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Decentralized Consensus Optimization with
Asynchrony and Delays

Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H. Sayed

Abstract—We propose an asynchronous, decentralized algo-
rithm for consensus optimization. The algorithm runs over a
network in which the agents communicate with their neighbors
and perform local computation.

In the proposed algorithm, each agent can compute and com-
municate independently at different times, for different durations,
with the information it has even if the latest information from its
neighbors is not yet available. Such an asynchronous algorithm
reduces the time that agents would otherwise waste idle because
of communication delays or because their neighbors are slower.
It also eliminates the need for a global clock for synchronization.

Mathematically, the algorithm involves both primal and dual
variables, uses fixed step-size parameters, and provably converges
to the exact solution under a random agent assumption and
both bounded and unbounded delay assumptions. When running
synchronously, the algorithm performs just as well as existing
competitive synchronous algorithms such as PG-EXTRA, which
diverges without synchronization. Numerical experiments con-
firm the theoretical findings and illustrate the performance of
the proposed algorithm.

Index Terms—decentralized, asynchronous, delay, consensus
optimization.

I. INTRODUCTION AND RELATED WORK

This paper considers a connected network of n agents that
cooperatively solve the consensus optimization problem

minimize
x∈Rp

f̄(x) :=
1

n

n∑
i=1

fi(x),

where fi(x) := si(x) + ri(x), i = 1, . . . , n. (1)

We assume that the functions si and ri : Rp → R are convex
differentiable and possibly nondifferentiable functions, respec-
tively. We call fi = si + ri a composite objective function.
Each si and ri are kept private by agent i = 1, 2, · · · , n, and ri
often serves as the regularization term or the indicator function
to a certain constraint on the optimization variable x ∈ Rp that
is common to all the agents. Decentralized algorithms rely on
agents’ local computation, as well as the information exchange
between agents. Such algorithms are generally robust to failure
of critical relaying agents and scalable with network size.

In decentralized computation, especially with heterogeneous
agents or due to processing and communication delays, it can
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Fig. 1: Network and uncoordinated computing.

be inefficient or impractical to synchronize multiple nodes and
links. To see this, let xi,k ∈ Rp be the local variable of agent
i at iteration k, and let Xk = [x1,k, x2,k, . . . , xn,k]> ∈ Rn×p
collect all local variables, where k is the iteration index. In a
synchronous implementation, in order to perform an iteration
that updates the entire Xk to Xk+1, all agents will need to
wait for the slowest agent or be held back by the slowest
communication. In addition, a clock coordinator is necessary
for synchronization, which can be expensive and demanding
to maintain in a large-scale decentralized network.

Motivated by these considerations, this paper proposes an
asynchronous decentralized algorithm where actions by agents
are not required to run synchronously. To allow agents to
compute and communicate at different moments, for different
durations, the proposed algorithm introduces delays into the
iteration — the update of Xk can rely on delayed information
received from neighbors. The information may be several-
iteration out of date. Under uniformly bounded (but arbitrary)
delays and that the next update is done by a random agent ,
this paper will show that the sequence {Xk}k≥0 converges to
a solution to Problem (1) with probability one.

What can cause delays? Clearly, communication latency
introduces delays. Furthermore, as agents start and finish
their iterations independently, one agent may have updated
its variables while its neighbors are working on their current
iterations that still use old (i.e., delayed) copies of those
variables; this situation is illustrated in Fig. 1. For example,
before iteration 3, agents 1 and 2 have finished updating
their local variables x1,2 and x2,1 respectively, but agent 3
is still relying on delayed neighboring variables {x1,0, x2,0},
rather than the updated variables {x1,2, x2,1}, to update x3,3.
Therefore, both computation and communication cause delays.

A. Relationship to certain synchronous algorithms

The proposed algorithm, if running synchronously, can be
algebraically reduced to PG-EXTRA [2]; they solve problem
(1) with a fixed step-size parameter and are typically faster
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than algorithms using diminishing step sizes. Also, both al-
gorithms generalize EXTRA [3], which only deals with dif-
ferentiable functions. However, divergence (or convergence to
wrong solutions) can be observed when one runs EXTRA and
PG-EXTRA in the asynchronous setting, where the proposed
algorithm works correctly. The proposed algorithm in this
paper must use additional dual variables that are associated
with edges, thus leading to a moderate cost of updating and
communicating the dual variables.

The proposed algorithm is also very different from decen-
tralized ADMM [3]–[5] except that both algorithms can use
fixed parameters. Distributed consensus methods [6], [7] that
rely on fixed step-sizes can also converge fast, albeit only to
approximate solutions [6], [7].

Several useful diffusion strategies [8]–[13] have also been
developed for solving stochastic decentralized optimization
problems where realizations of random cost functions are
observed at every iteration. To keep continuous learning alive,
these strategies also employ fixed step-sizes, and they converge
fast to a small neighborhood of the true solution. The diffusion
strategies operate on the primal domain, but they can out-
perform some primal-dual strategies in the stochastic setting
due to the influence of gradient noise [14]. These studies
focused on synchronous implementations. Here, our emphasis
is on asynchronous networks, where delays are present and
become critical, and also on deterministic optimization where
convergence to the true solution of Problem (1) is desired.

B. Related decentralized algorithms under different settings

Our setting of asynchrony is different from randomized
single activation, which is assumed for the randomized gossip
algorithm [15], [16]. Their setting activates only one edge at
a time and does not allow any delay. That is, before each
activation, computation and communication associated with
previous activations must be completed, and only one edge
in each neighborhood can be activated at any time. Likewise,
our setting is different from randomized multi-activation such
as [17], [18] for consensus averaging, and [19]–[25] for
consensus optimization, which activate multiple edges each
time and still do not allow any delay. These algorithms can
be alternatively viewed as synchronous algorithms running in
a sequence of varying subgraphs. Since each iteration waits
for the slowest agent or longest communication, a certain
coordinator or global clock is needed.

Our setting is also different from [26]–[29], in which other
sources of asynchronous behavior in networks are allowed,
such as different arrival times of data at the agents, random
on/off activation of edges and neighbors, random on/off up-
dates by the agents, and random link failures, etc. Although
the results in these works provide notable evidence for the
resilience of decentralized algorithms to network uncertainties,
they do not consider delays.

We also distinguish our setting from the fixed communica-
tion delay setting [30], [31], where the information passing
through each edge takes a fixed number of iterations to arrive.
Different edges can have different such numbers, and agents
can compute with only the information they have, instead
of waiting. As demonstrated in [30], this setting can be

transferred into no communication delay by replacing an edge
with a chain of dummy nodes. Information passing through a
chain of τ dummy nodes simulates an edge with a τ -iteration
delay. The computation in this setting is still synchronous, so a
coordinator or global clock is still needed. [30], [32] consider
random communication delays in their setting. However, they
are only suitable for consensus averaging, not generalized for
the optimization problem (1).

Our setting is identical to the setting outlined in Section
2.6 of [33], the asynchronous decentralized ADMM. Our
algorithm, however, handles composite functions and avoids
solving possibly complicated subproblems. The recent paper
[34] also considers both random computation and commu-
nication delays. However, as the focus of that paper is a
quasi-Newton method, its analysis assumes twice continuously
differentiable functions and thus excludes nondifferentiable
functions si in our problem. In fact, [34] solves a different
problem and cannot be directly used to solve our Problem (1)
even if its objective functions are smooth. It can, however,
solve an approximation problem of (1) with either reduced
solution accuracy or low speed.

Our setting is also related with [35], in which an asyn-
chronous framework is proposed to solve a composite non-
convex optimization problem, where delays and inconsistent
reads are allowed. However, the framework in [35] is designed
for parallel computing within one single agent rather than a
multi-agent network, which is a fundamental difference with
this paper. A summary of various decentralized asynchronous
algorithms is listed in Table I.

C. Contributions

This paper introduces an asynchronous, decentralized algo-
rithm for problem (1) that provably converges to an optimal
solution assuming that the next update is performed by a
random agent and that communication is subject to arbitrary
and possibly unbounded delays. If running synchronously, the
proposed algorithm is as fast as the competitive PG-EXTRA
algorithms except, for asynchrony, the proposed algorithm
involves updating and communicating additional edge variable.

Our asynchronous setting is considerably less restrictive
than the settings under which existing non-synchronous or
non-deterministic decentralized algorithms are proposed. In
our setting, the computation and communication of agents are
uncoordinated. A global clock is not needed.

