaves.
If e enters e-list, it does so the first time it appears in
the stream. The probability of an edge entering e-list
is independent of its frequency in the stream. This is
vital to get unbiased samples of edges in the underlying
simple graph Gt. Similar statements hold for wedges.

Checking for closures and debiasing: We
encounter edge et and have updated e-list and w-list.
For each wedge w ∈ w-list, we have a boolean variable
Xw. If et closes w (so w and et form a triangle),
we set Xw = 1. This is the standard wedge-sampling
approach [23, 25, 12]. At this point, the algorithm would

1This is implemented by appropriately concatenating vertex
ids.

basically be that of [12], implemented with hash-based
sampling. As argued earlier and shown in Fig. 1, this
algorithm does not work.

To fix the biasing, we perform a somewhat myste-
rious step. We have wedge w ∈ w-list and encounter
et. If et is already part of w, we simply reset Xw to 0.
So even though w may be closed, we just assume it is
open. This completely resolves the biasing, and we give
a formal proof in Thm. 3.3.

Outputting the estimate: Finally, we need to
output estimates,|T̂t|, |Ŵt|, τ̂t for |Tt|, |Wt|, τt, respec-
tively. This is the only step where the time window ∆t
is used. We look at all wedges in w-list that formed in
the time [t −∆t, t]. The total number of these wedges
can be scaled to estimate |Wt|. The number of these
wedges, where Xw = 1 is scaled to estimate |Tt|, and
the appropriate ratio estimates τt.

3.2 Theoretical analysis We prove that the MG-
Triangle is correct on expectation and prove weak
concentration results bounding the variance. We also
show some basic bounds on the storage of MG-
Triangle. Throughout this section, we focus at some
time t and the simple graph Gt. We stress that there
is no distributional assumption on the graph or the
stream. All the probabilities are over the internal ran-
domness of the algorithm (which is encapsulated in the
random behavior of hash).

Lemma 3.1. Consider time t. For any edge e ∈ Gt, the
probability that e ∈ e-list is α. For any wedge w ∈ Wt,
the probability that w ∈ w-list is α2β.

Proof. Consider edge e. We first argue that e ∈ e-list
iff hash(e) ≤ α (Note that this is independent of the
frequency of e). Suppose hash(e) ≤ α. At its first
occurrence, e enters e-list and remains in e-list. Suppose
hash(e)>α. At no timestep will e be added to e-list,
regardless of how many times it appears. From the
randomness of hash, hash(e) ≤ α with probability α.
Hence, e ∈ e-list with probability α.

For wedge w = {e, e′} to be in w-list, both its
edges must be in e-list. That means both hash(e) and
hash(e′) are at most α. Suppose the first occurrence
of e is before that of e′. At the first time e′ occurs,
procedure update will add w to w-list iff hash(w) ≤ β.
At any subsequent occurrence of e or e′, the wedge w
is not considered for adding to w-list (simply because e
and e′ are already in e-list). The total probability (by
the randomness of hash) is α2β. �

The following hold just by linearity of expectation.
We move proofs to the appendix.

Theorem 3.1. The expected size of e-list is αE(G[1, t])
and the expected size of w-list is α2βW (G[1, t]).



Theorem 3.2. E[Ŵt] = |Wt|.

Now we come to a key theorem that shows that T̂t
is correct on expectation. This is where we prove that
our proposed debiasing technique works.

Theorem 3.3. E[T̂t] = |Tt|.

Proof. We extend the definition of Boolean flag Xw to
every wedge w in Wt. Let Xw =0 if w is not present in
w-list (at time t). Note that T̂t = (α2β)−1

∑
w∈Wt

Xw.
For every edge e in Et, let tmax(e) be the maximum time
s≤ t such that es = e. Fix a triangle A= {a, b, c} ∈ Tt
formed by edges a, b, and c, and assume (by relabel-
ing if required) that c is the last edge to appear in the
stream among a, b, and c. In other words, tmax(c) >
max{tmax(a), tmax(b)}. Since {a, b}, {b, c}, {c, a} are
wedges, it makes sense to talk about X{a,b}, etc. The
following is the debiasing argument, showing that ex-
actly one wedge in A has Xw = 1.

