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University Paris-Saclay
3 rue Joliot Curie

91190 Gif-surYvette, France

Frédéric Pascal
L2S, CentraleSupélec

University Paris-Saclay
3 rue Joliot Curie

91190 Gif-surYvette, France

Abstract—In this paper, we deal with covariance matrix
estimation in complex elliptically symmetric (CES) distributions.
We focus on Tyler’s estimator (TyE) and the well-known sample
covariance matrix (SCM). TyE is widely used in practice, but its
statistical behavior is still poorly understood. On the other hand,
under Gaussian assumption, the SCM is Wishart-distributed, but
its properties degrade in non-Gaussian environments. The main
contribution is the derivation of new properties of TyE under
CES framework, in order to approximate its behavior with a
simpler one, the Wishart one. Finally, Monte-Carlo simulations
support that claims and demonstrate the interest of this result.

Index Terms—Covariance matrix estimation, Complex Ellipti-
cally Symmetric distributions, Sample Covariance Matrix, Tyler’s
estimator, robust estimation

I. INTRODUCTION

Estimation of covariance matrix (CM) of high dimensional
distribution is a basic problem in multivariate statistics [1], [2].
It arises in diverse applications such as filtering, whitening,
detection, estimation or classification [3]–[7]. In practice,
this matrix is unknown and needs to be estimated. Usually,
in signal processing applications, one has an N -sample of
identically distributed and independent (IID) complex vectors
that are used to estimate this matrix. Under the Gaussian as-
sumption, the classical covariance estimator is the well-known
sample covariance matrix (SCM) M̂SCM that is known to be
distributed according to a Wishart distribution for fixed N [1].
Since the SCM is a maximum likelihood estimator (MLE),
it exhibits good properties, even for small N . Moreover, it
is easy to manipulate thanks to its explicit form. However,
it also suffers from major drawbacks. This is case when the
distribution of the training data turn to be non-Gaussian, or
when the data are corrupted by some outliers. In such cases
performances of the SCM may significantly degrade [8].

Robust estimation theory offers an alternative to the SCM
thanks to so-called M -estimators, originally introduced by
Huber [2] and investigated in the seminal work of Maronna [9].
They have been introduced within the framework of elliptical
distributions. Elliptical distributions, originally introduced by
Kelker [10], encompass a large number of well-known dis-
tributions such as the Gaussian distribution, the multivariate
W-distribution or the mulivariate K-distribution. M -estimators
of the covariance matrix are however seldom used in the
signal processing community. One possible reason for this

is that their statistical properties are not well-known in the
signal processing community. Their asymptotical properties
have been studied by Tyler in the real case. This has been
recently extended to the complex case, which is sometimes
more useful for signal processing applications, in [7].

Among these estimators, the Tyler’s estimator [11], also
referred to as fixed-point (FP) estimator M̂FP [3], [12], has
been widely used as an alternative to the SCM for radar appli-
cations. Asymptotical properties of this estimator in Gaussian
context have been analyzed through the bias, the consistency
and the second-order moment in [12]. All these results are
also valid in the framework of complex elliptically distributed
data. Disappointingly, the statistical study of Tyler’s estimator
is quite problematic, mainly because of its nonexplicit form.
With this in mind, we try to take a new look at this estimator.
This paper sheds new light on the analysis of its behavior
comparing it with the behavior of the SCM. Hence, the main
purpose of this work is to provide the asymptotic distribution
of the difference between Tyler’s estimator in the case of
elliptically distributed vectors and the SCM built with their
Gaussian kernels, in order to justify the approximation of its
behavior by a Wishart distribution.

This paper is organized as follows. Section II introduces
some background about CES distributions, the SCM and
Tyler’s estimator. Then Section III presents the main contribu-
tion of the paper with discussions and Section IV shows Monte
Carlo simulations validating the theoretical analysis. Finally,
Section V concludes this work.

