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Abstract—A required feature for the next generation of wire-
less communication networks will be the capability to servesi-
multaneously a large number of devices with heterogeneous CSIT
qualities and demands. In this paper, we consider the overloaded
MISO BC with two groups of CSIT qualities. We propose a
transmission scheme where degraded symbols are superimposed
on top of spatially-multiplexed symbols. The developed strategy
allows to serve all users in a non-orthogonal manner and the
analysis shows an enhanced perfomance compared to existing
schemes. Moreover, optimality in a DoF sense is shown.1

Index Terms—Overloaded MISO BC, partial CSIT, DoF.

I. I NTRODUCTION

Exploiting the spatial dimension of the wireless channel
through multiuser-multiantenna techniques has become an
inevitable necessity to meet the requirements of future wireless
networks. It is well established that achieving such spatial-
multiplexing gains is highly dependent on the availabilityof
accurate Channel State Information at the Transmitter (CSIT)
[1], [2]. Since highly accurate CSIT is not always guaranteed,
initial studies and deployments strived to apply multiantenna
schemes that assume perfect CSIT to scenarios with partial
CSIT [3]. However, recent breakthroughs in the study of
Degrees of Freedom (DoF) unveiled that such approach is
fundamentally flawed as it fails to achieve the information-
theoretic limits of the channels [4], [5]. On the other hand,
insights drawn from such fundamental works have proved very
promising for the design of future wireless networks [6].

The ability to simultaneously support a tremendous number
of devices with heterogeneous demands and capabilities is
amongst the various features envisioned for future wireless
networks [7]. Hence, it is expected that many networks will
operate in overloaded regimes, roughly described as scenar-
ios where the number of messages exceeds the number of
transmitting antennas. One fundamental example is captured
by the Single-Input-Single-Output (SISO) Broadcast Channel
(BC), widely studied in literature. However, insights drawn
from such studies are deemed insufficient when considering
multiple antennas, as the SISO BC is robust against CSIT
inaccuracies due to its degraded nature. On the other hand,
the study of overloaded multiantenna channels is uncommon,
e.g. works on the Multiple-Input-Single-Output (MISO) BC

1This work has been partially supported by the EPSRC of UK, under grant
EP/N015312/1.

with imperfect CSIT consider a number of users less or equal
to the number of transmitting antennas [1], [2], [4], [5].

A. An overloaded MISO BC with heterogeneous partial CSIT

In this work, we make progress towards understanding
the fundamental limits of overloaded multiantenna networks
with heterogeneous partial CSIT. We consider a MISO BC
comprising a transmitter equipped withM antennas, and
K > M single-antenna receivers (or users) indexed by
K = {1, . . . ,K}. As in [4], [5], partial instantaneous CSIT
is captured by allowing thek-th user’s CSIT error variance to
decay with the Signal to Noise Ratio (SNR)P asO(P−αk) for
some exponentαk ∈ [0, 1] that represents the CSIT quality.
It is well understood thatαk = 0 and αk = 1 correspond
to no-CSIT and perfect CSIT in a DoF sense, respectively.
While a general heterogeneous setup assumes arbitrary CSIT
qualities, we restrict the analysis to the case where partial
CSIT for M of theK users is available (αk > 0), while no-
CSIT is available for the remainingK −M users (αk = 0)2.
We further simplify the analysis by considering a symmetric
scenario where all users with partial CSIT have the same
quality α. Such setup is sufficient to gain some insight into
the structure of the DoF-optimum transmission scheme and the
influence of heterogeneous partial CSIT. Before we proceed,
let us denote the groups of receivers byKα andK0, where
the subscript indicates the CSIT quality.

B. Time Partitioning and Power Partitioning

In the presence of only one of the two groupsKα andK0,
DoF-optimum schemes are known. In particular, the optimum
sum-DoF for groupKα is achieved through a Rate-Splitting
(RS) scheme, which relies on the transmission of a degraded
common symbol on the top of the classical Zero-Forced (ZF)
private symbols [8]. On the other hand, the absence of CSIT
results in a collapse of the sum-DoF to unity [5], and the
degraded layer becomes sufficient to achieve the DoF of
group K0. Hence, it is natural to think about serving each
group independently through orthogonal time partitioning(or
sharing). Interestingly, we show that such strategy is in fact
suboptimal in a DoF sense by proposing a superior strategy.

