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Abstract—In soft decoding, log-likelihood ratios (LLRs) are
calculated from estimated data symbols. Data symbols from
proper constellation diagrams such as QPSK are often estimated
using the linear minimum mean square error (LMMSE) esti-
mator. We prove that the recently introduced component-wise
conditionally unbiased (CWCU) LMMSE estimator results in
the very same LLRs as the LMMSE estimator for typical model
assumptions. For improper constellation diagrams such as 8-
QAM, we show that the widely linear versions of the LMMSE
and the CWCU LMMSE estimator also yield identical LLRs. In
that case, the CWCU estimator allows to reduce the complexity
of the LLR determination.

I. INTRODUCTION

The task of estimating a parameter vector x ∈ Cn×1 out
of a measurement vector y ∈ Cm×1 with m ≥ n can
be treated in the classical sense or in the Bayesian sense.
Classical and Bayesian estimation not only differ in terms of
the incorporation of prior knowledge, but also in terms of
the unbiased properties. While a classical estimator x̂C has to
fulfill

Ey[x̂C] = x for all possible x (1)

to be considered as unbiased, the frequently applied Bayesian
linear minimum mean square error (LMMSE) estimator only
fulfills

Ey,x[x̂L − x] = Ex

[
Ey|x [x̂L − x|x]

]
= 0. (2)

This means x̂L is only ”unbiased” when averaged over the
probability density function (PDF) of x, which is a much
weaker constraint than (1). However, the Bayesian approach
allows the incorporation of prior knowledge. In [1]–[4], an
interesting compromise between the stringent classical unbi-
ased constraint and the weak Bayesian unbiased constraint
has been investigated. There, component-wise conditionally
unbiased (CWCU) Bayesian parameter estimators have been
studied, which aim for achieving conditional unbiasedness for
one parameter component at a time. Let xi be the ith element
of x and x̂i be an estimator of xi, then the CWCU constraints
are

Ey|xi [x̂i|xi] = xi, (3)
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for all possible xi (and all i = 1, 2, ..., n). The CWCU
constraints are less stringent than the classical unbiased con-
straints in (1), and it turns out that in many cases a CWCU
estimator allows the incorporation of prior knowledge on
the statistical properties of the parameter vector [3], [4]. In
the following, we denote the linear estimator fulfilling the
CWCU constraints and minimizing the Bayesian mean square
error (BMSE) for i = 1, 2, . . . , n as the CWCU LMMSE
estimator. The CWCU LMMSE estimator is designed for
proper measurement vectors. For the definition of propriety
we refer to [5]. A proper measurement vector could, e.g., arise
when a data vector with proper symbols, such as for quadrature
phase-shift keying (QPSK), is transmitted over a dispersive
linear channel and disturbed by additive white Gaussian noise
(AWGN). For this case the well-known LMMSE estimator is
often used to estimate the transmitted symbols, followed by
an evaluation of the log-likelihood ratios (LLRs). In Sec. II
of this work it will be proven that the LLRs of the CWCU
LMMSE estimates and the LMMSE estimates are identical
even though the CWCU LMMSE estimator performs worse in
terms of the BMSE. The second part of this paper focuses on
improper symbol constellations such as 8 quadrature amplitude
modulation (8-QAM). In such a scenario the widely LMMSE
(WLMMSE) estimator is more appropriate for estimating the
transmitted symbols. In Sec. III we prove that the CWCU
WLMMSE estimator derived in [6] again results in the same
LLRs as the WLMMSE estimator while featuring a complexity
advantage in deriving the LLR values. Finally, a simulation
example is given in Sec. IV which illustrates the estimators’
properties.

II. LLR EVALUATION OF PROPER SYMBOLS

In this section, the LLRs of proper symbols evaluated from
the LMMSE estimates are compared with those determined
from the CWCU LMMSE estimates. Let x and y be connected
via the linear model y = Hx + n, where H ∈ Cm×n is a
known observation matrix, x has mean Ex[x] and covariance
matrix Cxx = Ex

[
(x− Ex[x])(x− Ex[x])H

]
with (·)H

denoting the conjugate transposition, and n ∈ Cm×1 is a
zero mean proper noise vector with covariance matrix Cnn

and independent of x. Furthermore, let hi ∈ Cm×1 be the ith

column of H, H̄i ∈ Cm×(n−1) the matrix resulting from H by
deleting hi, xi be the ith element of x, and x̄i ∈ C(n−1)×1 the
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vector resulting from x after deleting xi. Then we can rewrite
the linear model as

y = hixi + H̄ix̄i + n. (4)