Technical contributions are also made. We borrow ideas
from monotone operator theory and primal-dual operator split-
ting to derive the proposed algorithms in compact steps. To
establish convergence under delays, we cannot follow the
existing analysis of PG-EXTRA [2]; instead, motivated by
[33], [36], a new non-Euclidean metric is introduced to absorb
the delays. In particular, the foundation of the analysis is not
the monotonicity of the objective value sequence. Instead, the
proposed approach establishes monotonic conditional expecta-
tions of certain distances to the solution. We believe this new
analysis can extend to a general set of primal-dual algorithms
beyond decentralized optimization.
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TABLE I: A comparison among asynchronous decentralized algorithms

Algorithm Synchronization Cost Allow delays in Recursions Idle Time Cost Function Exact Convergence∗

Gossip [15], [16] Reduced No Yes Average Consensus Yes
Randomized Consensus [17], [18] Reduced No Yes Average Consensus Yes

Randomized DGD [19], [26] Reduced No Yes Aggregate Optimization No
Asynchronous Diffusion [27]–[29] Reduced No Yes Aggregate stochastic Optimization No

Randomized ADMM [20], [22], [25] Reduced No Yes Aggregate Optimization Yes
Randomized Prox-DGD [23] Reduced No Yes Composite Aggregate Optimization No
Asynchronous Newton [34] None Yes No Aggregate Optimization No
Asynchronous ADMM [33] None Yes No Aggregate Optimization Yes

Asynchronous Prox-DGD (22) None Yes No Composite Aggregate Optimization No
Proposed Alg. 2 None Yes No Composite Aggregate Optimization Yes

∗ Convergence to the exact optimal solution when step size is constant.

D. Notation

Each agent i holds a local variable xi ∈ Rp, whose value
at iteration k is denoted by xi,k. We introduce variable X to
stack all local variables xi:

X :=


(
x1
)>

...
(xn)

>

 ∈ Rn×p. (2)

In this paper, we denote the j-th row of a matrix A as Aj .
Therefore, for X defined in (2), it holds that Xi = (xi)>,
which indicates that the ith row of X is the local variable
xi ∈ Rp of agent i. Now we define functions

s(X) :=

n∑
i=1

si(x
i), r(X) :=

n∑
i=1

ri(x
i),

as well as

f(X) :=

n∑
i=1

fi(x
i) = s(X) + r(X).

The gradient of s(X) is defined as

∇s(X) :=


(
∇s1(x1)

)>
...(

∇sn(xn)
)>

 ∈ Rn×p.

The inner product on Rn×p is defined as 〈X, X̃〉 :=
tr(X>X̃)=

∑n
i=1(xi)>x̃i, where X, X̃ are arbitrary matrices.

II. ALGORITHM DEVELOPMENT

Consider a strongly connected network G = {V, E}
with agents V = {1, 2, · · · , n} and undirected edges E =
{1, 2, · · · ,m}. By convention, all edges (i, j) ∈ E obey
i < j. To each edge (i, j) ∈ E , we assign a weight
wij > 0, which is used by agent i to scale the data xj it
receives from agent j. Likewise, let wji = wij for agent
j. If (i, j) /∈ E , then wij = wji = 0. For each i, we let
Ni := {j|(i, j) ∈ E or (j, i) ∈ E} ∪ {i} denote the set of
neighbors of agent i (including agent i itself). We also let
Ei := {(i, j)|(i, j) ∈ E or (j, i) ∈ E} denote the set of all
edges connected to i. Moreover, we also assume that there
exists at least one agent index i such that wii > 0.

Let W = [wij ] ∈ Rn×n denote the weight matrix, which is
symmetric and doubly stochastic. Such W can be generated

through the maximum-degree or Metropolis-Hastings rules
[37]. It is easy to verify that null{I −W} = span{1}.

The proposed algorithm involves a matrix V , which we
now define. Introduce the diagonal matrix D ∈ Rm×m with
diagonal entries De,e =

√
wij/2 for each edge e = (i, j). Let

C = [cei] ∈ Rm×n be the incidence matrix of G:

cei =


+1, i is the lower indexed agent connected to e,
−1, i is the higher indexed agent connected to e,
0, otherwise.

(3)

With incidence matrix (3), we further define

V := DC ∈ Rm×n. (4)

as the scaled incidence matrix. It is easy to verify:

Proposition 1 (Matrix factorization identity). When W and
V is generated according to the above description, we have
V >V = (I −W )/2.

A. Problem formulation

Let us reformulate Problem (1). First, it is equivalent to

minimize
x1,··· ,xn∈Rp

n∑
i=1

si(x
i) +

n∑
i=1

ri(x
i),

subject to x1 = x2 = · · · = xn. (5)

Since null{I −W} = span{1} and recall the definition of X
in (2), Problem (5) is equivalent to

minimize
X∈Rn×p

s(X) + r(X),

subject to (I −W )X = 0. (6)

By Proposition 1, we have (I −W )X = 0⇒ V >V X = 0⇒
X>V >V X = 0⇒ V X = 0. On the other hand, V X = 0⇒
V >V X = 0⇒ (I −W )X = 0. Therefore, we conclude that
(I−W )X = 0⇔ V X = 0. Therefore, Problem (6) is further
equivalent to

minimize
x∈Rn×p

s(X) + r(X),

subject to V X = 0. (7)

Now we denote

Y :=


(
y1
)>

...
(ym)

>

 ∈ Rm×p
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as the dual variable, Problem (7) can be reformulated into the
saddle-point problem

max
Y ∈Rm×p

min
X∈Rn×p

s(X) + r(X) +
1

α
〈Y, V X〉, (8)

where α > 0 is a constant parameter. Notice that a similar
formulation using the incidence and Laplacian matrices was
employed in [14] to derive primal-dual distributed optimiza-
tion strategies over networks.

B. Synchronous algorithm

Problem (8) can be solved iteratively by the primal-dual
algorithm that is adapted from [38] [39]:{

Xk+1=proxαr[X
k−α∇s(Xk)−V >(2Y k+1−Y k)],

Y k+1 =Y k + V Xk,
(9)

where the proximal operator is defined as

proxαr(U) := arg min
X∈Rn×p

{
r(X) +

1

2α
‖X − U‖2F

}
.

Next, in the X-update, we eliminate Y k+1 and use I −
2V >V = W to arrive at:{

Xk+1 = proxαr[WXk−α∇s(Xk)−V >Y k],

Y k+1 = Y k + V Xk,
(10)

which computes (Y k+1, Xk+1) from (Y k, Xk). Algorithm
(10) is essentially equivalent to PG-EXTRA developed in [2].
Algorithm (10) can run in a decentralized manner. To do so,
we associate each row of the dual variable Y with an edge
e = (i, j) ∈ E , and for simplicity we let agent i store and
update the variable ye (the choice is arbitrary). We also define

Li := {e = (i, j) ∈ E , ∀ j > i}, (11)

as the index set of dual variables that agent i needs to update.
Recall V is the scaled incidence matrix defined in (4), while

W is the weight matrix associated with the network. The
calculations of V X , V >Y and WX require communication,
and other operations are local. For agent i, it updates its local
variables xi,k+1 and {ye,k+1}e∈Li

according to
xi,k+1 =proxαri

(∑
j∈Ni

wijx
j,k−α∇si(xi,k)−

∑
e∈Ei

veiy
e,k
)
,

ye,k+1 =ye,k+
(
veix

i,k+vejx
j,k
)
, ∀ e ∈ Li,

(12)
where vei and vej are the (e, i)-th and (e, j)-th entries of the
matrix V , respectively.

Algorithm 1 implements recursion (12) in the synchronous
fashion, which requires two synchronization barriers in each
iteration k. The first one holds computing until an agent
receives all necessary input; after the agent finishes computing
its variables, the second barrier prevents it from sending out
information until all of its neighbors finish their computation
(otherwise, the information intended for iteration k + 1 may
arrive at a neighbor too early).

Algorithm 1: Synchronous algorithm based on (12)

Input: Starting point {xi,0}, {ye,0}. Set counter k = 0;
while all agents i ∈ V in parallel do

Wait until {xj,k}j∈Ni
and {ye,k}e∈Ei are received;

Update xi,k+1 according to (12);
Update {ye,k+1}e∈Li

according to (12);
Wait until all neighbors finish computing;
Set k ← k + 1;
Send out xi,k+1 and {ye,k+1}e∈Li

to neighbors;

C. Asynchronous algorithm

In the asynchronous setting, each agent computes and com-
municates independently without any coordinator. Whenever
an arbitrary agent finishes a round of its variables’ updates, we
let the iteration index k increase by 1 (see Fig. 1). As discussed
in Sec. I, both communication latency and uncoordinated
computation result in delays. Let τk ∈ Rn+ and δk ∈ Rm+ be
vectors of delays at iteartion k. We define Xk−τk

and Y k−δ
k

as delayed primal and dual variables occurring at iteration k:

Xk−τk

:=


(
x1,k−τk

1

)>
...(

xn,k−τ
k
n

)>
 ∈ Rn×p,

Y k−δ
k

:=


(
y1,k−δk1

)>
...(

ym,k−δ
k
m

)>
 ∈ Rm×p,

where τkj is the j-th element of τk and δke is the e-th element
of δk. In the asynchronous setting, recursion (10) is calculated
with delayed variables, i.e.,{

X̃k+1=proxαr[WX
k−τk−α∇s(Xk−τk

)−V >Y k−δk ],

Ỹ k+1=Y k−δ
k

+ V Xk−τk

.
(13)

Suppose agent i finishes update k + 1. To guarantee conver-
gence, instead of letting xi,k+1 = x̃i,k+1 and ye,k+1 = ỹe,k+1

directly, we propose a relaxation step{
xi,k+1 = xi,k + ηi

(
x̃i,k+1 − xi,k−τk

i

)
,

ye,k+1 = ye,k + ηi
(
ỹe,k+1 − ye,k−δke

)
, ∀e ∈ Li.

