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Abstract—We analyze limited feedback in systems where a
multiple-antenna transmitter sends signals to single-antenna
receivers with finite-bit ADCs. If channel state information (CSI)
is not available with high resolution at the transmitter and the
precoding is not well designed, the inter-user interference is a big
decoding challenge for receivers with low-resolution quantization.
In this paper, we derive achievable rates with finite-bit ADCs and
finite-bit CSI feedback. The performance loss compared to the
case with perfect CSI is then analyzed. The results show that the
number of bits per feedback should increase linearly with the
ADC resolution to restrict the loss.

I. INTRODUCTION

The wide bandwidth and large antenna arrays in future com-
munication systems impose big challenges for the hardware
design of the receiver, which has to efficiently process multiple
signals from antennas at a much faster pace. The analog-to-
digital converter (ADC) is one of the bottlenecks. At rates
above 100 Mega samples per second, ADC power consump-
tion increases quadratically with the sampling frequency [1],
[2].

The use of few- and especially one-bit ADCs is proposed
as one approach to overcoming this challenge, for example, in
the millimeter wave multiple-input multiple-output (MIMO)
channel [3]–[12] and massive MIMO channel [13]–[18]. This
work has shown that low resolution ADCs can be used in
practical communications. For instance, it is found that there
is nearly no performance loss (less than 2 dB) at low SNR
compared to infinite-bit ADCs; it is possible to estimate the
channel (IID Rayleigh fading or correlated) and detect symbols
(QPSK or higher-order QAM) with coarse quantization.

In our previous work [19], we analyzed the single-user
single-input single-output (SISO) and multiple-input single-
output (MISO) channels with one-bit ADCs where the the
transmitter sends the capacity-achieving QPSK symbols. Our
proposed codebook design for the MISO beamforming case
separately quantizes the channel direction and the residual
phase to incorporate the phase sensitivity of QPSK symbols.
This design, however, cannot be extended to the channel with
more than one-bit ADCs because the optimal signaling in this
case is unknown.

In this paper, we assume that the transmitter adopts subop-
timal Gaussian signaling. Since Gaussian signaling is circular
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(a) Single-user MISO system

(b) Multi-user MISO system

Fig. 1: MISO systems with finite-bit quantization and limited
feedback. At each receiver, there are two b-bit ADCs. There
is also a low-rate feedback path from each receiver to the
transmitter.

symmetric, a single codebook quantizing the channel direction
is enough. We derive the bounds of achievable rates with finite-
bit ADC and finite-bit feedback. The rate and power losses
incurred by the finite rate feedback compared to perfect CSIT
is analyzed. Our results bridge the gap between the case of
infinite-bit ADC [20] and one-bit ADC [19].

II. SYSTEM MODEL

In this paper, we consider single-user and multiple-user
MISO systems shown in Fig. 1. The transmitter is equipped
with Nt antennas, while each receiver has only one antenna
with finite-bit ADCs. In our system, there are two b-bit
resolution quantizers that separately quantize the real and
imaginary part of the received signal. We assume that uniform
quantization is applied since it is easier for implementation and
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achieves only slightly worse performance than non-uniform
case [21].

We assume that B bits are used to convey the channel direc-
tion information. A codebook C =

{
ĥ(0), ĥ(1), · · · , ĥ(2B−1)

}
is shared by the transmitter and receiver. The receiver sends
back the index i of ĥ(i) maximizing |h∗ĥ(i)| where h repre-
sents the channel. Then the transmitter performs beamforming
based on the feedback information. Similar to a MISO system
with infinite-resolution ADCs, random vector quantization
(RVQ), which performs close to the optimal quantization and
is amenable to analysis [20], [22], is adopted to quantize
the direction of channel h. In the codebook C, each of
the quantization vectors is independently chosen from the
isotropic distribution on the Grassmannian manifold G(Nt, 1)
[23].

Different from our previous work [19] where capacity-
achieving QPSK signaling was adopted, we assume that Gaus-
sian signaling is used at the transmitter. Although Gaussian
signalling is suboptimal, it is amenable for analyses and close
to optimal at low and medium SNR [7], [9].