Lemma 3.1. X{b,c} = X{c,a} = 0. Moreover, X{a,b} =
1 iff {a, b} is in w-list.

Proof. Consider the moment s = tmax(c) when es = c.
If wedge {b, c} 6∈ w-list, then by definition, X{b,c} is 0. If
{b, c} ∈ w-list, then by Step 8 of Algorithm 1, the value
of X{b,c} is reset to 0. No subsequent change is made to
this value. An identical argument shows the same for
X{c,a}. Finally, X{a,b} is set to 1 at this moment iff if
wedge {a, b} is in e-list, and once again, this value is not
changed subsequently. �

By Lemma 3.1, E[X{b,c}] = E[X{c,a}] = 0, while
E[X{a,b}] is the probability that this wedge is in w-list.
This is exactly α2β. Therefore, the sum of expectations
of Xw over all three wedges w of the triangle A =
{a, b, c} is

∑
w∈A E[Xw] = α2β. Observe this is true

for any fixed triangle in Tt. For any wedge w that does
not participate in a triangle, Xw is obviously zero. By
linearity of expectation, E[T̂t] = (α2β)−1E[

∑
w∈Wt

Xw]

= (α2β)−1
∑

A∈Tt

∑
w∈A E[Xw]. Plugging in the value

of E[Xw], this is (α2β)−1 · α2β|Tt| = |Tt|. �

Using methods from [12], we can prove weak con-

centration bounds for T̂t and Ŵt (by bounding their
variance). We need to assume that α and β are large
enough to ensure that enough wedges of Wt are in w-list,
and there are at least as many wedges in Gt as edges.
The latter is needed to rule out extreme cases like Gt

being a path or a matching. This assumption is reason-
able for real-world networks, as can be seen in Tab. 1.
Proof is in the appendix.

Theorem 3.4. Fix some sufficiently small γ > 0.
Suppose that (α2β)|Wt| (the expected number of wedges
in Wt that are in w-list) is at least 1/γ6. Furthermore
|Wt| ≥ |Et| (there are at least as many wedges in

Gt as edges). Then, Pr[|Ŵt − |Wt|| > γ|Wt|] < γ,

Pr[|T̂t− |Tt|| > γ|Wt|] < γ, and Pr[|τ̂t− τt| > 8γ] < 4γ.

4 Empirical evaluation of MG-Triangle

We implemented our algorithm in C++ and ran it
on a MacBook Air laptop with 1.7 GHz Intel Core i7
processor and 8 GB 1600 MHz DDR3 RAM. We applied
MG-Triangle on a variety of real-world datasets.
Refer to Tab. 1 for details about these datasets.
DBLP: This is a co-authorship network for papers on the
DBLP website. From the raw data at DBLP [15] we
extracted 786,719 papers by ignoring papers with (i)
a single author, (ii) more than 100 authors, and (iii)
missing “year” metadata. For each paper we put an
edge corresponding to every distinct pair of co-authors
resulting in a total of 3,630,374 (multi)edges.
Enron: This network is derived from emails between
Enron employees between 1999 and 2003 [22]. Nodes
correspond to employees while edges represent their
email correspondence. Multiple emails between the
same pair of individuals result in a multigraph.
Flickr: This dataset consists of friendship connections
of users of Flickr, obtained from [22]. Originally, the
data was collected in [19]. (Results on Flickr given in
the appendix.)
SNAP: We extended our data set to include networks
from SNAP [27]. We synthetically replicate edges of
these datasets to get a multigraph.