(14)

where x̃i,k+1 − xi,k−τ
k
i and ỹe,k+1 − ye,k−δ

k
e behave as

updating directions, and ηi ∈ (0, 1) behaves as a step size.
To distinguish from the step size α, we call ηi the relaxation
parameter of agent i. Its value depends on how out of date
agent i receives information from its neighbors. Longer delays
require a smaller ηi, which leads to slower convergence. Since
the remaining agents have not finished their updates yet, it
holds that {

xj,k+1 = xj,k ∀j 6= i,

ye,k+1 = ye,k ∀e /∈ Li.
(15)
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To write (14) and (15) compactly, we let Sip : Rn×p → Rn×p
be the primal selection operator associated with agent i. For
any matrix A ∈ Rn×p, [Sip(A)]j = Aj if j = i; otherwise
[Sip(A)]j = 0, where [Sip(A)]j and Aj denote the j-th row of
matrix Sip(A) and A, respectively. Similarly, we also let SLi

d :
Rm×p → Rm×p be the dual selection operator associated with
agent i. For any matrix B ∈ Rm×p, [SLi

d (B)]e = Be if e ∈ Li;
otherwise [SLi

d (B)]e = 0. With the above defined selection
operators, (14) and (15) are equivalent to{

Xk+1 = Xk + ηiS
i
p

(
X̃k+1 −Xk−τk)

,

Y k+1 = Y k + ηiS
Li

d

(
Ỹ k+1 − Y k−δk

)
.

(16)

Recursions (13) and (16) constitute the asynchronous algo-
rithm.

Similar to the synchronous algorithm, the asynchronous
recursion (13) and (16) can also be implemented in a decen-
tralized manner. When agent i is activated at iteration k:

Compute:

x̃i,k+1=proxαri

(∑
j∈Ni

wijx
j,k−τk

j−α∇si(xi,k−τ
k
i )−
∑
e∈Ei

veiy
e,k−δke

)
ỹe,k+1=ye,k−δ

k
e +

(
veix

i,k−τk
i + vejx

j,k−τk
j
)
, ∀e ∈ Li;

Relaxed updates:

xi,k+1 = xi,k + ηi

(
x̃i,k+1 − xi,k−τk

i

)
,

ye,k+1 = ye,k + ηi

(
ỹe,k+1 − ye,k−δke

)
, ∀e ∈ Li,

(17)

The entries of X,Y not held by agent i remain unchanged
from k to k + 1. Algorithm 2 summarizes the asynchronous
updates.

Algorithm 2: Asynchronous algorithm based on (17)

Input: Starting point {xi,0}, {ye,0}. Set counter k = 0;
while each agent i asynchronously do

Compute per (17) using the information it has
available;

Send out xi,k+1 and {ye,k+1}e∈Li to neighbors;

D. Asynchronous proximal decentralized gradient descent

Sec. II-C has presented a decentralized primal-dual algo-
rithm for problem (1). In [12], [13], [40], proximal gradient
descent algorithms are derived to solve stochastic composite
optimization problems in a distributed manner by networked
agents. Using techniques similar to those developed in [12],
[13], [40] we can likewise derive a proximal variant for the
consensus gradient descent algorithm in [6]; see (21) below.
Following Sec. II-C, its asynchronous version will also be
developed; see (22) below.

To derive the synchronous algorithm, we penalize the con-
straints of Problem (7) (which is equivalent to Problem (1))
and obtain an auxiliary problem:

minimize
X∈Rn×p

s(X) + r(X) +
1

α
‖V X‖2, (18)

where α > 0 is a penalty constant. By V >V = 1
2 (I −W ) in

Proposition 1, Problem (18) is exactly

minimize
X∈Rn×p

s(X) +
1

2α
X>(I −W )X︸ ︷︷ ︸

smooth

+r(X), (19)

which has the smooth-plus-proximable form. Therefore, ap-
plying the proximal gradient method with step-size α yields
the iteration:

xk+1 = proxαr

(
Xk − α[∇s(Xk)− 1

α
(I −W )Xk]

)
= proxαr

(
WXk − α∇s(Xk)

)
, (20)

Recursion (20) is ready for decentralized implementation —
each agent i ∈ V performs

xi,k+1 = proxαri

( ∑
j∈Ni

wijx
j,k − α∇si(xi,k)

)
. (21)

Since algorithm (21) solves the penalty problem (19) instead
of the original problem (1), one must reduce α during the
iterations or use a small value. Recursion (21) is similar to the
proximal diffusion gradient descent algorithm derived in [12],
[13] in which each agent first applies local proximal gradient
descent and then performs weighted averaging with neighbors.
According to [11], [37], the diffusion strategy removes the
asymmetry problem that can cause consensus implementations
to become unstable for stochastic optimization problems.

The asynchronous version of (21) allows delayed variables
and adds relaxation to (21); each agent i performs x̃i,k+1 =proxαri

(∑
j∈Ni

wijx
j,k−τk

j−α∇si(xi,k−τ
k
i )
)
,

xi,k+1 =xi,k + ηi

(
x̃i,k+1 − xi,k−τk

i

)
.

(22)

Its convergence follows from treating the proximal gradient
iteration as a fixed-point iteration and applying results from
[33]. Unlike Algorithm 2, the asynchronous algorithm (22)
uses only primal variables, so it is easier to implement. Like
all other distributed gradient descent algorithms [6], [11]–
[13], [40], however, algorithm (21) and its asynchronous
version (22) must use diminishing step sizes to guarantee exact
convergence, which causes slow convergence.

III. CONVERGENCE ANALYSIS

A. Preliminaries

Our convergence analysis is based on the theory of nonex-
pansive operators, as used in e.g., [24].

In this subsection we first present several definitions, lem-
mas and theorems that underlie the convergence analysis.

First we introduce a new symmetric matrix

G :=

[
In V >

V Im

]
∈ Rm+n.

As we will discuss later, G is an important auxiliary matrix that
helps establish the convergence properties of the synchronous
Algorithm 1 and asynchronous Algorithm 2. Meanwhile, it
also determines the range of step size α that enables the algo-
rithms to converge. Recall that the weight matrix W associated
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with the network is symmetric and doubly stochastic. Besides,
there exists at least one agent i such that wii > 0. Under these
conditions, it is shown in [37] that W has an eigenvalue 1 with
multiplicity 1, and all other eigenvalues are strictly inside the
unit circle. With such W , we can show that G is positive
definite.

Lemma 1. It holds that G � 0.

Proof: According to the Schur Complement condition on
positive definiteness, we known G � 0 ⇐⇒ I � 0, I −
V >V � 0. Recall Proposition 1 and λmin(W ) > −1, it holds
that I − V >V = 1

2 (I +W ) � 0, which proves G � 0.
To analyze the convergence of the proposed Algorithms 1

and 2, we still need a classic result from the nonexpansive
operator theory. In the following we provide related definitions
and preliminary results.

Definition 1. Let H be a finite dimensional vector space (e.g.
Rp or Rn×p) equipped with a certain inner product 〈·, ·〉 and
its induced norm ‖x‖ =

√
〈x,x〉,∀x ∈ H. An operator P :

H → H is called nonexpansive if

‖Px− Py‖ ≤ ‖x− y‖,∀x,y ∈ H.

Definition 2. For any operator P : H → H (not necessarily
nonexpansive), we define FixP := {x ∈ H|x = Px} to be
the set of fixed points of operator P .

Definition 3. When the operator P is nonexpansive and β ∈
(0, 1), the combination operator

Q := (1− β)I + βP

is defined as the averaged operator associated with P .

With Definition 2 and 3, it is easy to verify FixQ = FixP .
The next classical theorem states the convergence property

of an averaged operator.

Theorem 1 (KM iteration [41], [42]). Let P : H → H be a
nonexpansive operator and β ∈ (0, 1). Let Q be the averaged
operator associated with P . Suppose that the set FixQ is
nonempty. From any starting point z0, the iteration

zk+1 = Qzk = (1− β)zk + βPzk

produces a sequence {zk}k≥0 converging to a point z∗ ∈
FixQ (and hence also to a point z∗ ∈ FixP).

For the remainder of the paper, we consider a specific
Hilbert space H for the purpose of analysis.