In this paper, we assume the channel follows IID Rayleigh
fading. The extension to correlated channel model is an
interesting topic for future work. We also assume the receiver
has perfect channel state information. This is justified by the
prior work on channel estimation with low resolution ADCs,
for example [5], [6], [11], [12]. Furthermore, the feedback is
assumed to be delay and error free, as is typical in limited
feedback problems.

III. SINGLE-USER MISO CHANNEL WITH FINITE-BIT
ADCS AND LIMITED FEEDBACK

We first consider a single-user MISO system with finite-
bit quantization, as shown in Fig. 1a. Assuming perfect syn-
chronization and a narrowband channel, the baseband received
signal in this MISO system is

y = h∗vs+ n, (1)

where h ∈ CNt×1 is the channel vector, v ∈ CNt×1(‖v‖ = 1)
is the beamforming vector, s is the Gaussian distributed sym-
bol sent by the transmitter, y ∈ C is the received signal before
quantization, and n ∼ CN (0, σ2) is the circularly symmetric
complex Gaussian noise. The average transmit power is Pt,
i.e., E[|s|2] = Pt.

The output after the finite-bit quantization is

r = Q (y) = Q (h∗vs+ n) , (2)

where Q(·) is the finite-bit quantization function applied
separately to the real and imaginary parts.

By Bussgang’s theorem [7], [24], [25], the quantization
output can be decoupled into two uncorrelated parts, i.e.,

r = (1− ηb)y + nQ (3)
= (1− ηb)h∗vs+ (1− ηb)n+ nQ, (4)

where ηb = E[|r−y|2]
E[|y|2] is the normalized mean squared er-

ror and nQ is the quantization noise with variance σ2
Q =

ηb(1 − ηb)E[|y|2] = ηb(1 − ηb)
(
|h∗v|2Pt + σ2

)
. Therefore,

the effective noise nef , (1− ηb)n+ nQ has variance ηb(1−
ηb)
(
|h∗v|2Pt

)
+(1−ηb)σ2. The values of ηb (1 ≤ b ≤ 8) are

listed in Table I. The resulting signal-to-quantization and noise
ratio (SQNR) at the receiver is

SQNR =
(1− ηb)2 Pt |h∗v|2

(1− ηb)2 σ2 + σ2
Q

=
(1− ηb)Pt |h∗v|2

ηbPt |h∗v|2 + σ2
. (5)

Denote the achievable rate with b-bit ADC and B-bit
feedback as R(b, B). In this paper, ‘b = ∞’ represents the
case of full-precision ADCs, while ‘B = ∞’ represents the
case of perfect CSIT. Assuming that the noise nQ follows the
worst-case Gaussian distribution, the average achievable rate
with perfect CSIT and conjugate beamforming is

R(b,∞) = Eh

[
log2

(
1 +

(1− ηb)Pt ‖h‖2

ηbPt ‖h‖2 + σ2

)]
(6)

(a)

≤ log2

1 +
(1− ηb)PtE

[
‖h‖2

]
ηbPtE

[
‖h‖2

]
+ σ2

 (7)

(b)
= log2

(
1 +

(1− ηb)PtNt

ηbPtNt + σ2

)
(8)

where (a) follows from the concavity of the function f(x) =

log2

(
1 + ax

bx+c

)
(a > 0, b > 0, c > 0) when x > 0, (b)

follows from the assumption of IID Rayleigh fading channel.
In the low and high SNR

(
Pt

σ2

)
regimes, the average

achievable rate with perfect CSIT is approximated as,

R(b,∞) ≈

 log2

(
1 + (1−ηb)PtNt

σ2

)
, when Pt

σ2 is small,

log2

(
1
ηb

)
, when Pt

σ2 is large.
(9)

It is seen that the high SNR rate is limited by the signal-to-
quantization ratio (SQR) defined as SQR , 1

ηb
. Since ηb ≈

π
√
3

2 2−2b when b ≥ 3 [26], the achievable rate at high SNR is

R(b,∞) ≈ 2b− log2

π
√

3

2
(10)

≈ 2b− 1.44 bps/Hz. (11)

The values of log2

(
1
ηb

)
are given in Table I.