Vectors (resp. matrices) are denoted by bold-faced lower-
case letters (resp. uppercase letters). ∗, T and H respectively
represent the conjugate, the transpose and the Hermitian
operator. N and CN denote the real and complex normal
distributions. ∼ means ”distributed as”,=d stands for ”shares
the same distribution as”, d→ denotes convergence in distribu-
tion and ⊗ denotes the Kronecker product. vec is the operator
which transforms a matrix m×n into a vector of length mn,
concatenating its n columns into a single column. Moreover,
Im is the m ×m identity matrix, 0 the matrix of zeros with
appropriate dimension and K is the commutation matrix which
transforms vec(A) into vec(AT ).



II. BACKGROUND

A. Complex Elliptically Symmetric distributions

Let be z an m-dimensional complex circular random vector.
The vector has a complex elliptically symmetric (CES) distri-
bution if its probability density function (PDF) can be written
as

hz(z) = |M|−1gz

(
(z− µ)HM−1(z− µ)

)
(1)

where hz : [0,∞) → [0,∞) is any function such that (1)
defines a PDF, µ is the statistical mean and M is a scatter
matrix. The matrix M reflects the structure of the covariance
matrix of z, i.e., the covariance matrix is equal to M up to a
scale factor. This complex elliptically symmetric distribution
will be denoted by CESm(µ,M, gz).

Stochastic Representation Theorem: A r.v.
z ∼ CESm(µ,M, gz) with rank(M) = k ≤ m if and
only if it admits the stochastic representation

z =d µ+ τAu, (2)

where the non-negative real random variable τ , called the
modular variate, is independent of the complex random vector
u ∼ U(CSk) and M = AAH is a factorization of M , where
A ∈ Cm×k has rank(A) = k.

In this paper, we will assume that µ = 0. Without loss of
generality, the scatter matrix will be taken to be equal to the
covariance matrix when the latter exists. If the distribution of
the data has a none finite second-order moment, then we will
simply consider the scatter matrix estimator.

B. Complex Normal Distribution

The Gaussian distribution is a particular case of CES
distributions in which hz(z) = e−z/2. We shall write z ∼
CNm(0,M) to denote this case. In this case, the quadratic
form Q(z) = zHM−1z has a scaled chi-squared distribution
Q(z) ∼ (1/2)χ2

2m, or equivalently Q(z) ∼ Gam(m, 1) where
z =d τAu.

C. Sample Covariance Matrix

The complex Wishart distribution CW (N,M) is the dis-
tribution of

∑N
k=1 xkxHk , when xk are complex circular i.i.d.

Gaussian vectors with zero mean and covariance matrix M.
Let

M̂SCM =
1

N

N∑
k=1

xkxHk (3)

be the related SCM which will be also referred to as a Wishart
matrix. Its asymptotic distribution is given by

√
Nvec(M̂SCM−M)

d→ CN(0,MT ⊗M, (MT ⊗M)K). (4)

D. Tyler’s estimator

Let (z1,...,zN ) be an N -sample of m-dimensional complex
independent vectors with zk ∼ CESm(0,M, gz). An M -
estimator, denoted by M̂, is defined by the solution of the
following M -estimating equation

M̂ =
1

N

N∑
k=1

ϕ(zHk M̂
−1

zk)zkzHk (5)

where ϕ is any real-valued weight function on [0,∞) that
does not need to be related to the PDF of the underlying
CES distribution. Thus M -estimators constitute a wide class
of scatter matrix estimators. Existence and uniqueness of the
solution of (5) as well as the convergence of the corresponding
recursive algorithm have already been shown, provided the
function ϕ satisfies a set of general assumptions [13]. In
particular, the resulting estimators are consistent estimators of
the CM (up to a scale factor) [13].

For the particular function ϕ(s) = m/s, Tyler’s estimator
M̂FP is the solution (up to a scale factor) of the following
equation

M̂FP =
m

N

N∑
k=1

zkzHk
zHk M̂

−1
FP zk

. (6)

Moreover, for Tyler’s estimator M̂FP verifying (6), one has
(see [12] for more details)

√
Nvec(M̂FP −M)

d→ CN(0,ΣFP ,ΩFP ) (7)

where ΣFP and ΩFP are defined by

ΣFP =
m+ 1

m
MT ⊗M− m+ 1

m2
vec(M)vec(M)H ,

ΩFP =
m+ 1

m
(MT ⊗M)K− m+ 1

m2
vec(M)vec(M)T

(8)

This shows that Tyler estimator behaves asymptotically as
the SCM, the difference coming from the values of the scale
quantities.