Definition 4. Define H to be the Hilbert space R(n+m)×p

endowed with the inner product 〈Z, Z̃〉A := tr(Z>AZ̃) and
the norm ‖Z‖A :=

√
〈Z,Z〉A, where A ∈ R(n+m)×(n+m) is

a positive definite matrix, and Z ∈ R(n+m)×p.

B. Convergence of Algorithm 1

In this subsection we prove the convergence of Algorithm 1.
We first re-derive the iteration (9) using operator splitting
techniques and identify it as an averaged operator. Next, we
apply Theorem 1 and establish its convergence property.

Let ρmin := λmin(G) > 0 be the smallest eigenvalue of G.
In the following assumption, we specify the properties of the
cost functions si and ri, and the step-size α.

Assumption 1.
1) The functions si and ri are closed, proper and convex.
2) The functions si are differentiable and satisfy:

‖∇si(x)−∇si(x̃)‖ ≤ Li‖x− x̃‖, ∀x, x̃ ∈ Rp,

where Li > 0 is the Lipschitz constant.
3) The parameter α in synchronous algorithm (12) and

asynchronous algorithm (17) satisfies 0 < α < 2ρmin/L,
where L := maxi Li.

Since r and s are convex, the solution to the saddle point
problem (8) is the same as the solution to the following
Karush-Kuhn-Tucker (KKT) system:

0 ∈
([
∇s 0
0 0

]
︸ ︷︷ ︸
operator A

+

[
∂r 0
0 0

]
+

[
0 1

αV
>

− 1
αV 0

]
︸ ︷︷ ︸

operator B

)[
X
Y

]
︸︷︷︸
Z

, (23)

which can be written as

0 ∈ AZ + BZ, with Z :=

[
X
Y

]
∈ R(n+m)×p.

For any positive definite matrix M ∈ R(n+m)×(n+m), we have

0 ∈ AZ + BZ ⇔ MZ −AZ ∈MZ + BZ (24)

⇔ Z −M−1AZ ∈ Z +M−1BZ
⇔ Z = (I +M−1B)−1(I −M−1A)Z,

Note that (I + M−1B)−1 is well-defined and single-valued;
it is called resolvent [42]. From now on, we let

M :=
1

α
G � 0 (25)

and define the operator

T := (I +M−1B)−1(I −M−1A). (26)

From (23), (24) and the definition of operator T in (26), we
conclude that the solutions to the KKT system (23) coincide
with the fixed points of T .

Now we consider the fixed-point iteration

Zk+1 = T Zk = (I +M−1B)−1(I −M−1A)Zk, (27)

which reduces to

MZk −AZk ∈MZk+1 + BZk+1. (28)

Substituting M defined in (25) into (28) and multiplying α to
both sides, we will achieve{
Xk+V >Y k−α∇s(Xk)∈Xk+1+2V >Y k+1 +α∂r(Xk+1),

Y k + V Xk = Y k+1 + V Xk+1 − V Xk+1,

which, by cancellation, is further equivalent to Recursion (9).
Until now, we have rewritten the primal-dual algorithm (9)

as a fixed-point iteration (27) with operator T defined in
(26). Besides, we also established that FixT coincide with
the solutions to the KKT system (23). What still needs to be
proved is that {Zk} generated through the fixed-point iteration
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(27) will converge to FixT . Below is a classic important
result of the operator T . For a proof, see [43].

Theorem 2. Under Assumption 1 and the above-defined norm
with M = G/α, there exists a nonexpansive operator O and
some β ∈ (0, 1) such that the operator T defined in (26)
satisfies T = (1−β)I+βO. Hence, T is an averaged operator.

The convergence of the synchronous update (9) follows
directly from Theorems 1 and 2.

Corollary 1. Under Assumption 1, Algorithm 1 produces Zk

that converges to a solution Z∗ = [X∗;Y ∗] to the KKT
system (23), which is also a saddle point to Problem (8).
Therefore, X∗ is a solution to Problem (7).

Corollary 1 states that if we run algorithm 1 in the syn-
chronous fashion, the agents’ local variables will converge to
a consensual solution to the problem (1).

C. Convergence of Algorithm 2
Algorithm 2 is an asynchronous version that involves ran-

dom variables. In this subsection we will establish its almost
sure (a.s.) convergence (i.e., with probability 1). The analysis
is inspired by [33] and [36].

1) Algorithm reformulation: It was shown in Sec. III-B that
Algorithm 1 can be rewritten as a fixed-point iteration (27).
Now we let Ti be the operator corresponding to the update
performed by agent i, i.e., Ti only updates xi and {ye}e∈Li

(the definition of Li can be referred to (11)) and leaves the
other variables unchanged. We define

Ii = {i} ∪ {n+ e| e is the edge index of (i, j) ∈ Li }

to be the set of all row indices of Z that agent i needs to
update. The operator Ti : R(m+n)×p → R(m+n)×p is defined
as follows. For any Z ∈ R(m+n)×p, TiZ ∈ R(m+n)×p is a
matrix with

(TiZ)j :=

{
(T Z)j , if j ∈ Ii;
Zj , if j /∈ Ii,

(29)

where Zj , (T Z)j and (TiZ)j are the j-th row of Z, T Z and
TiZ, respectively (see the notation section I-D). Moreover, we
define

S := I − T , Si := I − Ti. (30)

Based on the definition of the operator Ti, for any Z ∈
R(m+n)×p, SiZ ∈ R(m+n)×p is also a matrix with

(SiZ)j :=

{
(Z − TiZ)j , if j ∈ Ii;

0, if j /∈ Ii.
(31)

We also define the delayed variable used in iteration k as

Ẑk :=

[
Xk−τk

Y k−δ
k

]
∈ R(m+n)×p. (32)

Suppose agent ik is activated at iteration k, with definitions
(29) and (32) it can be verified that recursions (13) and (16)
are equivalent to:{

Z̃k = Tik Ẑk,
Zk+1 = Zk − ηik

(
Ẑk − Z̃k

)
.

(33)

From recursion (33) we further have

Zk+1 = Zk − ηik
(
Ẑk − Tik Ẑk

) (31)
= Zk − ηikSik Ẑk. (34)

Therefore, the asynchronous update algorithm (17) can be
viewed as a stochastic coordinate-update iteration based on
delayed variables [33], [36], with each coordinate update
taking the form of (34).

2) Relation between Ẑk and Zk: The following assumption
introduces a uniform upper bound for the random delays.

Assumption 2. At any iteration k, the delays τkj , j =
1, 2, . . . , n and δke , e = 1, 2, . . . ,m defined in (17) have a
uniform upper bound τ > 0.

As we are finishing this paper, the recent work [44] has
relaxed the above assumption by associating step sizes to
potentially unbounded delays. We still keep Assumption 2 in
our main analysis and shall discuss the case of unbounded
delays in Section III-E

Under Assumption 2, the relation between Ẑk and Zk can
be characterized in the following lemma [33]:

Lemma 2. Under Assumption 2, it holds that

Ẑk = Zk +
∑

d∈J(k)

(Zd − Zd+1), (35)

where J(k) ⊆ {k − 1, ..., k − τ} is an index set.

The proof of relation (35) can be referred to [33].
3) Convergence analysis: Now we introduce an assumption

about the activation probability of each agent.

Assumption 3. For any k > 0, let ik be the index of the agent
that is responsible for the k-th completed update. It is assumed
that each ik is a random variable. The random variable ik is
independent of i1, i2, · · · , ik−1 as

P (ik = i) =: qi > 0,

where qi’s are constants.

This assumption is satisfied under either of the following
scenarios: (i) every agent i is activated following an indepen-
dent Poisson process with parameter λi, and any computation
occurring at agent i is instant, leading to qi = λi/(

∑n
i=1 λi);

(ii) every agent i runs continuously, and the duration of
each round of computation follows the exponential distribution
exp(βi), leading to qi = β−1

i /(
∑n
i=1 β

−1
i ). Scenarios (i) and

(ii) often appear as assumptions in the existing literature.

Definition 5. Let (Ω,F , P ) be the probability space we work
with, where Ω, F and P are the sample space, σ-algebra and
the probability measure, respectively. Define

Zk := σ(Z0, Ẑ0, Z1, Ẑ1, · · · , Zk, Ẑk)

to be the σ-algebra generated by Z0, Ẑ0, · · · , Zk, Ẑk.

Assumption 4. Throughout our analysis, we assume

P (ik = i|Zk) = P (ik = i) = qi, ∀i, k.

Remark 1. Assumption 4 indicates that the index responsible
for the k-th completed update, ik, is independent of the delays
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in different rows of Ẑk. Although not always practical, it is a
key assumption for our proof to go through. One of the cases
for this assumption to hold is when every row of Ẑk always
has the maximum delay τ . In reality, what happens is between
this worst case and the no-delay case. Besides, Assumption 4 is
also a common assumption in the recent literature of stochastic
asynchronous algorithms; see [33] and the references therein.