Consider the general linear estimator x̂ = Ey, E ∈ Cn×m.
The ith component of this estimator is given by x̂i = eHi y,
where eHi ∈ C1×m denotes the ith row of the estimator matrix
E. Incorporating (4) yields

x̂i = eHi hixi︸ ︷︷ ︸
Scaling

+ eHi H̄ix̄i︸ ︷︷ ︸
IPI

+ eHi n︸︷︷︸
Noise

. (5)

In (5), we clearly see three effects, namely a scaling of the true
parameter value, an inter-parameter interference (IPI) term,
and a noise term. In communications, the noise term is usually
Gaussian and the IPI term can usually approximately assumed
to be Gaussian if n is large enough due to central limit theorem
arguments. From (5), the conditional mean of x̂i becomes

Ey|xi [x̂i|xi] = eHi hixi + eHi H̄iEx̄i|xi [x̄i|xi]. (6)

In the following, we assume statistically independent elements
of x with zero mean, as usual in communications. Then, (6)
simplifies to

Ey|xi [x̂i|xi] = eHi hixi = αixi. (7)

The conditional variance of the general linear estimator is
given by

var(x̂i|xi)

= Ey|xi

[(
x̂i − Ey|xi [x̂i|xi]

) (
x̂i − Ey|xi [x̂i|xi]

)H ∣∣∣xi] .
Inserting (5) and (7) into the previous equation yields

var(x̂i|xi) =Ey|xi
[
(eHi (H̄ix̄i + n))(eHi (H̄ix̄i + n))H |xi

]
=eHi (H̄iCx̄ix̄iH̄

H
i + Cnn)ei. (8)

Note that the conditional variance in (8) is independent of xi.
For a general estimator, the LLRs of any symbol constellation
with equiprobable symbols can be written as [7]

Λ(bki|x̂i) = log
Pr(bki = 1|x̂i)
Pr(bki = 0|x̂i)

= log

∑
q∈S(bki=1)

p(x̂i|s(q))∑
q∈S(bki=0)

p(x̂i|s(q))
,

(9)
where x̂i is the ith estimated symbol, bki is the kth bit of
the ith estimated symbol, S (bki = 1) and S (bki = 0) are the
sets of symbol indices corresponding to bki = 1 and bki = 0,
respectively, and s(q) is the qth symbol of such a set. In (9),
p(x̂i|s(q)) denotes the conditional PDF of the estimate x̂i given
that the actual symbol was s(q). Its Gaussian approximation
is determined by the conditional mean and the conditional
variance according to

p(x̂i|s(q)) =
1

πvar(x̂i|s(q))
e
− 1

var(x̂i|s(q))
|x̂i−E[x̂i|s(q)]|2

. (10)

Together with (9), the LLRs of any linear estimator can be
evaluated by inserting the conditional mean and the conditional

variance of the specific estimator. Such a specific estimator
e.g., could be the LMMSE or the CWCU LMMSE estimators.
We begin with the LMMSE estimator, which is [8]

x̂L = CxxH
H(HCxxH

H + Cnn)−1y = ELy. (11)

Let eHL,i ∈ C1×m be the ith row of EL, then the conditional
mean and variance are given by (7) and (8), respectively, where
eHL,i has to be inserted for eHi . A known property of the
LMMSE estimator is that αL,i = eHL,ihi is real valued, and
in general smaller than 1. Hence, x̂L,i is conditionally biased
according to (7).