2In this paper, no-CSIT implies that the transmitter has no (or finite
precision [5]) information about the channel direction. However, the channel
gain (or long term SNR) is known to guarantee reliable communication.
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We propose a transmission scheme where the signals car-
rying the messages of groupsK0 andKα are superimposed
and separated in the power domain. Users inK0 decode their
symbols by treating the interference caused by the signals
intended toKα as noise. On the other hand, users inKα

first decode the symbols intended toK0 (without hurting
their DoF!), and then proceed to decode their own symbols.
Contrary to the orthogonal time partitioning, this leads toa
non-orthogonal power partitioning. First, we show that such
strategy achieves a strict DoF gain over time partitioning
when users in each group achieve a symmetric-DoF. Second,
we show that this strategy in fact achieves the optimum
DoF region for the considered MISO BC. Third, we show
using simulations that the DoF gains achieved through power
partitioning over time partitioning manifest in the finite SNR
regime as significant achievable rate gains3.

II. SYSTEM MODEL

At the t-th channel use of the considered MISO BC, the
received signal at thek-th receiver is given by

yk(t) = h
H
k (t)x(t) + nk(t) (1)

wherehH
k (t) ∈ C1×M is the channel vector andx(t) ∈ CM×1

is the transmitted signal, which is subject to the power
constraintE(‖x(t)‖2) ≤ P . The termnk(t) ∼ CN (0, 1) is
the additive noise at thek-th receiver.

As described in Section I-A, the transmitter has access to
an imperfect estimate of the instantaneous channel. Denoting
the estimate of the channel for thek-th user at thet-th channel
use byĥk(t), we havehk(t) = ĥk(t) + h̃k(t), whereh̃k(t)
is the channel estimation error at the transmitter. The channel
estimateĥk(t) and the estimation error̃hk(t) are assumed
to be uncorrelated, with zero mean and covariance matrices
(1−σ2

k)I andσ2
kI, respectively, whereσ2

k ≤ 1. For the sake of
notational convenience, the channel user indext is omitted in
the rest of the paper. The CSIT errorσ2

k decays with increasing
SNR asO(P−α) for all k ∈ Kα, andO(1) for all k ∈ K0.
Moreover, without loss of generality, we assume thatKα =
{1, . . . ,M} andK0 = {M + 1, . . . ,K}.

The transmitter has messagesW1, . . . ,WK intended to the
corresponding users. Codebooks, probability of error, achiev-
able rate tuples(R1(P ), . . . , RK(P )) and the capacity region
C(P ) are all defined in the Shannon theoretic sense. The DoF
tuple (d1, . . . , dK) is said to be achievable if there exists
(R1(P ), . . . , RK(P )) ∈ C(P ) such thatdk = limP→∞

Rk(P )
log(P )

for all k ∈ K. The DoF region is defined as the closure of all
achievable DoF tuples(d1, d2, . . . , dK), and is denoted byD.

III. A T IME PARTITIONING APPROACH

Since groupKα has (partial) CSIT and groupK0 has no-
CSIT, it seems natural to partition the time resource and carry
out the transmission over two phases. In particular, the first

3Notation: boldface lowercase, standard letters and calligraphic symbols
denote column vectors, scalars and sets, respectively. Thesuperscripts(·)T

and(·)H denote the transpose and conjugate-transpose respectively. ‖ · ‖ and
⊥ denote the Euclidian norm of a vector and orthogonality, respectively.

phase occupies a fractionb ∈ [0, 1] of the time in which group
Kα is served using a multiuser scheme that leverages partial
CSIT and achieves spatial-multiplexing gains. On the other
hand, the second phase occupies the remaining1− b fraction
of the time in which groupK0 is served with no multiplexing
gains due to to the absence of CSIT. This time partitioning
scheme acts as a baseline for the scheme proposed in the
following section. Moreover, the two phases are in fact usedas
basic building blocks to construct the proposed scheme. Next,
we describe the two phases in more detail.

1) Phase 1: For the first phase where users with CSIT are
served, we adopt the RS strategy which is particularly suitable
for scenarios with partial CSIT [9], [8]. In particular users
k ∈ Kα split their respective messages into

(

W
(p)
k ,W

(c)
k

)

,

whereW (p)
k is a private sub-message andW (c)

k is a common
(or public) sub-message. The sub-messageW

(p)
k is encoded

into the private symbolx(p)
k decoded only by userk, while

W
(c)
1 , . . . ,W

(c)
M are jointly encoded into the common symbol

x(c) decoded by all users inKα. It is assumed that all symbols
are drawn from Gaussian codebooks with unitary powers.