Convergence of estimate: Fig. 3(d) and Fig. 3(h)
demonstrate convergence of the final estimates (i.e. for
Gm) for increasing space. We define storage as the
number of edges stored by our algorithm: |e-list| + 2 ·
|w-list|. We first choose β in {0.2, 0.4, 0.6, 0.8, 1.0} and
then vary α in increments of 0.0005 up to 0.02. For each
setting of α and β, we plot 5 runs of the algorithm. One
can see that both the transitivity and triangles estimates
converge rapidly to true values as we increase the space.

Our estimates for various time windows also con-
verge rapidly, as we demonstrate in Fig. 3. For these
experiments, we picked specific time windows on DBLP,
namely, 1989–2008, 1999–2008, and 1938–2008. This is
mostly for demonstrating the convergence of differing
window sizes. We chose β from {0.2, 0.4, 0.6, 0.8, 1.0}
and varied α in increments of 0.1% up to 3.0%. For
each value of α and β, we give 5 runs of the algorithm.
In the plots x-axis gives increasing space (i.e., increasing
α) and the y-axis is the estimate.

Across the board, we see rapid convergence as
storage increases. For DBLP, storage of 60K is enough



Table 1: A run of our algorithm on a variety of real-world and synthetic graphs with α = 0.01 and β set such that size
of w-list is at most 50K. The third column gives the number of edges in the multigraph while the fourth column (Space)
gives the space (in terms of number of edges) used by the algorithm. The first three datasets are raw real-world datasets
whereas the remaining datasets were synthetically made multigraphs starting with graphs from [27].

Dataset n Wedges Edges Space Transitivity Triangles
(simple) simple multi exact estimate exact Rel. error

DBLP 755K 61M 2.54M 3.63M 31K 0.269 0.282 5.50M 3.09%
Enron 86K 49M 297K 1.15M 8K 0.069 0.071 1.18M 3.38%
Flickr 2302K 22B 22M 33.1M 251K 0.110 0.108 837M 1.24%
as-skitter 1.6M 16B 11M 53M 160K 0.005 0.005 28M 6.50%
cit-Patents 3.7M 0.3B 16M 79M 199K 0.067 0.066 7.51M 0.33%
web-Google 0.8M 0.7B 4M 20M 79K 0.055 0.057 13.3M 3.79%
web-NotreDame 0.3M 0.3B 1M 5M 42K 0.088 0.088 8.91M 3.93%
youtube 1.1M 1.4B 2M 14M 64K 0.006 0.006 3.05M 1.86%
livejournal 5.2M 7.5B 48M 205M 473K 0.124 0.118 310M 8.65%
orkut 3.0M 45B 223M 562M 1.2M 0.041 0.041 627M 0.09%
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(a) Transitivity; 1999–2008

0 10000 20000 30000 40000 50000 60000

Space (in edges)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
ra

ns
it

iv
it

y

DBLP Window: [1989:2008]

Estimate
True Value

(b) Transitivity; 1989–2008
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(c) Transitivity; 1938–2008
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(d) Transitivity; entire stream
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(e) Triangles; 1999–2008
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(f) Triangles; 1989–2008
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(g) Triangles; 1938–2008
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Figure 3: DBLP convergence: We show that both transitivity and triangles estimates converge to true values as we increase
the space. The top row is for transitivity, while the bottom row is for triangle counts. The plots are arranged in the order
of increasing window length ending at 2008 except for the last column which corresponds to the entire stream length.

to guarantee extremely accurate results (relative errors
within 5%), for all the time windows. This is even true
for the 10 year window, which is quite small compared to
the entire stream of data (MG-Triangle will not work
for window sizes of a year, since there are not enough
samples from such a window. But the number of edges
in a year is small enough to store explicitly).

Space usage: Fig. 4 shows the space used by our
algorithm in terms of parameters α and β. We measure
both e-list and w-list for varying values of α and β, and
plot the predictions of Thm. 3.1. We see almost perfect
alignment of the predictions with Thm. 3.1.

Comparison with previous work: We run the
algorithms of [20], [12], and [2], using hash based sam-
pling to recreate uniform edge sampling in a multi-
graph. We first note that our implementations work
correctly on the simple graph version of DBLP, shown

in Fig. 1b. All algorithms converge extremely rapidly.
When these algorithms are applied to the multigraph
version of DBLP, then they all converge to incorrect tri-
angle estimates (Fig. 1a).