III. MAIN CONTRIBUTION

This section is devoted to the main contribution of this
paper. We present the main result for the asymptotic distribu-
tion of the difference between Tyler’s estimator and the SCM.
Let (u1,...,uN ) be an N -sample of m-dimensional complex
independent vectors with un ∼ U(CSm) , ν1, ..., νN an N -
sample of real independent variables with |νn|2 ∼ (1/2)χ2

2m

and τ1, ..., τN an N -sample of real independent variables
, n = 1, ..., N . Let now xn = νnAun ∼ CNm(0,M)
and zn = τnAun ∼ CESm(0,M) where M = AAH is
a factorization of M. Consider the SCM M̂SCM built with
(x1,...,xN ) and the FP estimator M̂FP built with (z1,...,zN ).

Theorem III.1 The asymptotic distribution of M̂FP −M̂SCM

is given by
√
Nvec(M̂FP − M̂SCM )

d→ CN(0,Σ,Ω) (9)



where Σ and Ω are defined by

Σ =
1

m
MT ⊗M +

m− 1

m2
vec(M)vec(M)H ,

Ω =
1

m
(MT ⊗M)K +

m− 1

m2
vec(M)vec(M)T .

(10)

Remark III.1 • Elements of matrices in (10) are smaller
than those in (8) which reveals that Tyler’s estimator
asymptotically approaches the SCM much faster than it
approaches the real covariance matrix. That justifies the
intention of approximating its behavior by the one of the
SCM.

• It is also crucial to note that the scale factors in (10)
tend to 0 when the size m increases. Thus, for high
dimensional observations, this approximation is even
more accurate (since Σ � ΣFP and Ω � ΩFP ). This
is in agreement with the results obtained in [14] under
the assumptions that N,m→∞ and N/m→ c > 0.

Proof: To prove the statement let us rewrite the right hand
side of equation (10) as follows:

√
N(vec(M̂FP − M̂SCM )) =√
N(vec(M̂FP −M− M̂SCM + M))

=
[
1,−1

] [ √Nvec(M̂FP −M)√
Nvec(M̂SCM −M)

]
(11)

Therefore

Σ(N) = NE[vec(M̂FP − M̂SCM )vec(M̂FP − M̂SCM )H ]

=
[
1,−1

]
E

[ [ √
Nvec(M̂FP −M)√
Nvec(M̂SCM −M)

]

×
[ √

Nvec(M̂FP −M)√
Nvec(M̂SCM −M)

]H ] [
1
−1

]
= Σ

(N)
1 − 2Σ

(N)
2 + Σ

(N)
3 (12)

with

Σ
(N)
1 = NE[vec(M̂FP −M)vec(M̂FP −M)H ]

Σ
(N)
2 = NE[vec(M̂FP −M)vec(M̂SCM −M)H ]

Σ
(N)
3 = NE[vec(M̂SCM −M)vec(M̂SCM −M)H ]

(13)

where Σ
(N)
1 −−−−−→

N→+∞
Σ1 given by (8) and Σ

(N)
3 −−−−−→

N→+∞
Σ3

given by (4). Let us now introduce some notations (see [12]
for details)

• M̂ = M + δM where M̂ denote an estimate of M,
• ∆ = M−1/2M̂M−1/2 − I
• δ = vec(∆)
• TFP (theoretical FP) estimator of M is equal to

M̂TFP =
m

N

N∑
k=1

zkzHk
zHk M−1zk

. (14)

In the sequel, these quantities will be indexed according to the
studied estimator: SCM, TFP and FP. By using vec(ABC) =
(CT ⊗ A)vec(B) (see [15]), we have

Σ
(N)
2 = NE[vec(M1/2∆FP M1/2)vec(M1/2∆SCMM1/2)H ]

= (MT/2 ⊗M1/2)NE[δFP δ
H
SCM ](MT/2 ⊗M1/2)H

To derive NE[δFP δ
H
SCM ] we can use the statement that√

NδFP and m+1
m

√
NδTFP share the same asymptotic dis-

tribution for all CES distributions (see [12]). Now, it remains
to derive the quantity NE[δTFP δ

H
SCM ].