All symbols are linearly precoded and power allocated from
which the transmitted signal is given by

x =
√

P (c)v
(c)x(c) +

∑

k∈Kα

√

P
(p)
k v

(p)
k x

(p)
k (2)

wherev(c) ∈ CM×1 andv(p)
k ∈ CM×1 are unitary precoding

vectors, andP (c) and P
(p)
k are the corresponding allocated

powers withP (c) +
∑

k∈Kα
P

(p)
k ≤ P . Since the common

symbol is decoded by all users,v(c) is chosen as a random
(or generic) precoding vector. On the other hand, the private
symbols are precoded by ZF over the channel estimate, i.e.
v
(p)
k ⊥

{

ĥl

}

l∈Kα\k
. The power allocation is set such that

P (c) = O(P ) andP (p)
k = O(Pα).

All users decode the common symbol by treating the
interference from all private symbols as noise, from which
the Signal to Interference plus Noise Ratio (SINR) scales as
O(P 1−α). This is followed by removing the common symbol,
and then each receiver decodes its private symbol with SINR
of O(Pα). Normalized by the time partitioning factorb, the
DoF achieved by the common symbol is given by1−α, while
each private symbol achieves a DoF ofα [8]. Hence, the per
user symmetric normalized DoF achieved by evenly sharing
the common symbol is given by1+(M−1)α

M
.

2) Phase 2: In the second phase, usersk ∈ K0 are served.
Since all users have no-CSIT, after normalizing by the time
partition 1 − b, the sum-DoF collapses to 1 [5]. This single
normalized DoF can be shared in an orthogonal fashion using
time-sharing or in a non-orthogonal fashion using superpo-
sition coding and Successive Interference Cancelation (SIC).
From a DoF perspective, these two strategies achieve the same
performance. Assuming superposition coding, messages are
encoded into symbols and then precoded such that

x =
∑

k∈K0

√

Pkvkxk (3)
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Fig. 1. Time partitioning and power partitioning forM = 2 andK = 3. De-
fine the normalized spatial-multiplexing as the sum-DoF normalized by both
the time partition and power partition. The normalized spatial-multiplexing
gain in rectangles with light and dark shadings is1 and2 respectively.

where xk is an encoded symbol,vk is a random unitary
precoding vector andPk is the power allocation.

Using an appropriate power allocation, it can be shown that
the single normalized DoF can be split evenly amongst users
such that each user achieves a normalized DoF of1

K−M
.

3) Achievable DoF: It can be seen that within each phase
(or group), power allocation is carried out such that users
achieve symmetric normalized DoF. By incorporating the time
partitioning factorb ∈ [0, 1], the actual (non-normalized) DoF
achieved by thek-th user is given by

dk =

{

b 1+(M−1)α
M

, k ∈ Kα

(1− b) 1
K−M

, k ∈ K0.
(4)

The time partitioning factor can be further optimized to
achieve a symmetric-DoF amongst all users in the system,
or any other tradeoff depending on the design objective.

IV. A POWER PARTITIONING APPROACH

In contrast to the time partitioning approach in the previous
section, we propose a scheme based on power partitioning,
also known as signal-space partitioning [10]. For some par-
titioning factor β ∈ [0, 1], the bottomβ power levels are
reserved for the transmission toKα with partial CSIT, while
the top1 − β power levels are occupied by the transmission
to K0 with no-CSIT. It can be seen that power partitionβ
in this scheme is reminiscent to the time partitionb in the
previous scheme. Moreover, the transmitted signal is in fact a
superposition of the signals in (2) and (3) such that

x =
√

P0

∑

i∈K0

√
qivixi +

√

P (c)v
(c)x(c)

+
∑

k∈Kα

√

P
(p)
k v

(p)
k x

(p)
k

(5)

where symbols, precoding vectors and powers are as defined
in the previous section. To highlight the power partitioning, we
introduceP0 which denotes the total power allocated to the
signal intended to all users inK0. It follows that qi = Pi/P0

is the normalized power allocated useri ∈ K0. An example
that illustrates the two scheme is given in Fig. 1.