Tests on a broader data set: For more valida-
tion of MG-Triangle, we run it on a large set of real-
world graphs. Most of these graphs are neither tempo-
ral nor multigraphs. We construct a multigraph stream
from each graph as follows: every edge e of the graph is
independently replicated with probability 1/3 (specifi-
cally r times where r is uniform in {2, 4, 8, 16, 32}). The
stream is obtained by randomly permuting these mul-
tiedges. For each graph, we only use MG-Triangle
record to transitivity and triangle count of the entire
stream (the graph G[1,m]). The results are presented
in Tab. 1. For these runs, we set α = 0.01 and capped
the size of wedge reservoir to 50K (by choosing β ap-
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Figure 4: Number of edges and wedges stored by e-list and w-list respectively. The observed usage matches almost exactly
with theoretical predictions.

propriately). We observe that transitivity estimates are
very sharp (matching the true values up to the third
decimal point in many cases). The relative error in tri-
angles estimates is less than 3% for most cases and never
exceeds 8.7%. The overall space used by the algorithm
is at most 4% of the number of edges of the underly-
ing simple graph. We point out that for orkut which
has nearly half a billion edges (after injecting duplicate
edges), the transitivity estimate closely matches with
the true value and the relative error in triangles is less
than 1%. The total storage used is less than 0.5% of the
edge stream.

5 Experiments with time windows

MG-Triangle takes as input a single time window
length ∆t. But observe that the primary data structures
e-list, w-list, and Xw are independent of this window.
As a result, MG-Triangle can handle multiple time
windows with the same data structure. We only
maintain the latest timestamp for each edge, and do not
store any history. If the time window [t − ∆t, t] is too
small, it is unlikely that e-list will have any edges from
this window. On the other hand, small time windows
can be stored explicitly to get exact answers.

Triangle trends in DBLP: In our opinion, the
following results are the real achievement of MG-
Triangle. We wish to understand transitivity and
triangle trends for DBLP in various time windows. We
focus on 5-year, 10-year, 15-year, 20-year, and entire
history windows. So think of a (say) 5-year sliding time
window in DBLP, and the aim is to report the transitivity
in each such window. Refer to Fig. 2 (“All” refers to the
window that contains the entire history). The algorithm
MG-Triangle makes a single pass over DBLP without
preprocessing and provides results for all these windows
at every year.

The transitivity reveals intriguing trends. Firstly,
smaller windows have higher transitivity. It shows that
network clustering tends to happen in shorter time
intervals. This is probably because of the affiliation
structure of coauthorship networks. The increase of
triangle counts over time (for the same window size)
may not be too surprising, given that the volume
of research increasing. But juxtapose this with the
decreasing of transitivity over time. This means that
(say) the transitivity in 2004–2008 is higher than 2009–
2013, even though there are more papers (and more
triangles) in the latter interval. Why is this the case?
Is it because of increasing of interdisciplinary work,
which might create more open wedges? Or is it simply
some issue with the recording of DBLP data? Will the
decreasing transitivity converge in the future, or do
we expect it to simply go to zero? Can we give a
reasonable model of this behavior? We believe that
the output of MG-Triangle will lead to many data
science questions, and this is the real significance of the
algorithm.

Triangle trends in Enron: In Fig. 2d and Fig. 2c,
we present triangles and transitivity estimates for Enron
for various windows. For this dataset, we think of a
window as being defined by a specified number of past
edges. In particular, apart from considering the entire
past, we look at windows formed by past 200K, 400K,
and 800K edges. Observe that in the beginning of the
stream all these windows coincide, since the windows are
equivalent. Focusing on the triangles estimate, it is clear
that the estimate corresponding to the larger window
size dominates that of a smaller window size. What is
interesting for Enron dataset is that the same ordering
is observed even for transitivity estimates. That is, in
general, a transitivity estimate curve corresponding to
the larger size window dominates the one corresponding



to the smaller size. We observe a completely opposite
behavior with DBLP transitivity curves, see Fig. 2.