We now turn to the CWCU LMMSE estimator which is
given by [3], [4]

x̂CL = DCxxH
H(HCxxH

H + Cnn)−1y = ECLy, (12)

where the elements of the real diagonal matrix D are
[D]i,i = 1/αL,i. The CWCU LMMSE estimator in (12) and
the LMMSE estimator in (11) are connected via

x̂CL = DELy = Dx̂L. (13)

Let eHCL,i ∈ C1×m be the ith row of ECL, then it holds
that eHL,i = αL,ie

H
CL,i, x̂L,i = αL,ix̂CL,i and var(x̂L,i|xi) =

α2
L,ivar(x̂CL,i|xi).
In contrast to the LMMSE estimator, the CWCU LMMSE

estimator fulfills eHCL,ihi = 1. This property makes (7) equal
to Ey|xi [x̂i|xi] = xi (which is the CWCU constraint in (3)).
Hence, x̂CL,i is conditionally unbiased. The conditional mean
and variance of the CWCU LMMSE estimator are given by
(7) and (8), respectively, where eHCL,i has to be inserted for
eHi . Inserting these conditional properties into (10) yields

p(x̂CL,i|s(q))

=
1

πvar(x̂CL,i|s(q))
e
− 1

var(x̂CL,i|s
(q))
|x̂CL,i−E[x̂CL,i|s(q)]|2

=
α2

L,i

πvar(x̂L,i|s(q))
e
−

α2
L,i

var(x̂L,i|s(q))

∣∣α−1
L,i

(
x̂L,i−αL,is

(q)
)∣∣2

=
α2

L,i

πvar(x̂L,i|s(q))
e
− 1

var(x̂L,i|s(q))
|x̂L,i−E[x̂L,i|s(q)]|2

= α2
L,ip(x̂L,i|s(q)), (14)

which holds for any symbol s(q). Hence, for a given y
the probability density p(x̂CL,i|s(q)) of the CWCU LMMSE
estimator and p(x̂L,i|s(q)) of the LMMSE estimator for any
s(q) only differ by the constant scaling factor α2

L,i. This
constant scaling factor does not depend on the symbol s(q)

and it appears in the numerator and the denominator of (9),
thus cancelling out. Hence, the LLRs of the CWCU LMMSE
estimates and the LMMSE estimates are equal for proper
constellation diagrams. As a consequence, the resulting bit
error ratios (BERs) of the LMMSE and the CWCU LMMSE
estimators are also the same, although the BMSE of the
LMMSE estimator is in general lower than that of the CWCU
LMMSE estimator.



III. WIDELY LINEAR ESTIMATION OF IMPROPER DATA

We now turn to improper constellation diagrams such as
8-QAM. In such scenarios it is advantageous to use widely
linear estimators, which can incorporate information about the
improperness of the data. A general widely linear estimator in
augmented notation is

x̂ =

[
x̂
x̂∗

]
=

[
E F
F∗ E∗

] [
y
y∗

]
= Ey, (15)

where (·)∗ denotes the complex conjugate. For an introduction
to the augmented form and widely linear estimation we refer to
[5]. Isolating the ith element of (15) yields x̂i = eHi y, where
eHi ∈ C1×2m is the ith row of E. The augmented version is
given by

x̂i =

[
x̂i
x̂∗i

]
=

[
eHi
eHi+n

]
y = EHi y, (16)

where the rows of EHi are given by the ith and the (i+ n)th

row of the augmented estimator matrix E. The augmented
version of (4) is

y =

[
H 0
0 H∗

]
x + n = Hx + n = Hixi + H̄ix̄i + n, (17)

where

Hi =

[
hi 0
0 h∗i

]
, xi =

[
xi
x∗i

]
, H̄i =

[
H̄i 0
0 H̄∗i

]
, x̄i =

[
x̄i
x̄∗i

]
.

With (17), (16) can be rewritten according to

x̂i = EHi Hixi + EHi H̄ix̄i + EHi n. (18)

For zero mean and statistically independent elements of x, the
conditional augmented expected vector of x̂i follows to

E[x̂i|xi] = EHi Hixi = αixi. (19)

From (18) and (19), the augmented conditional covariance
matrix of x̂i is

Cx̂ix̂i|xi = E[(x̂i − E[x̂i|xi])(x̂i − E[x̂i|xi])H |xi]

= E[EHi
(
H̄ix̄i + n

) (
H̄ix̄i + n

)H
Ei|xi]

= EHi

(
H̄iCx̄ix̄iH̄

H
i + Cnn

)
Ei. (20)

Similar to the linear case in (8), (20) is independent of
xi. Particular realizations for (19) and (20) can be obtained
by inserting EHi of a concrete estimator. Such a particular
estimator could be the WLMMSE estimator, whose augmented
form is [5]

x̂WL = CxyC
−1
yyy = EWLy. (21)

Then, the augmented ith estimate is given by

x̂WL,i = CxiyC
−1
yyy = EHWL,iy, (22)

where the rows of EHWL,i are the ith and the (i+n)th row of
EWL in (21). For the WLMMSE estimator, αWL,i = EHWL,iHi

is in general not equal to the identity matrix. Hence, according
to (19), x̂WL,i is conditionally biased.