Before we proceed to take a closer look at the power
partitioning, it is useful to highlight that the signal received
by thek users is expressed by

yk =
√

P0

∑

i∈K0

√
qih

H
k vixi +

√

P (c)h
H
k v

(c)x(c)

+
∑

i∈Kα

√

P
(p)
i h

H
k v

(p)
i x

(p)
i + nk,

(6)

in which all different desired and interference componentscan
be seen. In order to partition the signal-space through the
power domain, the power allocation is carried out such that

{

P0 = O(P )

P (c) +
∑

k∈Kα
P

(p)
k = O(P β).

(7)

1) No-CSIT Receivers: Users inK0 decode their messages
by treating the interference (consisting of signals intended to
users inKα) as noise. This is equivalent to raising the noise
floor to P β in Phase 2 of the previous section. Hence, the
sum-DoF achieved by users inK0 is given by1−β. Through
an appropriate allocation of{qi}i∈K0

, this DoF can be split
evenly amongst users inK0.

2) Partial CSIT Receivers: As for users inKα, the same RS
strategy of Phase 1 in the previous section is carried out where
the power ofO(P β) is further split between the common
symbol and the private symbols. In particular, the common
symbol is allocated a power ofO(P β), while private symbols
are allocated a power ofO(P a) wherea ≤ β. Before decoding
their symbols, receivers first decode all symbols intended to
users inK0 and remove them from the received signal. Since
such messages are degraded already, the DoF achieved by
users inK0 remains uninfluenced by this step. On the other
hand, users inKα now fully occupy the bottomβ power levels.

Users inKα now proceed to decode the common symbol
as in Phase 1 of the previous section. This is received with a
SINR of O(P β−a), hence achieves a DoF ofβ − a. After
removing the common symbol, each receiver decodes its
private symbol with SINR ofO(P a), achieving a DoF ofa.

It remains to highlight that since the channel estimation
error scales asO(P−α), and due to ZF, each receiver inKα

experiences an interference from the other private symbols
that scales asO(P a−α). This is drowned by noise ifa ≤
α. Knowing that a ≤ β, we may seta = min{α, β}. In
other words, as long as the partitionβ satisfiesβ ≤ α, users
in Kα only need to rely on private messages using ZF as
interference can be drown by noise and RS is unnecessary.
For partitions withβ > α, ZF is insufficient to neutralize
interference, and RS becomes useful for users inKα. It follows
that each private symbol achieves a DoF ofmin{α, β}, while
the common symbol achieves a DoF ofβ −min{α, β}.

Remark. The proposed scheme is a superposition of non-
orthogonal layers and an orthogonal layer. Non-orthogonal
layers consist of degraded symbols coming from K0 and RS
in Kα, decoded by treating the orthogonal-layer as noise, and



removed using SIC. The orthogonal layer consist of spatially-
multiplexed symbols carrying the remaining information for
Kα, which see no interference due to SIC of non-orthogonal
layers and ZF up to the α-th power level.

3) Achievable DoF: As in the previous section, we consider
the case where users in each group achieve a symmetric-DoF.
It follows that the DoF achieved by thekth user is given by

dk =

{

β+(M−1)·min{α,β}
M

, k ∈ Kα

(1− β) 1
K−M

, k ∈ K0.
(8)

Moreover,β can be optimized to achieve different tradeoffs.
4) Gain over time partitioning: Here we demonstrate that

the power partitioning scheme achieves a DoF gain over the
time partitioning scheme. Letd(tp)k be the DoF achieved by the
kth user through time partitioning as in the previous section,
i.e. obtained using (4) for some partitionb.

To highlight the DoF gains, let us consider the symmetric-
DoF achieved by users inKα through power partitioning given
that users inK0 maintain the same DoF as in time partitioning,
i.e. dk = d

(tp)
k for all k ∈ K0. To achieve this, we need to set

β = b in the power partitioning scheme. It follows from (8)
that the DoF of the remaining users is given by

dk =

{

b+(M−1)α
M

, α ≤ b

b, α > b
, for all k ∈ Kα. (9)

It can be seen thatdk ≥ d
(tp)
k for all k ∈ K. For k ∈ K0, this

follows directly from the design criteria. For the remaining
usersk ∈ Kα, this follows by noting that for allα, b ≤ 1,
we have b+(M−1)·min{α,b}

M
≥ b+(M−1)·αb

M
. Moreover, this

inequality is strict whenever0 < α, b < 1, i.e. partial
CSIT forKα and non-zero (or unity) partitioning. Under such
conditions, power partitioning achieves a strict improvement
in the DoF of users inKα over time partitioning.