Let vk = M−1/2zk and wk = M−1/2xk. Then, for large N ,
one can write

NE[δTFP δ
H
SCM ] = NE

[
vec
(m
N

N∑
k=1

(vkvH
k

vHk vk

)
− I
)

vec
( 1

N

N∑
k=1

(
wkwH

k

)
− I
)H]

=
m

N
E
[
vec
( N∑

k=1

(vkvH
k

vH
k vk

))
vec
( N∑

k=1

(
wkwH

k

))H]
−Nvec(I)vec(I)T

=
m

N

( N∑
k=1

E
[
vec
(vkvHk

vHk vk

)
vec
(
wkwH

k

)H]
+
∑
j 6=i

E
[
vec
(vivHi

vHi vi

)
vec
(
wjwH

j

)H])
−Nvec(I)vec(I)T

= mE
[
vec
(vvH

vHv
)
vec
(
wwH

)H]
+(N − 1)E

[
vec
(
m

vvH

vHv
)]
E
[
vec
(
wwH

)H]
−Nvec(I)vec(I)T

= mE
[
vec
(vvH

vHv
)
vec
(
wwH

)H]− vec(I)vec(I)T

where vn = τnun ∼ CESm(0, I) and wn = νnun ∼
CNm(0, I) with τn being a r.va. whose PDF is unkown,
|νn|2 ∼ (1/2)χ2

2m and un ∼ U(CSm). Then, focusing on
the following variable:

P = E
[
vec
(vvH

vHv

)
vec
(

wwH
)H]

(15)

each element of matrix P becomes

Pkl = E
[
upu

∗
qu
∗
p′uq′ |ν|2

]
(16)

with k = p+m(q − 1) and l = p′ +m(q′ − 1).
Now, let us define the 4th-order moments of a complex random
vector u by

αi1,i2;j1,j2 = E[ui1ui2u
∗
j1u
∗
j1 ] (17)

By the circular symmetry properties all even-order central
moments vanish in the cases that the sets (i1, i2) and (j1, j2)
differ. In our case, that means that Pkl = 0 except for the
following indices:



1) k = p+m(p− 1)
2) k = p+m(p− 1), l = p′ +m(p′ − 1) and p 6= p′

3) k = p+m(p′ − 1), l = p+m(p′ − 1) and p 6= p′.
Now, since u ∼ U(CSm) one has |ui|2 ∼ Beta(1,m − 1),
E[|ui|4] = 2/m(m + 1) and E[|ui|2|uj |2] = 1/m(m + 1).
Also, as |ν|2 ∼ (1/2)χ2

2m one obtains the following results:
1) Pp+m(p−1),p+m(p−1) = 2/(m+ 1);
2) Pp+m(p−1),p′+m(p′−1) = 1/(m+ 1);
3) Pp+m(q−1),p+m(q−1) = 1/(m+ 1);
and thus

NE[δTFP δ
H
SCM ] −−−−−→

N→+∞
B (18)

where

B =
m

m+ 1

(
I− 1

m
vec(I)vec(I)T

)
(19)

Therefore

NE[δFP δ
H
SCM ] −−−−−→

N→+∞

m+ 1

m
B (20)

Since the covariance matrix is Hermitian and using the prop-
erty (A ⊗ C)(B ⊗ D) = (AB ⊗ CD) (see [15]), one has
Σ

(N)
2 −−−−−→

N→+∞
Σ2 where

Σ2 = (MT/2 ⊗M1/2)(MT/2 ⊗M1/2)H

− 1

m
(MT/2 ⊗M1/2)vec(I)vec(I)T (MT/2 ⊗M1/2)H

= (MT ⊗M)− 1

m
vec(M)vec(M)H (21)