We now turn to the CWCU WLMMSE estimator, whose
augmented ith estimate is [6]

x̂CWL,i = Cxixi

(
CxiyC

−1
yyCyxi

)−1
CxiyC

−1
yyy. (23)

For statistically independent elements of x, it holds that
Cyxi = HiCxixi

and (23) can be reformulated as

x̂CWL,i = Cxixi

(
CxiyC

−1
yy︸ ︷︷ ︸

EHWL,i

Cyxi

)−1

CxiyC
−1
yy︸ ︷︷ ︸

EHWL,i

y

=
(
EHWL,iCyxiC

−1
xixi

)−1

EHWL,iy

=
(
EHWL,iHi︸ ︷︷ ︸
αWL,i

)−1
EHWL,iy = α−1

WL,ix̂WL,i. (24)

Similar to the linear case in (13), the CWCU WLMMSE
estimator is determined by the WLMMSE estimator times a
term that corrects for the conditional bias. It follows from
(24), that the augmented conditional covariance matrix of the
CWCU WLMMSE estimator can be derived from the one of
the WLMMSE estimator according to

Cx̂ix̂i|xi,CWL = α−1
WL,iCx̂ix̂i|xi,WL

(
αHWL,i

)−1
. (25)

With these conditional properties, it is possible to evaluate
the LLRs by utilizing the general complex Gaussian density
function

p(x̂i|s(q)) =
1√

π2det(Cx̂ix̂i|s(q))

· e
− 1

2 (x̂i−E[x̂i|s
(q)])

H
C−1

x̂ix̂i|s(q)
(x̂i−E[x̂i|s

(q)])
. (26)

In analogy to the linear case in (14) it will now be shown that
p(x̂WL,i|s(q)) of the WLMMSE estimator and p(x̂CWL,i|s(q))
of the CWCU WLMMSE estimator only differ by a constant
factor. By utilizing (24) and (25) the exponent of (26) for the
CWCU WLMMSE estimator can be rearranged to

−1

2

(
x̂CWL,i − E[x̂CWL,i|s(q)]

)H
C−1
x̂ix̂i|s(q),CWL

·
(
x̂CWL,i − E[x̂CWL,i|s(q)]

)
= −1

2

(
x̂WL,i − E[x̂WL,i|s(q)]

)H (
αHWL,i

)−1
αHWL,i

·C−1
x̂ix̂i|s(q),WLαWL,iα

−1
WL,i

(
x̂WL,i − E[x̂WL,i|s(q)]

)
= −1

2

(
x̂WL,i − E[x̂WL,i|s(q)]

)H
C−1
x̂ix̂i|s(q),WL

·
(
x̂WL,i − E[x̂WL,i|s(q)]

)
. (27)

This result shows that the exponent of (26) is identical for the
CWCU WLMMSE estimator and the WLMMSE estimator for



a given y. The prefactor of (26) for the CWCU WLMMSE
estimator follows to

1√
π2det(Cx̂ix̂i|s(q),CWL)

=
1√

π2det
(
α−1

WL,iCx̂ix̂i|s(q),WL

(
αHWL,i

)−1
)

=
1√

π2det(Cx̂ix̂i|s(q),WL)|det(α−1
WL,i)|2

=

∣∣det(αWL,i)
∣∣√

π2det(Cx̂ix̂i|s(q),WL)
. (28)

Like in the linear case in (14), the prefactors of the CWCU
WLMMSE estimator and the WLMMSE estimator only differ
by a constant real factor. This factor does not depend on
the symbol s(q) and it appears in the numerator and the
denominator of (9), thus cancelling out in the determination of
the LLRs. This leads to the result that the LLRs derived from
the CWCU WLMMSE estimates and the WLMMSE estimates
are exactly the same. Although the WLMMSE estimator in
general features a lower BMSE, the BER performance of the
WLMMSE and the CWCU WLMMSE estimator are identical.