To gain more insight into the DoF gain, consider the
example shown in Fig. 1. It can be seen that the DoF achieved
in each rectangle (a time-power resource block) is given by
the rectangle’s area times the normalized spatial-multiplexing
gain (2 for ZF and 1 for degraded). First, assume that user-
3 is switched off. The sum-DoF achieved by the remaining
two users through RS is given by1 + α. Now, introducing
user-3 through time partitioning reduces the sum-DoF to
b(1 + α) + (1 − b) = 1 + bα. On the other hand, user-
3 is introduced through power partitioning without harming
the sum-DoF as long asβ = b ≥ α. Keeping in mind
that user-3 achieves the same DoF in both cases, it follows
that user-1 and user-2 achieve higher DoF in the latter. For
β = b < α, introducing user-3 through power partitioning
reduces the sum-DoF to1+b. However, this is still higher than
the sum-DoF of1 + bα achieved through time partitioning.

V. OPTIMUM DOF REGION

In the previous section, we considered the case where DoF
tuples of the form(dα, . . . , dα, d0, . . . , d0) are achieved, i.e.
users inKα achieve the symmetric-DoF ofdα while users in
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Fig. 2. DoF region achieved by power partitioning (left) andtime partitioning
(right) for M = 2 andK = 3, and CSIT qualityα = 0.5 for the first two
users. The points areA = (α, α, 1− α), B = (1, α, 0) andC = (α, 1, 0).
It can be seen thatA cannot be achieved through time partitioning.

K0 achieve the symmetric-DoF ofd0. This gave some insight
into the gains achieved through power partitioning as opposed
to time partitioning. However, in more general scenarios,
achievable DoF tuples assume a wide variety of tradeoffs
characterized by achievable and optimum DoF regions. In-
terestingly, the optimum DoF region for the considered setup
is achieved through variants of the power partitioning scheme
proposed in the previous section. This region is characterized
in the following result.

Theorem. For the overloaded MISO BC described in Sections
I-A and II, the optimum DoF region D is given by

dk ≥ 0, ∀k ∈ K (10)

∑

k∈S

dk+
∑

k∈K0

dk ≤ 1+(|S|−1)α, ∀S ⊆ Kα, |S| ≥ 1. (11)

The achievability of the DoF region is based on generalizing
the power partitioning scheme of Section IV by allowing
arbitrary power allocations and splits of the common message.
On the other hand, the converse is based on the sum-DoF up-
perbound in [5]. The complete proof is given in the Appendix.

Note that from (11), we havedk ≤ 1 for all k ∈ K which is
a trivial upperbound for the per-user DoF, and

∑

k∈K0
dk ≤ 1

which limits the sum-DoF of the no-CSIT users to unity.
To better visualize the optimum DoF region, an example
is given in Fig. 2 (left) for a channel withM = 2 and
K = 3, where the CSIT quality of the first two users is
α = 0.5. Moreover, for the sake of comparison, the DoF region
achieved through time partitioning is shown in Fig. 2 (right).
The time partitioning region is obtained by time-sharing the
DoF of 1 achieved by user-3 with the DoF region of the two
remaining users achieved through RS (see [6]). For the power
partitioning region, the facet given byA − B − C is in fact
sum-DoF optimum. Hence, user-3 can be served with non-zero
DoF without influencing the Sum-DoF (e.g. pointA). On the
other hand, serving user-3 with non-zero DoF through time
partitioning is not possible without decreasing the sum-DoF
as it requires moving away from the segmentB − C.



SNR (dB) [Users 1 and 2]
0 5 10 15 20 25 30 35

S
um

 R
at

e 
(b

ps
/H

z)
 [U

se
rs

 1
 a

nd
 2

]

0

2

4

6

8

10

12

Power Partitioning (10 dB)

Power Partitioning (20 dB)

Time Partitioning

Fig. 3. Sum rate of user-1 and user-2 while maintaining the same rate for
user-3 for the cases when the long-term SNR of user-3 is10 dB and20 dB
lower that user-1,2. The parameters taken areα = 0.5 andb = 0.5.