Now we are ready to prove the convergence of Algorithm 2.
For simplicity, we define

Z̄k+1 := Zk − η S Ẑk, qmin := min
i
{qi} > 0, (36)

λmax := λmax(M), λmin := λmin(M),

where η > 0 is some constant, and M � 0 is defined in (25).
Note that Z̄k+1 is the full update as if all agents synchronously
compute at the k-th iteration. It is used only for analysis.

Lemma 3. Define Q := I − P . When P : R(m+n)×p →
R(m+n)×p is nonexpansive under the norm ‖ · ‖A, we have

〈Z − Z̃,QZ −Q Z̃〉A ≥
1

2
‖QZ −Q Z̃‖2A, (37)

where Z, Z̃ ∈ R(m+n)×p are two arbitrary matrices.

Proof: By nonexpansiveness of P , we have

‖PZ − P Z̃‖2A ≤ ‖Z − Z̃‖2A, ∀ Z, Z̃ ∈ R(m+n)×p. (38)

Notice that

‖PZ − P Z̃‖2A = ‖Z − Z̃ − (QZ −Q Z̃)‖2A
= ‖Z−Z̃‖2A−2〈Z−Z̃,QZ−Q Z̃〉A+‖QZ−Q Z̃‖2A. (39)

Substituting (39) into (38), we achieve (37).
Let κ be its condition number of matrix G. Since M =

G/α, κ is also the condition number of M . The following
lemma establishes the relation between SiẐ and SẐ.

Lemma 4. Recall the definition of S,Si and M in (30) and
(25). It holds that

n∑
i=1

SiẐk = S Ẑk,
n∑
i=1

‖SiẐk‖2M ≤ κ‖S Ẑk‖2M . (40)

Proof: The first part comes immediately from the defini-
tion of S and Si in (30) and (34). For the second part,

n∑
i=1

‖SiẐk‖2M ≤
n∑
i=1

λmax‖SiẐk‖2F = λmax‖SẐk‖2F

≤ λmax

λmin
‖SẐk‖2M = κ‖SẐk‖2M .

The next lemma shows that the conditional expectation of
the distance between Zk+1 and any Z∗ ∈ FixT for given Zk
has an upper bound that depends on Zk and Z∗ only. From
now on, the relaxation parameters will be set as

ηi =
η

nqi
, (41)

where η > 0 is the constant appearing at (36).

Lemma 5. Let {Zk}k≥0 be the sequence generated by Algo-
rithm 2. Then for any Z∗ ∈ FixT , we have

E
(
‖Zk+1 − Z∗‖2M

∣∣Zk)
≤ ‖Zk − Z∗‖2M +

ξ

n

∑
k−τ≤d<k

‖Zd − Zd+1‖2M

+
1

n

(
τ

ξ
+

κ

nqmin
− 1

η

)
‖Zk − Z̄k+1‖2M , (42)

where E(· | Zk) denotes conditional expectation on Zk and ξ
is an arbitrary positive number.

Proof: We have

E
(
‖Zk+1 − Z∗‖2M | Zk

)
= E

(∥∥∥Zk − η

nqik
Sik Ẑk − Z∗

∥∥∥2

M

∣∣∣Zk) (by (34), (41))

= E
( 2η

nqik

〈
Sik Ẑk, Z∗ − Zk

〉
M

+
η2

n2q2
ik

‖Sik Ẑk‖2M
∣∣Zk)

+ ‖Zk − Z∗‖2M
(a)
=

2η

n

n∑
i=1

〈
SiẐk, Z∗ − Zk

〉
M

+
η2

n2

n∑
i=1

1

qi
‖SiẐk‖2M

+ ‖Zk − Z∗‖2M
(40)
= ‖Zk−Z∗‖2M +

2η

n

〈
SẐk, Z∗−Zk

〉
M

+
η2

n2

n∑
i=1

1

qi
‖SiẐk‖2M ,

(43)

where the equality (a) holds because of Assumptions 3 and 4.
On the other hand, note that
n∑
i=1

1

qi
‖SiẐk‖2M ≤

1

qmin

n∑
i=1

‖SiẐk‖2M
(40)
≤ κ

qmin

n∑
i=1

‖SẐk‖2M

(36)
=

κ

η2qmin
‖Zk − Z̄k+1‖2M , (44)

and〈
SẐk, Z∗ − Zk

〉
M

(35)
= 〈SẐk, Z∗ − Ẑk +

∑
d∈J(k)

(Zd − Zd+1)〉M

(36)
= 〈SẐk, Z∗ − Ẑk〉M +

1

η

∑
d∈J(k)

〈Zk − Z̄k+1, Zd − Zd+1〉M

(b)

≤〈SẐk − SZ∗, Z∗ − Ẑk〉M

+
1

2η

∑
d∈J(k)

(
1

ξ
‖Zk − Z̄k+1‖2M + ξ‖Zd − Zd+1‖2M

)
(37)
≤−1

2
‖SẐk‖2M+

1

2η

∑
d∈J(k)

(
1

ξ
‖Zk−Z̄k+1‖2M+ξ‖Zd−Zd+1‖2M

)
(36)
= − 1

2η2
‖Zk − Z̄k+1‖2M +

|J(k)|
2ξη

‖Zk − Z̄k+1‖2M

+
ξ

2η

∑
d∈J(k)

‖Zd − Zd+1‖2M , (45)

where the inequality (b) follows from Young’s inequality and
the fact that SZ∗ = (I − T )Z∗ = 0 since Z∗ is a fixed
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point of T . Substituting (44) and (45) into (43) and using
J(k) ⊆ {k − 1, ..., k − τ} we get the desired result.

The term ξ
n

∑
k−τ≤d<k ‖Zd−Zd+1‖2 in the inequality (42)

appears because of the delay. Next we stack τ + 1 iterates
together to form a new vector and introduce a new metric in
order to absorb these terms.

Let Hτ+1 =
∏τ
i=0H be a product space (Re-

call H denotes R(m+n)×p, see Definition 4). For any
(Z0, . . . , Zτ ), (Z̃0, . . . , Z̃τ ) ∈ Hτ+1, we let 〈·, ·〉 be the
induced inner product, i.e., 〈(Z0, . . . , Zτ ), (Z̃0, . . . , Z̃τ )〉 :=∑τ
i=0〈Zi, Z̃i〉M =

∑τ
i=0 tr(Z>i MZ̃i). Define a matrix U ′ ∈

R(τ+1)×(τ+1) as

U ′ := U1 + U2,

where

U1 :=


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



U2 :=

√
qmin

κ



τ −τ
−τ 2τ − 1 1− τ

1− τ 2τ − 3 2− τ
. . . . . . . . .

−2 3 −1
−1 1


,

and let U = U ′⊗I where ⊗ represents the Kronecker product
and I is the identity operator. For a given (A0, · · · , Aτ ) ∈
Hτ+1,

(B0, · · · , Bτ ) = U(A0, · · · , Aτ )

is given by:

B0 = A0 + τ

√
qmin

κ
(A0 −A1),

Bi =

√
qmin

κ
[(i−τ−1)Ai−1+(2τ−2i+1)Ai + (i− τ)Ai+1],

Bτ =

√
qmin

κ
(Aτ −Aτ−1), (46)

where the index i for Bi is from 1 to τ+1.The linear operator
U is a self-adjoint and positive definite since U ′ is symmetric
and positive definite. We define 〈·, ·〉U = 〈·, U ·〉 as the U -
weighted inner product and ‖ · ‖U as the induced norm. We
further let

Zk := (Zk, Zk−1, . . . , Zk−τ ) ∈ Hτ+1, k ≥ 0,

Z∗ := (Z∗, . . . , Z∗) ∈ Hτ+1,

where Zk = Z0 for k < 0. We have

‖Zk − Z∗‖2U
(46)
= ‖Zk−Z∗‖2M+

√
qmin

κ

k−1∑
d=k−τ

(d−(k−τ)+1)‖Zd−Zd+1‖2M ,(47)

and the following fundamental inequality.