Another interesting observation is that in case of
Enron, the curves for triangles estimates for smaller
window lengths flattens out whereas that in DBLP the
curves for triangle estimates continue to rise even for
smaller time windows. This indicates that the growth
of total number of triangles is superlinear in DBLP (with
respect to the number of years) whereas it is nearly
linear (with respect to the number of edges seen so
far) in case of Enron. Indeed the final estimate for the
number of triangles in Enron is almost the same as the
number of edges in the stream.
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A Proof of Theorems in Section 3.2

For proofs in this section we recall the following lemma.

Lemma 3.1. Consider time t. For any edge e ∈ Gt, the
probability that e ∈ e-list is α. For any wedge w ∈ Wt,
the probability that w ∈ w-list is α2β.

Next we restate and prove Thm. 3.1.

Theorem 3.1. The expected size of e-list is αE(G[1, t])
and the expected size of w-list is α2βW (G[1, t]).

Proof. For each edge e, let Ze be the indicator for
e being in e-list at time t. The expected size of e-
list is E[

∑
e∈E(G[1,t]) Ze]. By Lem. 3.1, E[Ze] = α,

and linearity of expectation completes the proof. An
identical argument holds for w-list. �

Theorem 3.2. E[Ŵt] = |Wt|.

Proof. For any wedge w ∈ Wt, let Yw = 1 if w ∈ w-list
and 0 otherwise. Note that Ŵt = (α2β)−1

∑
w∈Wt

Yw.

We have E[Yw] = α2β by Lem. 3.1. By linearity of
expectation,

E[Ŵt] = (α2β)−1E[
∑

w∈Wt

Yw]

= (α2β)−1
∑

w∈Wt

E[Yw] = |Wt|

�

Finally, we prove the concentration theorem.

Theorem 3.4. Fix some sufficiently small γ > 0.
Suppose that (α2β)|Wt| (the expected number of wedges
in Wt that are in w-list) is at least 1/γ6. Furthermore
|Wt| ≥ |Et| (there are at least as many wedges in

Gt as edges). Then, Pr[|Ŵt − |Wt|| > γ|Wt|] < γ,

Pr[|T̂t− |Tt|| > γ|Wt|] < γ, and Pr[|τ̂t− τt| > 8γ] < 4γ.

The most important step is to prove a variance
bound for Ŵt and T̂t. After this, the proofs follow from
a routine application of Chebyschev’s inequality.

Lemma 1. max(V ar[Ŵt], V ar[T̂t]) ≤ (α2β)−1|W (Gt)|
+8α−1|W (Gt)|3/2.

Proof. We deal with Ŵt first.

V ar[Ŵt] = E[(Ŵt)
2]− (E[Ŵt])

2

= (α2β)−2E[
∑

w∈Wt

∑
x∈Wt

YwYx]− |Wt|2

The double summation can be split based on three cases:
(i) w = x, (ii) w and x are disjoint (they do not share

an edge), and (iii) w and x have a common edge. For
convenience, we will use

∑
w as shorthard for

∑
w∈Wt

.
We use the definition of indicator Yw from Thm. 3.2.

E[
∑
w

∑
x

YwYx]

=
∑
w

E[Y 2
w ] +

∑
w∩x=∅

E[YwYx] +
∑

w∩x 6=∅

E[YwYx]

The first and second are relatively easy to deal with.
Since Yw is an indicator, Y 2

w = Yw and
∑

w E[Yw] =
(α2β)|Wt|. When w ∩ x = ∅, note that Yw and Yx are
independent. This is because we assume that hash is a
random function. Hence,∑
w∩x=∅

E[YwYx] =
∑

w∩x=∅

E[Yw]E[Yx] ≤
∑
w,x

E[Yw]E[Yx]