VI. N UMERICAL RESULTS

In this section, we show that the obtained DoF gains
translate into enhanced rate performances. We consider a MU-
MISO scenario withM = 2 antennas andK = 3 users.
Uncorrelated channels are assumed with entries drawn from
CN (0, 1). Users 1 and 2 have CSIT qualitiesα, where channel
estimation errors have entries drawn fromCN (0, σ2) with
σ2 = P−α. On the other hand, the instantaneous CSIT of
user 3 is unknown. We numerically evaluate the ergodic sum
rate of the first two users achieved by power partitioning and
time partitioning, while maintaining the ergodic rate of the
third user to be the same in both cases. This is obtained by
properly tuning, in the power partitioning approach, the power
P0 allocated to the symbol of the third user, while considering
a RS strategy for the first two users. Fig. 3 shows the sum rate
of user 1 and user 2 with respect to their long-term SNR for
both power partitioning and time partitioning. We assume a
scenario withα = 0.5 and we set the parameterb = 0.5. We
consider two cases where the SNR of users 1 and 2 is taken to
be10 dB, and then20 dB, larger than the SNR of user 3. Since
in time partitioning users 1 and 2 are scheduled separately
from user 3, the difference in SNR only affects their sum rate
performance in power partitioning. In the legend, we include
this difference by brackets (only for power partitioning).From
Fig. 3, it is evident that our proposed power partitioning based
approach significantly outperforms time partitioning in both
cases. Furthermore, as the difference between the SNR of users
1 and 2 and the SNR of user 3 becomes larger, the rate gain
increases which cannot be seen from DoF analysis.

VII. C ONCLUSION

In this paper, we considered an overloaded MISO BC where
the transmitter has partial CSI forM users (equal to the
number of antennas) and no-CSI for the remainingK−M . We
proposed a transmission scheme based on power partitioning
and showed that it achieves strict DoF gains compared to a
scheme where the two sets of users are independently served

over orthogonal time slots. Moreover, we showed that the
optimum DoF region for such channel is in fact achieved
by generalizing the proposed power partitioning scheme. The
finite SNR rate performance of the proposed DoF-motivated
scheme is evaluated through simulations in which significant
gains over time partitioning are demonstrated. This shows that
such DoF-motivated design and analysis can be indeed very
useful in guiding the design and optimization of more efficient
practical transmission strategies.

APPENDIX

PROOF OF THE OPTIMUMDOF REGIOND
The DoF regionD described by the inequalities in (10) and

(11) is aK dimensional polyhedron. To prove the optimality
of D we show that it is both achievable, and an outer bound
of the optimal region.

Achievability: In this section we prove the achievability of
D. Before we delve into the general case, we first characterize
the achievable DoF region obtained by switching off all users
in K0 (forcing their DoF to zero). This is equivalent to
projectingD onto theM dimensional subspace characterized
by dM+1, . . . , dK = 0. This region is then utilized as a
building block to prove the achievability ofD.

Lemma 1. For a MISO BC with K = M and CSIT quality
α ∈ [0, 1] for all users, an achievable DoF region DM=K is
given by

dk ≥ 0, ∀k ∈ K (12)
∑

k∈S

dk ≤ 1 + (|S| − 1)α, ∀S ⊆ K, |S| ≥ 1 (13)

where K denotes the set of users {1, . . . ,K}.

Proof: The regionDM=K is a polyhedron given by the
intersection of the half-planes delimited by the hyperplanes in
(12) and (13). We show thatDM=K is achievable by induction
over the number of usersK. The hyphothesis is clearly true
for K = 1. We assume that the hyphothesis is valid for
K = 1, . . . , k − 1. First, each of the hyperplanes in (12)
and (13) contains a facet of the polyhedron and the set of
all the facets corresponds to the boundary ofDM=K . We start
by considering the hyperplanes in (13) and the corresponding
facets. For each subsetS ⊆ K with |S| ≥ 1, we need to show
that the corresponding facet, given by all the non-negative
tuples(d1, . . . , dk) which satisfy
{

∑

i∈S di = 1 + (|S| − 1)α
∑

i∈S̄ di ≤ 1 + (|S̄| − 1)α, ∀S̄ ⊆ K, S̄ 6= S, |S̄| > 1

is achievable.
Consideringj ∈ K \ S, the two conditions

∑

i∈S di =
1+(|S|− 1)α and

∑

i∈S∪{j} di ≤ 1+ |S|α must be satisfied,
hencedj ≤ α. On the other hand, forj ∈ S, we examine
two cases. In case of|S| = 1, we havedj = 1. In case
of S ≥ 2, the conditions

∑

i∈S di = 1 + (|S| − 1)α and
∑

i∈S\{j} di ≤ 1+(|S|−2)α must be simultaneously satisfied,
hencedj ≥ α.