Theorem 3 (Fundamental inequality). Let {Zk}k≥0 be the
sequence generated by Algorithm 2. Then for any Z∗ =
(Z∗, . . . , Z∗), it holds that

E
(
‖Zk+1 − Z∗‖2U

∣∣Zk)
≤ ‖Zk−Z∗‖2U−

1

n

(
1

η
− 2τ

√
κ

n
√
qmin
− κ

nqmin

)
‖Z̄k+1−Zk‖2M .(48)

Proof: Let ξ = n
√
qmin/κ. We have

E(‖Zk+1 − Z∗‖2U |Zk)
(47)
= E(‖Zk+1−Z∗‖2M |Zk)

+ ξ
∑k
d=k+1−τ

d−(k−τ)
n E(‖Zd−Zd+1‖2M |Zk)

(34)
= E(‖Zk+1 − Z∗‖2M |Zk) + ξτ

n E( η2

n2q2ik
‖Sik Ẑk‖2M |Zk)

+ ξ
∑k−1
d=k+1−τ

d−(k−τ)
n ‖Zd − Zd+1‖2M

(44)
≤ E(‖Zk+1 − Z∗‖2M |Zk) + ξτκ

n3qmin
‖Zk − Z̄k+1‖2M

+ ξ
∑k−1
d=k+1−τ

d−(k−τ)
n ‖Zd − Zd+1‖2M

(42)
≤ ‖Zk−Z∗‖2M+1

n

(
τ
ξ+

ξτκ
n2qmin

+ κ
nqmin

− 1
η

)
‖Zk−Z̄k+1‖2M

+ ξ
n

∑
k−τ≤d<k ‖Zd − Zd+1‖2M

+ξ
∑k−1
d=k+1−τ

d−(k−τ)
n ‖Zd − Zd+1‖2M

= ‖Zk−Z∗‖2M+1
n

(
τ
ξ+

ξτκ
n2qmin

+ κ
nqmin

− 1
η

)
‖Zk−Z̄k+1‖2M

+ ξ
n

∑k−1
d=k−τ (d− (k − τ) + 1)‖Zd − Zd+1‖2M

(47)
= ‖Zk − Z∗‖2U+ 1

n

(
2τ
√
κ

n
√
qmin

+ κ
nqmin

− 1
η

)
‖Zk−Z̄k+1‖2M .

Hence, the desired inequality (48) holds.

Remark 2 (Stochastic Fejér monotonicity [45]). From (48),
suppose

0 < η <
nqmin

2τ
√
κqmin + κ

, (49)

then we have

E(‖Zk+1 − Z∗‖2U |Zk) ≤ ‖Zk − Z∗‖2U ,

i.e., the sequence {Zk}k≥0 is stochastically Fejér monotone,
which means the covariance of Zk is non-increasing as the
iteation k evolves.

Based on Theorem 3, we have the following corollary:

Corollary 2. When η satisfies (49), we have
1)
∑∞
k=0 ‖Zk − Z̄k+1‖2M <∞ a.s.;

2) the sequence {‖Zk−Z∗‖2U}k≥0 converges to a [0,+∞)-
valued random variable a.s.

Proof: The condition (49) implies that 1
η −

2τ
√
κ

n
√
qmin
−

κ
nqmin

> 0. Applying [46, Theorem 1] to 48 directly gives
the two conclusions.

The following lemma establishes the convergence properties
of the sequences {Zk}∞k=1 and {Zk}∞k=1.

Lemma 6. Define S∗ = {(Z∗, . . . , Z∗)|Z∗ ∈ FixT }, let
(Zk)k≥0 ⊂ H be the sequence generated by Algorithm 2,
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η ∈ (0, ηmax] for certain ηmax satisfying (49). Let Z (Zk) be
the set of cluster points of {Zk}k≥0. Then, Z (Zk) ⊆ S∗ a.s.

Proof: We take several steps to complete the proof of this
lemma.

(i) Firstly, from Corollary 2, we have Zk − Z̄k+1 → 0 a.s..
Since ‖Zk − Zk+1‖F ≤

√
κ

nqmin
‖Zk − Z̄k+1‖M (c.f. (44)), we

have Zk−Zk+1 → 0 a.s. Then from (35), we have Ẑk−Zk →
0 a.s.

(ii) From Corollary 2, we have that (‖Zk − Z∗‖2U )k≥0

converges a.s., and so does (‖Zk−Z∗‖U )k≥0. Hence, we have
limk→∞ ‖Zk − Z∗‖U = γ a.s., where γ is a [0,+∞)-valued
random variable. Hence, (‖Zk −Z∗‖U )k≥0 must be bounded
a.s., and so is (Zk)k≥0.

(iii) We claim that there exists Ω̃ ∈ F such that P (Ω̃) = 1
and, for every ω ∈ Ω̃ and every Z∗ ∈ S∗, (‖Zk(ω)−Z∗‖U )k≥0

converges.
The proof follows directly from [45, Proposition 2.3 (iii)]. It

is worth noting that Ω̃ in the statement works for all Z∗ ∈ S∗,
namely, Ω does not depend on Z∗.

(iv) By (i), there exists Ω̂ ∈ F such that P (Ω̂) =
1 and Zk(w) − Zk+1(w) → 0, ∀w ∈ Ω̂. For any
ω ∈ Ω̂, let (Zkl(ω))l≥0 be a convergent subsequence
of (Zk(ω))k≥0, i.e., Zkl(ω) → Z, where Zkl(ω) =
(Zkl(ω), Zkl−1(ω)..., Zkl−τ (ω)) and Z = (u0, ...,uτ ). Note
that Zkl(ω) → Z implies Zkl−j(ω) → uj , ∀j. Therefore,
ui = uj , for any i, j ∈ {0, · · · , τ} because Zkl−i(ω) −
Zkl−j(ω)→ 0. Furthermore, observing η > 0, we have

liml→∞ Ẑkl(ω)− T Ẑkl(ω)

= lim
l→∞

SẐkl(ω) = lim
l→∞

1

η
(Zkl(ω)− Z̄kl+1(ω)) = 0.

From the triangle inequality and the nonexpansiveness of T ,
it follows that

‖Zkl(ω)− T Zkl(ω)‖M
=‖Zkl(ω)−Ẑkl(ω)+Ẑkl(ω)−T Ẑkl(ω)+T Ẑkl(ω)−T Zkl(ω)‖M
≤‖Zkl(ω)− Ẑkl(ω)‖M + ‖Ẑkl(ω)− T Ẑkl(ω)‖M

+ ‖T Ẑkl(ω)− T Zkl(ω)‖M
≤2‖Zkl(ω)− Ẑkl(ω)‖M + ‖Ẑkl(ω)− T Ẑkl(ω)‖M
≤2
∑
d∈J(kl)

‖Zd(ω)−Zd+1(ω)‖M+‖Ẑkl(ω)−T Ẑkl(ω)‖M .

By (III-C3) and (III-C3), we have from the above inequality
that liml→∞ Zkl(ω)−T Zkl(ω) = 0. Now the demiclosedness
principle [42, Theorem 4.17] implies u0 ∈ Fix T , and this
implies the statement of the lemma.

From Lemma 6 and Opial’s Lemma [47], we have the
convergence theorem of the asynchronous algorithm.

Theorem 4. Let (Zk)k≥0 ⊂ H be the sequence generated by
Algorithm 2, η ∈ (0, ηmax] for certain ηmax satisfying (49).
If Assumptions 3, 2 and 4 hold, then (Zk)k≥0 converges to a
FixT -valued random variable a.s..

This theorem guarantees that, if we run the asynchronous
algorithm 2 with an arbitrary starting point Z0, then the
sequence {Zk} produced will converge to one of the solutions
to problem (8) almost surely. From the upper bound of ηmax,

we can see that we must relax the update more if maximum
delay τ becomes larger, or if the matrix M becomes more
ill-conditioned. The relative computation speed of the slowest
agent will also affect the relaxation parameter.

D. New step size rules

For both the synchronous and asynchronous algorithms, we
require the step size α be less than 2ρmin/L (Assumption 1).
Both ρmin and L involve global properties across the network:
ρmin is related to the property of the matrix V and L is related
to all the functions si. Unless they are known a priori, we need
to apply a consensus algorithm to obtain them.

In this section we introduce a step size αi for each agent
i that depends only on its local properties. The following
theorem is a consequence of combining results of [48, Lemma
10] and the monotone operator theory.

Theorem 5. Let the iteration Zk+1 = T Zk be defined as
xi,k+1=proxαiri

(∑
j∈Ni

wijx
j,k−αi∇si(xi,k)−

∑
e∈Ei

veiy
e,k
)
,∀i,

ye,k+1 = ye,k +
(
veix

i,k + vejx
j,k
)
, ∀e = (i, j) ∈ Li,

with αi = 1
Li/γ+1−wii

for an arbitrary 0 < γ < 2. Then
under assumption 1, the operator T is an averaged operator.

Because this new operator T is still an averaged operator,
the convergence results, Corollary 1 and Theorem 4, still hold.

E. Allowing unbounded delays

Using the analytical tools developed in [44], we can fur-
ther prove that our algorithm allows unbounded delays. The
detailed proofs are omitted due to the page limit; interested
readers are referred to [44].

We make the following assumption.

Assumption 5.

qi =
1

n
, ∀i = 1, 2, ..., n.

Assumption 5 is made for simplicity of formulas. Only qi ≥
ε > 0 for i is needed.

Stochastic unbounded delays
Instead of Assumption 2, we make the following assumptions
on the delay vectors τk, δk.

Assumption 6. The delay vectors {τk}k≥0 are i.i.d. random
variables; so are the delay vectors {δk}k≥0. In addition, they
are independent of the agents i1, . . . , ik, . . .