= (
∑
w

E[Yw])2 = (α2β)2|Wt|2

Now for the interesting part. Suppose w ∩ x 6= ∅, so
w = {e1, e2} and x = {e1, e3}. The product YwYx is 1 iff
e1, e2, e3 are all in e-list and both w and x get selected in
w-list. The probability of this is α3β2. How many pairs
of wedges w ∩ x 6= ∅ are there? This is exactly

∑
i

(
di

3

)
,

where di is the degree of vertex i in Gt. In the following,
we use the fact that the `3-norm is smaller than the `2-
norm. (We also use the bound

∑
i d

2
i ≤ 4|Wt|, which

follows because
∑

i d
2
i = 2(|Wt| + |Et|) and by the

statement of the theorem |Wt| ≥ |Et|.)∑
w∩x 6=∅

E[YwYx] = (α3β2)
∑
i

(
di
3

)
≤ (α3β2)

∑
i

d3
i

≤ (α3β2)(
∑
i

d2
i )3/2

≤ 8(α3β2)|Wt|3/2

Putting it all together,

V ar[Ŵt] ≤ (α2β)−2[(α2β)|Wt|+ (α2β)2|Wt|2
+8(α3β2)|Wt|3/2]− |Wt|2

= (α2β)−1|Wt|+ 8α−1|Wt|3/2

Note that T̂t =
∑

wXw. We apply an argument

identical to that above for V ar[T̂t].

Thm. 3.4 follows fairly directly from the variance
bound.

Proof. (of Thm. 3.4) To prove a concentration bound,

we will use Chebyschev’s inequality. Let V ar[Ŵt] be



the variance of Ŵt. Then Pr[|Ŵt − E[Ŵt]| > h] ≤
V ar[Ŵt]/h

2. Using Lem. 1,

Pr[|Ŵt − |Wt|| > γ|Wt|]
≤ [(α2β)−1|Wt|+ 8α−1|Wt|3/2]/(γ2|Wt|2)

= 1/(α2β|Wt| · γ2) + 8/(α|Wt|1/2 · γ2)

Since α2β|Wt| ≥ 1/γ6, α|Wt|1/2 ≥ 1/γ3. Plugging this
bound in, the final probability is at most γ.

An identical argument holds for T̂t.

We apply a Bayes’ rule argument to prove bounds
of τ̂t.

Theorem 1. Assume the conditions of Thm. 3.4.
|E[τ̂t]− τt| ≤ 10γ and Pr[|τ̂t − τt| > 8γ] < 4γ.

Proof. (of Thm. 1) We have τ̂t = 3T̂t/Ŵt if Ŵt 6= 0 and

0 otherwise. Let E denote the event that |Ŵt − |Wt|| ≤
γ|Wt| and |T̂t − |Tt|| ≤ γ|Wt|.

Conditioned on E ,

3T̂t/Ŵt ≤ (3|Tt|+3γ|Wt|)/(1−γ)|Wt| ≤ (1+2γ)τt +6γ

Similarly, conditioned on E 3T̂t/Ŵt ≥ (1−2γ)τt−6γ. By
Thm. 3.4, Pr[E ] ≥ 1−2γ. This proves that Pr[τ̂t]−τt| >
8γ] ≤ Pr[E ] ≤ 2γ. To bound the expectation, we simply
use Bayes’ rule.

E[τ̂t] = E[τ̂t|E ] Pr[E ] + E[τ̂t|E ] Pr[E ]

Since τ̂t ∈ (0, 1), the latter term is in the range (0, 2γ).
This completes the proof.

B Additional Experimental Results

Triangle trends in Flickr: This is much larger
dataset with 33M multiedges. We focus on time win-
dows formed by the past 4M, 8M, 16M, and all history.
These results are given in Fig. 5. We are able to get
these results with merely 640K edge storage, less than
2% of the edge stream.



(a) Transitivity (b) Triangles

Figure 5: Similar to the Enron experiments, we use number of edges to define time windows. The algorithm is run with
α = β = 0.02.
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