From the above analysis, the conditions on the set of tuples
(d1, . . . , dk) can be equivalently written as











∑

i∈S di = 1 + (|S| − 1)α

di ≥ α, ∀i ∈ S
di ≤ α, ∀i ∈ K \ S.

Each DoF tuple is achieved through RS by allocating powers
scaling asO(Pα) to private symbols of usersi ∈ S, and
powers scaling asO(P di) to private symbols of usersi ∈
K \ S. The common symbol’s DoF is split, in all possible
variants, among usersi ∈ S only.

We consider now the facets contained in the hyperplanes
in (12). Taking any userj ∈ K, a facet is given by all non-
negative tuples(d1, . . . , dk) which satisfy

{

dj = 0
∑

i∈S di ≤ 1 + (|S| − 1)α, ∀S ⊆ K \ {j}, |S| ≥ 1.

This corresponds to the region in (12) and (13) when consider-
ing thek−1 usersK\{j}. In this case we havek antennas and
k−1 users. However, increasing the number of antennas does
not harm the achievable DoF region, hence the above region
is achievable by induction. Since all facets of the polyhedron
are achievable, all the remaining points can be achieved by
time-sharing.

We can now proceed to show the achievability of the region
D. First, definingdΣ =

∑

i∈K0
di, the problem is equivalent

to showing that all the non-negative tuples(d1, . . . , dM , dΣ)
that satisfy

di ≥ 0, dΣ ≥ 0 ∀i ∈ Kα (14)
∑

i∈S

di + dΣ ≤ 1 + (|S| − 1)α, ∀S ⊆ Kα, |S| ≥ 1 (15)

are achievable. All tuples(d1, . . . , dM , dM+1, . . . , dK) are
then obtained by splitting, in all possible variants, the values
of dΣ among users inK0. The proof follows the same steps as
before but, in this case, the induction is done over the number
of users inKα, denoted asKα and equal toM . The case
Kα = 1 is trivial. We assume that the hypothesis holds for
Kα = 1, . . . , k − 1. As before, we show that each facet of
the polyhedron is achievable. Starting with the hyperplanes in
(15), for each subsetS ⊆ Kα, |S| ≥ 1, we need to show that
all the non-negative tuples(d1, . . . , dk, dΣ) that satisfy
{

∑

i∈S di + dΣ = 1 + (|S| − 1)α
∑

i∈S̄ di + dΣ ≤ 1 + (|S̄| − 1)α, ∀S̄ ⊆ Kα, S̄ 6= S, |S̄| ≥ 1

are achievable. Following the same steps as before, it can be
verified that the above conditions are equivalent to











∑

i∈S di + dΣ = 1 + (|S| − 1)α

di ≥ α, ∀i ∈ S
di ≤ α, ∀i ∈ Kα \ S.

Each DoF tuple is achieved through power partitioning by
allocating powers scaling asO(Pα) to private symbols of users
i ∈ S, and powers scaling asO(P di) to private symbols of

usersi ∈ Kα \ S. On top, we consider all possible power
partitions β ∈ [α, 1] and for each partition, the common
symbol’s DoF is split, in all possible variants, among users
k ∈ S only, while dΣ = 1− β.

Considering the facets contained in the hyperplanes in (15),
we have two cases. The first is given bydΣ = 0 and it reduces
to k users with CSITα andk antennas as in Lemma 1. The
second case considers anyj ∈ Kα and we have
{

dj = 0
∑

i∈S di + dΣ ≤ 1 + (|S| − 1)α, ∀S ⊆ Kα \ {j}, |S| ≥ 1.

This corresponds to the region in (14) and (15) considering
the k − 1 users inKα. Using the same argument as before,
this region is achievable by induction. Moreover, all facets of
the polyhedron are achievable, all the remaining points canbe
achieved by time-sharing

Converse: The converse is based on the sum-DoF upper-
bound obtained in [5]. For an arbitrary subset of usersU ⊆ K,
the sum-DoF is upperbounded by

∑

k∈U

dk ≤ 1 + α(|S| − 1)+ (16)

whereS = U ∩ Kα. We increase the number of transmitter
antennas toK and then enhance the quality of one of the
users inS to 1 (if S is empty we pick any other user). Since
the previous steps provide an outerbound and cannot harm the
DoF, (16) directly follows from [5, Theorem 1]. By removing
all redundant inequalities, the outerbound coincides withthe
regionD.
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