Finally, we obtain the expression of Σ

Σ = Σ1 − 2Σ2 + Σ3

= (
m+ 1

m
− 2 + 1)(MT ⊗M)

+ (−m+ 1

m2
+

2

m
)vec(M)vec(M)H

=
1

m
(MT ⊗M) +

m− 1

m2
vec(M)vec(M)H (22)

The asymptotic pseudo-covariance matrix Ω is defined as

Ω = NE[vec(M̂FP − M̂SCM )vec(M̂FP − M̂SCM )T ] (23)

As derived in [7], Ω = ΣK and vec(M)HK = vec(M)T ,
which leads to the result of theorem III.1 and concludes the
proof.

IV. SIMULATIONS

In this section some simulation results are presented. The
results are obtained for complex Gaussian-distributed1 zero-
mean data with covariance matrix M whose elements are
defined by Mi,j = ρ|i−j|, i = 1, ...,m. Operator A is
defined as the empirical mean of the quantities A(i) obtained
from I Monte Carlo runs. For each iteration i, we generate a
new set of N secondary data x1, ..., xN to compute A(i).

The correlation coefficient ρ is first set to 0. In other words,
the true covariance matrix is equal to identity. It should be

1Note that a change in the underlying distribution will not affect the results
since Tyler’s estimator is distribution-free over the class of CES.
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Σ(N)(m+ 2, 1)− C3

Figure 1: Error between the empirical and the theoretical
results for three different elements

noticed that in that case the matrices Σ and Ω contain three
different sorts of nonzero elements: C1 = 1

m + m−1
m2 , C2 = 1

m
ans C3 = m−1

m2 .
Figure 1 presents the difference between an element of the

covariance matrix of
√
Nvec(M̂FP − M̂SCM ) (this matrix

will be denoted as Σ(N)) and its theoretical asymptotic value.
The results for the first diagonal, the second diagonal and a
nondiagonal element are plotted. The horizontal scale presents
the number of samples N used to estimate the covariance
matrix. The dimension of the data is set to 5. One can see
that the error tends to zero as the number of samples increases
confirming our previous findings (Theorem III.1).

Figure 2 depicts the values of three different element versus
the dimension of the data. The number of samples is set to
1000. The red dashed line presents the empirical results, while
the green smooth one draws the theoretical ones. First, one can
see that the empirical results coincide with the theoretical ones
if N is not very large. Second, one can notice that the values
of elements decrease as the dimension m increases (tend to 0
when m→∞) which justifies the statement that the behavior
of Tyler’s estimator gets closer to the one of the SCM as the
dimension of vectors increases and reinforces the usefulness
of the result in the large dimension case.

From (10) one can conclude that the asymptotic pseudo-
covariance matrix Ω contains the same elements as the
covariance matrix Σ but at different positions, due to the
commutation matrix K.

Let us now focus on a more general case when the data are
correlated with the correlation factor equal to 0.5. Figure 3
illustrates the first diagonal element of Σ(N) and its theoretical
asymptotic value versus the dimension m. One can note that
the results are a little bit degraded but still good, knowing
that the number of samples N is 1000. It worthwhile noting
that with a bigger number of samples N the empirical results
would be more accurate.

V. CONCLUSION

In this paper we have analyzed the asymptotic distribution of
Tyler’s estimator when the observed data have a CES distribu-
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Figure 2: Three different elements of Σ(N) compared with
their theoretical asymptotic values

tion. We have demonstrated that it behaves as the SCM in the
Gaussian context, even if the samples have a CES distribution.
The upshot of this is the possibility of using Tyler’s estimator
in practice and approximating its properties by the ones of
Wishart distributions. Since the Wishart distribution is well-
known, this allows us to better understand the behavior of
Tyler’s estimator in the context of CES-distributed data. For
instance, in signal detection problems, this result allows us
to use Tyler’s estimator and to theoretically adjust parameters
(e.g., the detection threshold) thanks to the properties of the
SCM.
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Figure 3: First diagonal element of Σ(N)compared with its
theoretical asymptotic value from equation (10) for ρ = 0.5
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