Averaging over the RVQ codebooks, the achievable rate
under limited feedback is

R(b, B) (12)

= Eh,C

[
log2

(
1 +

(1− ηb)Pt |h∗v|2

ηbPt |h∗v|2 + σ2

)]
(13)

(a)
≈ log2

1 +
(1− ηb)PtNt

(
1− 2Bβ

(
2B , Nt

Nt−1

))
ηbPtNt

(
1− 2Bβ

(
2B , Nt

Nt−1

))
+ σ2

 (14)

(b)

≥ log2

1 +
(1− ηb)PtNt

(
1− 2−

B
Nt−1

)
ηbPtNt

(
1− 2−

B
Nt−1

)
+ σ2

 (15)



TABLE I: The optimum uniform quantizer for a Gaussian unit-variance input signal [21]

Resolution b 1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit
NMSE ηb

π−2
π

(≈ 0.3634) 0.1175 0.03454 0.009497 0.002499 0.0006642 0.0001660 0.00004151
10 log10 (1− ηb) -1.9613 -0.5429 -0.1527 -0.0414 -0.0109 -0.0029 -0.0007 -0.0002

log2

(
1
ηb

)
1.46 3.09 4.86 6.72 8.64 10.56 12.56 14.56

where β(·, ·) is a beta function. (a) follows from E
[
‖h‖2

]
=

Nt and cos2 (∠ (h,v)) = 1 − 2Bβ
(

2B , Nt

Nt−1

)
[22], (b)

follows from the inequality 2Bβ
(

2B , Nt

Nt−1

)
≤ 2−

B
Nt−1 [20].

In the low and high SNR regimes, the average achievable
rate with limited feedback is

R(b, B)

≈


log2

1 +
(1−ηb)PtNt

(
1−2−

B
Nt−1

)
σ2

 , if Pt

σ2 is small,

log2

(
1
ηb

)
, if Pt

σ2 is large.
(16)

Comparing R(b,∞) in (9) and R(b, B) in (16), we find that
at low SNR, the power loss between R(b,∞) and R(b, B) is
≈ 10 log10

(
1− 2−

B
Nt−1

)
dB. The result is similar to the case

with infinite-bit ADCs [22], [27]. In contrary, at high SNR,
both R(b,∞) and R(b, B) approach the same upper bound
and the rate loss due to limited feedback is zero.

At last, the achievable rate with infinite-bit ADC and perfect
CSIT is known as R(∞,∞) = log2

(
1 + PtNt

σ2

)
. We find

that at low SNR, the power loss incurred by the finite-bit
ADC is 10 log10 (1− ηb) dB while that by limited feedback
is 10 log10

(
1− 2−

B
Nt−1

)
dB.

IV. MULTI-USER MISO CHANNEL WITH FINITE-BIT
ADCS AND LIMITED FEEDBACK

We now consider a multi-user MISO channel shown in
Fig. 1b where a Nt-antenna transmitter sends signals to
K (1 < K ≤ Nt) single-antenna receivers. The quantization
output at the k-th receiver is

rk = Q

(
√
ρ

K∑
i=1

h∗kvisi + nk

)
(17)

= (1− ηb)
√
ρh∗kvisi + (1− ηb)

√
ρ

K∑
i=1,i6=k

h∗kvisi

+ (1− ηb)nk + nQ (18)

where ρ , Pt

K is the power allocated to each user, vi is the
beamforming vector for user i, nk ∼ CN (0, σ2) is the circu-
larly symmetric complex Gaussian noise, and the quantization
noise nQ has variance ηb(1−ηb)

(
ρ
∑K
i=1,i6=k |h∗kvi|

2
+ σ2

)
.

Therefore, the signal-to-interference, quantization and noise
ratio (SIQNR) at the k-th receiver is

SIQNRk =
(1− ηb) ρ |h∗kvi|

2

ηbρ |h∗kvk|
2

+ ρ
∑K
i=1,i6=k |h∗kvi|

2
+ σ2

.(19)

If there is perfect CSIT and the transmitter designs zero-
forcing beamforming vZF

i (1 ≤ i ≤ K) such that h∗kv
ZF
i = 0

for k 6= i, the average rate per user is

RZF(b,∞) = EH

[
log2

(
1 +

(1− ηb) ρ
∣∣h∗kvZF

k

∣∣2
ηbρ
∣∣h∗kvZF

k

∣∣2 + σ2

)]
(20)

(a)

≤ log2

(
1 +

(1− ηb) ρ(Nt −K + 1)