IV. SIMULATION EXAMPLE

We give a simulation example were we use the unique word
orthogonal frequency division multiplexing (UW-OFDM)
framework described in [9], [10]. Like classical OFDM, UW-
OFDM is a block based transmission scheme where in our
particular setup at the receive side a data vector d ∈ C36×1 is
estimated based on a received block ỹ ∈ C52×1 of frequency
domain samples. We choose UW-OFDM since the estimator
matrices are in general full matrices instead of diagonal
matrices as in classical OFDM, such that the problem can be
considered a more demanding and general one compared to the
data estimation problem in classical OFDM systems. Hence,
this framework is well suited for studying general effects of
CWCU estimators. The system model for the transmission of
one data block is given by

ỹ = H̃Gd + ṽ, (29)

where H̃ ∈ C52×52 is the diagonal channel matrix. G ∈
C52×36 is a so called generator matrix, for details cf. [9],
[10], d is a vector of improper 8-QAM symbols and ṽ is a
frequency domain noise vector. Note that every assumption
made in Sec. II and Sec. III holds in this example: The data
and the measurements are connected via a linear model, and
the Gaussian assumption of p(x̂i|s(q)) is valid due to central
limit theorem arguments (note that the data vector length is
36 in this example).

In the simulation, UW-OFDM symbols are transmitted over
an AWGN channel H̃ = I and further processed by the
WLMMSE estimator and the CWCU WLMMSE estimator,
respectively. These estimators feature different properties of
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Fig. 1. Relative frequencies of the CWCU WLMMSE estimates in (a), and
the WLMMSE estimates in (b). The black crosses mark the original 8-QAM
constellation points.

the estimated data symbols. According to [5], the estimates
conditioned on a given s(q) are proper, if the off-diagonal
elements of Cx̂ix̂i|s(q) are zero, which holds true for 8-QAM
symbols transmitted over the AWGN channel and received by
the CWCU WLMMSE estimator. The corresponding relative
frequencies of x̂CWL,i are shown in Fig. 1a. One can see that
the estimates are centered around the true constellation points
since the CWCU WLMMSE estimator fulfills the CWCU
constraints in (3). Furthermore, the estimates conditioned on
a specific transmit symbol are properly distributed. In Fig. 1b,
the relative frequencies of the WLMMSE estimates are shown.
In contrast to the CWCU WLMMSE estimates, the WLMMSE
estimates conditioned on a specific transmit symbol are neither
centered around the true constellation points nor are they
properly distributed. However, due to the close connection
between the CWCU WLMMSE estimator and the WLMMSE
estimator, the resulting LLRs are identical as shown above.
Moreover, since the CWCU WLMMSE estimates for a given
s(q) are proper, it is sufficient to use the proper complex
Gaussian PDF in (10) instead of the general Gaussian PDF
in (26) as basis for the LLR determination. Hence, the LLR
determination of the CWCU WLMMSE estimates is less
computationally demanding than for the WLMMSE estimates
without any loss in BER performance.

In [6], we also confirmed via simulation, that for frequency
selective channels the CWCU WLMMSE estimates condi-
tioned on a given transmit symbol s(q) are practically proper
again for all investigated channel realizations. The off-diagonal
elements of Cx̂ix̂i|s(q) are smaller than the main diagonal
elements by at least a factor of 103. Rounding the off-diagonal
elements to zero and applying the proper complex Gaussian
PDF in (10) instead of the general Gaussian PDF in (26) as
basis for the LLR determination leads to a BER without any
noticeable loss in performance.

V. CONCLUSION

In this paper, we proved that the CWCU LMMSE estimates
result in the same LLRs as the LMMSE estimates for proper
constellation diagrams such as QPSK or 16-QAM. As a
consequence, the resulting BER performance of the CWCU
LMMSE estimator and the LMMSE estimator is also the same,
even though the two estimators fulfill different unbiased con-
strains and yield a different BMSE. For improper constellation
diagrams such as 8-QAM, we showed that the same statements
also hold for the relationships between the widely linear



counterparts, the CWCU WLMMSE and WLMMSE estima-
tors. A simulation example was presented, revealing different
statistical properties of WLMMSE and CWCU WLMMSE
data estimates. An interesting outcome is that the CWCU
WLMMSE estimator offers a complexity advantage in the
LLR determination over the WLMMSE estimator without a
loss in BER performance.
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