Assumption 7 (Evenly old delays). We assume that the delays
are evenly old, meaning that there exists an integer B > 0,
such that for all k ≥ 0, all i, j = 1, ..., n, all e, f = 1, ...,m,

|τki − τkj | ≤ B,
|τki − δke | ≤ B,
|δke − δkf | ≤ B.

In Assumption 7, only the existence of B is required. It can
be as long as it needs to be.
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Definition 6. We define

∆k : = max{τk1 , . . . , τkn , δk1 , . . . , δkm}; (50)

Pl : = P (∆k ≥ l), l = 0, 1, . . .

We have the following theorem.

Theorem 6. Let (Zk)k≥0 ⊂ H be the sequence generated
by Algorithm 2, Let Assumptions 5, 4, 6 and 7 hold. Then
(Zk)k≥0 converges to a FixT -valued random variable a.s. if
either of the following holds:

1)
∑∞
l=1(lPl)

1/2 < ∞; the step sizes for each agent i are
equal and satisfy

0 < ηi <
(
κ+ 1√

n

∑∞
l=1 P

1/2
l (l1/2 + l−1/2)

)−1

;

2)
∑∞
l=1(Pl)

1/2 < ∞, the ηi’s are equal and satisfy 0 <

ηi <
(
κ+ 2√

n

∑∞
l=1 P

1/2
l

)−1

.

In both scenarios of Theorem 6, Pl are required to decay
fast when l grows. Bigger step sizes can be taken when the
delay distribution has thinner tails. In particular, bounded de-
lays and delays following a geometric distribution are special
cases of both scenarios.

Unbounded deterministic delays
In the following, we allow the delays to be arbitrary.

Assumption 8. The delay vectors τk, δk are arbitrary, with
lim inf ∆k <∞ where ∆k is defined in (50).

Assumption 8 means that there exists an bound B, as large
as it needs to be, such that for infinite many iterations, the
delays are no larger than B.

Definition 7. Let (Zk)k≥0 ⊂ H be the sequence generated
by Algorithm 2. For all positive integers T , define QT be a
subsequence of (Zk)k≥0 obtained by removing the iterates
with ∆k > T .

We have the following convergence result.

Theorem 7. Let (Zk)k≥0 ⊂ H be the sequence generated by
Algorithm 2. Let Assumptions 5, 4 and 8 hold. Fix γ > 0, and
let the step sizes ηi vary by each iteration and satisfy

0 < ηki <

(
κ+

1√
n

(1 +
1

γ
) +

1

2 + γ
(∆k + 1)2+γ)

)−1

.

Then for all T ≥ lim inf ∆k, the sequence QT converges to
the same FixT -valued random variable a.s.

Theorem 7 requires the step sizes to change according
to the current delay and the convergence is applied to the
subsequence with some iterates excluded as in Definition 6.

IV. NUMERICAL EXPERIMENTS

In this part we simulate the performance of the proposed
asynchronous algorithm (17). We will compare it with its
synchronous counterpart (12) (synchronous PG-EXTRA) as
well as the proximal gradient descent algorithms (synchronous
algorithm (21) and asynchronous algorithm (22)).

In the following experimental settings, we generate the
network as follows. The location of the n agents are randomly
generated in a 30 × 30 area. If any two agents are within a

distance of 15 units, they are regarded as neighbors and one
edge is assumed to connect them. Once the network topology
is generated, the associated weighting matrix W is produced
according to the Metropolis-Hastings rule [37].

In all simulations, we let each agent start a new round of
update, with available neighboring variables which involves
delays in general, instantly after the finish of last one. To
guarantee each agent to be activated i.i.d, the computation
time of agent i is sampled from an exponential distribution
exp(1/µi). For agent i, µi is set as 2 + |µ̄| where µ̄ follows
the standard normal distribution N(0, 1). The communication
times is also simulated. The communication time between
agents are independently sampled from exp(1/0.6). After
the computation time is generated, the probability qi can be
computed accordingly.

In all curves in the following figures, the relative error
‖Xk−X∗‖F
‖X0−X∗‖F against time is plotted, where X∗ is the exact
solution to (1).

A. Decentralized compressed sensing

For decentralized compressed sensing, each agent i ∈
{1, 2, · · · , n} holds some measurements: bi = Aix + ei ∈
Rmi , where Ai ∈ Rmi×p is a sensing matrix, x ∈ Rp is
the common unknown sparse signal, and ei is i.i.d. Gaussian
noise. The goal is to recover x. The number of measurements∑n
i=1mi may be less than the number of unknowns p, so we

solve the `1-regularized least squares:

minimize
x

1
n

∑n
i=1si(x) + ri(x),

where si(x) = 1
2‖Aix− bi‖

2
2, ri(x) = θi‖x‖1, and θi is the

regularization parameter with agent i.
The tested network has 10 nodes and 14 edges. We set

mi = 3 for i = 1, · · · , 10 and p = 50. The entries of Ai, ei are
independently sampled from the standard normal distribution
N(0, 1), and Ai is normalized so that ‖Ai‖2 = 1. The signal
x is generated randomly with 20% nonzero elements. We set
the regularization parameters θi = 0.01.

The step sizes of all the four algorithms are tuned by hand
and are nearly optimal. The step size α for both the primal
synchronous algorithm (21) and the asynchronous algorithm
(22) are set to be 0.05. This choice is a compromise between
convergence speed and accuracy. The relaxation parameters
for the asynchronous algorithm (22), are chosen to be ηi =
0.036/qi. The step size α for both synchronous PG-EXTRA
Algorithm 1 and asynchronous Algorithm 2 are set to be
1. The relaxation parameters for asynchronous Algorithm 2
are chosen to be ηi = 0.0288/qi. From Fig. 2 we can see
that asynchronous primal algorithm (22) is faster than its
synchronous version (21), but both algorithms are far slower
than synchronous PG-EXTRA Algorithm 1 and asynchronous
Algorithm 2. The latter two algorithms exhibit linear conver-
gence and Algorithm 2 converges significantly faster. Within
the same period (roughtly 2760ms), the two asynchronous
algorithm finishes 21 times as many rounds of computation
and communication as the synchronous counterparts, due to
the elimination of waiting time.

To better illustrate the reason why the asynchronous Al-
gorithm 2 is much faster than the synchronous Algorithm
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agent 1 2 3 4 5
time (ms) 0.497 0.033 0.944 0.551 1.152

agent 6 7 8 9 10
time (ms) 0.072 0.112 0.996 0.049 0.025

TABLE II: Sampled computation time in the 1st iteration.

edge (1,2) (1,10) (1,8) (2,3) (2,5) (2,8) (2,9)
time(ms) 0.489 1.425 0.024 1.191 2.862 2.140 0.091

edge (3,6) (4,6) (4,7) (4,9) (6,7) (7,8) (8,10)
time(ms) 1.429 0.018 2.359 2.233 0.003 1.952 2.412

edge (2,1) (10,1) (8,1) (3,2) (5,2) (8,2) (9,2)
time (ms) 2.762 1.165 1.672 1.828 0.569 4.592 0.617

edge (6,3) (6,4) (7,4) (9,4) (7,6) (8,7) (10,8)
time (ms) 0.385 0.887 1.152 0.744 2.716 0.649 3.031

TABLE III: Sampled communication time in the 1st iteration.

1, we list the computation and communication time during
the first iteration in Tables II and III, respectively. In Table
III each edge corresponds to two rounds of communication
time: communications from agent i to j and from j to i.
From Table II it is observed that the longest computation time
is 1.152 ms. From Table III it is observed that the longest
communication time is 4.592 ms. Therefore, the duration
for the first iteration in the synchronous Algorithm 1 is
1.152 + 4.592 = 5.744 ms. However, in the asynchornous
Algorithm 2, each agent will start a new iteration right after the
finish of its previous update. The average duration for the first
iteration is

∑10
i=1 ti/10 = 0.443 ms. Therefore, during the first

iteration the asynchronous Algorithm 2 is 5.744/0.443 ' 13
times faster than the synchronous Algorithm 1. The data listed
in Tables II and III illustrates the necessity to remove the idle
time appearing in the synchronous algorithm.

Since both synchronous and asynchronous proximal-
gradient-descent-type algorithms are much slower compared to
the synchronous PG-EXTRA Algorithm 1 and asynchronous
Algorithm 2, in the following two simulations we just show
convergence performance of PG-EXTRA Algorithm 1 and
asynchronous Algorithm 2.
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Fig. 2: Convergence comparison between synchronous algorithm
(21), asynchronous algorithm (22), synchronous PG-EXTRA Algo-
rithm 1 and the asynchronous Algorithm 2 for compressed sensing.
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Fig. 3: Convergence comparison between synchronous PG-EXTRA
and the asynchronous Algorithm 2 for sparse logistic regression.