ηbρ(Nt −K + 1) + σ2

)
(21)

where EH

[∣∣h∗kvZF
k

∣∣2] = EH

[
‖hk‖2

]
EH

[
|h̃∗kvZF

k |2
]

=

EH

[
‖hk‖2

]
EH

[
cos2 ∠

(
h̃k,v

ZF
k

)]
= Nt

Nt−K+1
Nt

= Nt −
K + 1 where h̃k = h

‖h‖ .
In the case without perfect CSIT, each receiver feeds

back B bits as the index of the quantized channel ĥk,
then the transmitter designs zero-forcing precoding based on
ĥk (1 ≤ k ≤ K). The average achievable rate is shown in (22)-
(25).

In (22)-(25), we use the equality EH,C

[
|h∗kvi|

2
]

=

EH

[
‖hk‖2

]
EH,C

[∣∣∣h̃∗kvi∣∣∣2] = Nt

Nt−12Bβ
(

2B , Nt

Nt−1

)
[20]

and the lower bound of EH,C

[
|h∗kvk|

2
]

as follows.

E
[
|h∗kvk|

2
]
≥ E

[∣∣∣h∗kĥk∣∣∣2]E [∣∣∣ĥ∗kvk∣∣∣2]
= E

[
|hk|2

]
E
[∣∣∣h̃∗kĥk∣∣∣2]E [∣∣∣ĥ∗kvk∣∣∣2] (26)

(a)
= Nt

(
1− 2Bβ

(
2B ,

Nt

Nt − 1

))
Nt −K + 1

Nt
,

where (a) follows from the equalities E
[∣∣∣h̃∗kĥk∣∣∣2] = 1 −

2Bβ
(

2B , Nt

Nt−1

)
[22] and E

[∣∣∣ĥ∗kvk∣∣∣2] = Nt−K+1
Nt

.

Therefore, the rate loss incurred by limited feedback is

∆RZF(b) = RZF (b,∞)−RZF (b, B) (27)

and has an upper bounded shown in (28).
When the SNR

(
Pt

σ2 = Kρ
σ2

)
is low, the performance loss is

∆R
ZF

(b)

≈ log2

(
1 +

(1− ηb) ρ(Nt −K + 1)

σ2

)
(29)

− log2

1 +
(1− ηb) ρ (Nt −K + 1)

(
1− 2−

B
Nt−1

)
σ2

 .

It is found there is a power loss ≈ 10 log10

(
1− 2−

B
Nt−1

)
dB

which is similar to the single-user case shown in Section III.



RZF (b, B) = EH,C

[
log2

(
1 +

(1− ηb) ρ |h∗kvk|
2

ηbρ |h∗kvk|
2

+ ρ
∑K
i=1,i6=k |h∗kvi|

2
+ σ2

)]
(22)

≈ log2

1 +
(1− ηb) ρE

[
|h∗kvk|

2
]

ηbρE
[
|h∗kvk|

2
]

+ ρ
∑K
i=1,i6=k E

[
|h∗kvi|

2
]

+ σ2

 (23)

= log2

1 +
(1− ηb) ρ (Nt −K + 1)

(
1− 2Bβ

(
2B , Nt

Nt−1

))
ηbρ (Nt −K + 1)

(
1− 2Bβ

(
2B , Nt

Nt−1

))
+ ρ (K − 1) Nt

Nt−12Bβ
(

2B , Nt

Nt−1

)
+ σ2

 (24)

≥ log2

1 +
(1− ηb) ρ (Nt −K + 1)

(
1− 2−

B
Nt−1

)
ηbρ (Nt −K + 1)

(
1− 2−

B
Nt−1

)
+ ρ (K − 1) Nt

Nt−12−
B

Nt−1 + σ2

 (25)

∆R
ZF

(b) = log2

(
1 +

(1− ηb) ρ(Nt −K + 1)

ηbρ(Nt −K + 1) + σ2

)
− log2

1 +
(1− ηb) ρ (Nt −K + 1)

(
1− 2−

B
Nt−1

)
ηbρ (Nt −K + 1)

(
1− 2−

B
Nt−1

)
+ ρ (K−1)Nt

Nt−1 2−
B

Nt−1 + σ2


(28)

At high SNR, the rate loss is

∆R
ZF

(b) ≈ log2

(
1 +

1− ηb
ηb

1
C1

C2
+ 1

)
(30)

where C1 , (Nt −K + 1)
(

1− 2−
B

Nt−1

)
and C2 ,

(K−1)Nt

Nt−1 2−
B

Nt−1 . To guarantee that the rate loss is less than
D, the number of feedback bits B should be large enough
such that 1−ηb

ηb
1

C1/C2+1 < 2D − 1.
When b ≥ 3, 1−ηb ≈ 0 as shown in Table I. If B � Nt−1,

C1

C2
+1 ≈ (Nt−K+1)(Nt−1)

Nt(K−1) 2
B

Nt−1 . In this case, to keep the rate
loss constant, we want the following term

1

ηb2
B

Nt−1

≈ 2

π
√

3
22b2−

B
Nt−1 =

2

π
√

3
2
2
(
b− B

2(Nt−1)

)
(31)

to be less than a constant. Therefore, if the ADC resolution b
increase 1 bit, the number of feedback bits B should increase
2(Nt − 1).

V. SIMULATION RESULTS

In this section, we compute the achievable rate for each
channel realization then average over 1000 channel realiza-
tions with Rayleigh fading, i.e., hk ∼ CN (0, INt

). In the
figures, SNR(dB) , 10 log10

Pt

σ2 .
In Fig. 2, we show the average achievable rates with perfect

CSIT and limited feedback in a single-user MISO channel.
First, the rate with perfect CSIT converges to log2

(
1
ηb

)
, which

is 1.46, 3.09, 4.86, 6.72 bps/Hz when b = 1, 2, 3, 4. Note
that these values are less than the theoretical upper bound 2b
bps/Hz because Gaussian signaling is suboptimal. Second, at
high SNR (for instance, 10 dB when b = 1, 20 dB when
b = 4), there is almost no rate loss between the perfect
CSIT and limited feedback cases since the quantization noise
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z)

Perfect CSIT
Limited Feedback

4-bit ADC

2-bit ADC

1-bit ADC

3-bit ADC

Fig. 2: The achievable rate of a single-user MISO system with
CSIT and limited feedback when Nt = 16 and B = 8.

dominates the AWGN noise in this regime. Third, in the low
SNR regime (< 0 dB), we see there is a constant horizontal
distance between each pair of solid curve and dashed curve
which implies that there is a constant power loss incurred by
limited feedback. This is because the AWGN noise dominates
the performance and the results from previous work assuming
infinite-bit ADCs [22], [27] can apply.

In Fig. 3, we show the achievable rates in a multi-user
MISO channel. The number feedback bits is chosen as B =
2(Nt − 1)b − 12 = 6b − 12. First, apart from the single-user
case, there is a gap at high SNR between the case of perfect
CSIT and limited feedback due to the inter-user interference.
Second, the gaps between each pair of curves are all around
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Fig. 3: The achievable rate of a multi-user MISO system with
perfect CSIT and limited feedback when Nt = 4 and K = 2.
When there is perfect CSIT, the figure shows three cases where
b = 3, 4, 5. When there is limited feedback, the figure shows
three cases where ‘b = 3, B = 6’, ‘b = 4, B = 12’ and
‘b = 5, B = 18’.

1.7 bps/Hz, which verifies our analytical result in (31) stating
that B should increase 2(Nt − 1) bits if b increases one bit.
Third, at low SNR (< 0 dB), the power loss is very small
for three cases, which validates our results in (29) saying that
the power loss is 10 log10

(
1− 2−

B
Nt−1

)
dB, which is around

−1.25 dB when B = 6, −0.28 dB when B = 12, and −0.07
dB when B = 18.

VI. CONCLUSIONS

In this paper, we analyzed the achievable rate in MISO
systems with finite-bit ADC and limited feedback. For both
the single-user and multi-user channels, the results are similar
to those with infinite-bit ADC at low SNR except for an
additional power loss 10 log10 (1− ηb) dB incurred by low
resolution ADCs. At high SNR, however, the quantization
noise dominates and therefore the results are very different
from the case with infinite-bit ADCs. In the single-user
channel, we found that the achievable rate saturates to a upper
bound determined by signal-to-quantization ratio of the ADCs.
In the multi-user case, we found that that the number of bits
per feedback should increase linearly with the ADC resolution
to limit the rate loss at high SNR.
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