B. Decentralized sparse logistic regression

In this subsection the tested problem is decentralized sparse
logistic regression. Each agent i ∈ {1, 2, · · · , n} holds local
data samples {hij , dij}

mi
j=1, where the supscript i indiates the

agent index and subscript j indicates the data index. hij ∈ Rp
is a feature vector and dij ∈ {+1,−1} is the corresponding
label. mi is the number of local samples kept by agent i.
All agents in the network will cooperatively solve the sparse
logistic regression problem

minimizex∈Rp
1
n

∑n
i=1[si(x) + ri(x)],

wheresi(x)= 1
mi

∑mi

j=1ln
(
1+exp(−dij(hij)>x)

)
, ri(x)=θi‖x‖1.

In the simulation, we set n = 10, p = 50, and mi = 3
for all i. For local data samples {hij , dij}

mi
j=1 at agent i, each

hij is generated from the standard normal distribution N(0, 1).
To generate dij , we first generate a random vector xo ∈ Rp
with 80% entries being zeros. Next, we generate dij from a
uniform distribution U(0, 1). If dij ≤ 1/[1 + exp(−(hij)

>xo)]
then dij is set as +1; otherwise dij is set as −1. We set the
regularization parameters θi = 0.1.

The step sizes of both algorithms are tuned by hand and
are nearly optimal. The step sizes α for both synchronous
PG-EXTRA Algorithm 1 and asynchronous Algorithm 2 are
set to be 0.4. The relaxation parameters for asynchronous
Algorithm 2 are chosen to be ηi = 0.0224

qi
. From Fig. 3

we can see that both algorithms exhibit convergence almost
linearly and that Algorithm 2 converges significantly faster.
In our experiments, within the same period, the asynchronous
algorithm finishes 21 times as many rounds of computation
and communication as that performed by the synchronous
algorithm, due to the elimination of waiting time.

C. Decentralized low-rank matrix completion

Consider a low-rank matrix A = [A1, · · · , An] ∈ RN×K of
rank r � min{N,K}. In a network, each agent i observes
some entries of Ai ∈ RN×Ki ,

∑n
i=1Ki = K. The set of

observations is Ω = ∪ni=1Ωi. To recover the unknown entries
of A, we introduce a public matrix X ∈ RN×r, which is
known to all agents, and a private matrix Y = [Y 1, · · · , Y n] ∈
Rr×K , where each Y i ∈ RN×Ki corresponds to Ai and is
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held by agent i. The supscript i indicates the agent index. We
reconstruct A = XY , which is at most rank r, by recovering
X and Y in a decentralized fashion. The problem is formulated
as follows (see [49] for reference).

minimize
X,{Yi}ni=1,{Zi}ni=1

1
2

∑n
i=1‖XY i − Zi‖2F ,

subject to (Zi)ab = (Ai)ab,∀(a, b) ∈ Ωi, (51)

where Zi ∈ RN×Ki is an auxiliary matrix, and (Zi)ab is the
(a, b)-th element of Ai.

1) Synchronous algorithm: [49] proposes a decentralized
algorithm to solve Problem (51). Let each agent hold Xi as a
local copy of the public matrix X , the algorithm is:

Step 1: Initialization. Agent i initializes Xi,0 and Y i,0 as
random matrices, Zi,0 is also initialized as a random matrix
with (Zi,0)ab = (Ai)ab for any (a, b) ∈ Ωi.
Step 2: Update of Xi. Each agent i updates Xi,k+1 by solving
the following average consensus problem:

minimize
{Xi}ni=1

1
2

∑n
i=1 ‖Xi − Zi,k(Y i,k)>‖2F ,

subject to X1 = X2 = · · · = Xn. (52)

Step 3: Update of Y i. Each agent i updates

Y i,k+1 =
[
(Xi,k+1)>Xi,k+1

]−1
(Xi,k+1)>Zi,k.

Step 4: Update of Zi. Each agent i updates

Zi,k+1 =Xi,k+1Y i,k+1 + PΩi

(
Ai −Xi,k+1Y i,k+1

)
,

where PΩ(·) is defined as follows: for any matrix A, if (a, b) ∈
Ω, then [PΩ(A)]ab = Aab; otherwise [PΩ(A)]ab = 0.

In problem (52) appearing at Step 2, we can let ri(Xi) =
1
2‖X

i − Zi,k(Y i,k)>‖2F and si(Xi) = 0 and hence problem
(52) falls into the general form of problem (1), for which we
can apply the synchronous PG-EXTRA Algorithm 1 to solve
it. We introduce matrices {Qe,∀e ∈ E} as dual variables.
Instead of solving (52) exactly, we just run (12) once for each
iteration k. Therefore, Step 2 becomes
Step 2′: Update of Xi. Each agent i updates Xi,k+1 by

Xi,k+1=
1

α+1

(∑
j∈Ni

wijX
j,k−

∑
e∈Ei

veiQ
e,k+αZi,k(Y i,k)>

)
,

Qe,k+1 = Qe,k+
(
veiX

i,k+vejX
j,k
)
, ∀e = (i, j) ∈ Li.

2) Asynchronous algorithm: For the asynchronous algo-
rithm, agent i, when activated, updates Xi and {Qe,∀e =
(i, j) ∈ Li} per Step 2’ using the neighboring information it
has available, then performs Step 3 and Step 4 to update its
private matrices Yi and Zi, and sends out the updated Xi and
Qe to neighbors.

We test our algorithms on a network with 20 nodes and 41
edges. In the simulation, we generate a rank 4 matrix A ∈
R40×140, hence each Ai ∈ R40×7. To generate A, we first
produce E ∈ R40×4 ∼ N(0, 1) and F ∈ R140×4 ∼ N(0, 1).
We also produce a diagonal matrix D ∈ R4×4 ∼ N(0, 1).
With E,F and D, we let A = EDF>. A total of 80% entries
of A are known. To generate Ω, we first sample its entries
independently from the uniform distribution U(0, 1). If any
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Fig. 4: Convergence comparison between synchronous PG-EXTRA
and the asynchronous Algorithm 2 for matrix completion.

entry of Ω is less than 0.8, it will be set as 1, which indicates
this entry is known; otherwise it will be set as 0.

We run the synchronous PG-EXTRA Algorithm 1 and the
proposed asynchronous primal-dual Algorithm 2 and plot the
relative error ‖Z

k−A‖F
‖Z0−A‖F against time, as depicted in Fig. 4. The

step sizes of both algorithms are chosen to be α = 0.1. The
relaxation parameters for asynchronous Algorithm 2 are cho-
sen to be ηi = 0.0102

qi
. The performance of the algorithms are

similar to the previous experiments. In this 20-node network,
within the same period, the asynchronous algorithm finishes
29 times as many rounds of computation and communication
as those finished by synchronous Algorithm 1.

D. Decentralized geometric median

In the literature there are limited asynchronous algorithms
proposed to solve problems with composite cost function as
in Problem (1). When there is no differentiable term, i.e.,
si(x) = 0, the most closely related algorithm to the proposed
asynchronous primal-dual Alg. 2 is the asynchronous ADMM
[33]. In this subsection, we compare these two algorithms
when solving the geometric-median problem:

min
x∈Rp

1

n

n∑
i=1

‖x− bi‖2,

where {bi}ni=1 are given constants. Computing decentralized
geometric medians have various interesting applications, see
[2] for more detail. In this simulation, we set n = 11,
p = 4, and each bi is generated from the Gaussian distribution
N(0,Λ), where Λ is a diagonal matrix with each entry
follows uniform distribution U(0, 10). The parameters of both
algorithms are hand-optimized. The augmented coefficient in
the asynchronous ADMM is 0.3, and the step-size in Alg. 2 is
1. The relaxation parameter for both algorithms is set as 0.4. It
is observed in Fig. 5 that Alg. 2 is faster than the asynchronous
ADMM.

V. CONCLUSIONS

This paper developed an asynchronous, decentralized al-
gorithm for concensus optimization. The agents in this al-
gorithm can compute and communicate in an uncoordinated
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Fig. 5: Convergence comparison between asynchronous ADMM and
the proposed Alg. 2 for decentralized geometric median problem.

fashion; local variables are updated with possibly out-of-
date information. Mathematically, the developed algorithm
extends the existing algorithm PG-EXTRA by adding an
explicit dual variable for each edge and to take asynchronous
steps. The convergence of our algorithm is established under
certain statistical assumptions. Although not all assumptions
are satisfied in practice, the algorithm is practical and efficient.
In particular, step size parameters are fixed and depend only
on local information.

Numerical simulations were performed on both convex
and nonconvex problems, and synchronous and asynchronous
algorithms were compared. In addition, we introduced an
asynchronous algorithm without dual variables by extending
an existing algorithm and included it in the simulation. All
simulation results clearly show the advantages of the devel-
oped asynchronous primal-dual algorithm.
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