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Abstract

Sleep is important for normal brain function, and sleep disruption is comorbid with many 

neurological diseases. There is a growing mechanistic understanding of the neurological basis for 

sleep regulation that is beginning to lead to mechanistic mathematically described models. It is our 

objective to validate the predictive capacity of such models using data assimilation (DA) methods. 

If such methods are successful, and the models accurately describe enough of the mechanistic 

functions of the physical system, then they can be used as sophisticated observation systems to 

reveal both system changes and sources of dysfunction with neurological diseases and identify 

routes to intervene. Here we report on extensions to our initial efforts [1] at applying unscented 

Kalman Filter (UKF) to models of sleep regulation on three fronts: tools for multi-parameter 

fitting; a sophisticated observation model to apply the UKF for observations of behavioral state; 

and comparison with data recorded from brainstem cell groups thought to regulate sleep.

I. Introduction

Sleep is part of a fundamental biological cycle that is coupled into every aspect of body 

function from behavior and information processing to metabolic storage and release. The 

association between sleep disruption and abnormal brain function was noted by Emil 

Kraepelin in 1883 in his psychiatry textbook [2], [3].

Disruption of sleep destabilizes physiology and promotes a range of pathologies (reviewed 

in [2]). Likewise, its dynamics correlate with symptoms of many neurological and mental 

health diseases such as epilepsy [4]–[7], schizophrenia [8], [9], and a range of childhood 

psychiatric disorders such as attention deficit hyperactivity, mood, and anxiety disorder [10]. 

And most recently, the mechanisms coupling sleep disruption to Alzheimer’s disease (AD) 
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have come under focus with the hypothesis that sleep disruption alters the brain’s ability to 

clear amyloid beta, while the buildup of amyloid plaques contributes to the development of 

AD and its co-morbid sleep disruption [11], [12].

Sleep and wake are highly complex dynamical states that arise from interactions of multiple 

brain regions, neurotransmitter systems, modulatory hormones, subcellular circadian clocks, 

as well as cognitive and sensory systems. It is hypothesized that the stabilization of sleep-

wake cycles may be a means to treat aspects of psychiatric and neurodegenerative diseases 

(see for example: [2]). But to do so in a minimally invasive, targeted fashion requires 

accurate models of the relevant dynamics, and is further constrained by the ability to 

observe the destabilized dynamics.

Additionally, if we understand and can observe the dynamics of the brain networks that 

regulate sleep, then we can identify its coupling to the symptoms associated with 

neurological diseases, and develop interventions.

An observation and control system for sleep regulation can be understood as a particular 

embodiment of a general neural prosthetic, as illustrated in Fig. 1. A sensor and stimulation 

layer connects to the system and may be mediated by, among others, electrical, optical, 

chemical or mechanical sensors, where the system is defined by the brain and body and 

likely the environment. The sensors signals are transduced and converted to typically digital 

electrical signals. Signal processing is applied to convert the sensor data, which not only 

may represent sensation at many different space scales of the system but also can be 

presented at vastly different rates, into salient features. These features are handed to a 

Decision Process subunit that converts the incoming data into control output signals based 

on some control objective.

The control output is then passed back through instrumentation and stimulation interfaces to 

modify the system. Stimulation systems in this very general sense would be any modality 

that would actuate changes in the system, including direct modification of brain activity 

through electrical, optical mechanical or pharmacological means, indirect input through 

normal sensory modalities such as sound or touch, direct or indirect actuation of muscle or 

assistive technology, or modification of the environment.

A critical element of our articulation of this system is that the Decision Process relies on 

some inherent model of the system, as illustrated in Fig. 1. Such models can be - and often 

are - data driven models which rely on previous observations and applications of control 

output to define both what the current system state is and what control outputs will optimally 

achieve the control objective.

Alternatives include dynamical models that embody at some level of specificity our 

understanding of the mechanisms that govern the real system’s dynamics. For control 

purposes, it is established from a fundamental theoretical basis that the optimal regulator of 

a system is a model of the system [13]. This would imply that the best model to use is one 

that matches the system’s physics.
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The use of mechanistic models also has the potential to allow a control system to extend its 

capacity or utility for system states that it hasn’t yet observed. In the case of neural 

prosthetics, and especially for applications to neurological diseases, the system is not only 

continually changing, but it is highly patient-specific. Therefore data driven models may not 

embody the specific dynamics of the subject without extensive retraining. But in the case of 

mechanistic-based controllers, the process of fitting the model parameters to the 

observations allows potential identification of the root mechanisms of the disease which 

might not otherwise be known, and therefore opens new avenues for minimally invasive and 

optimal patient specific interventions.

Another major consideration in the engineering of observation and control systems is a 

matter of cost of particular measurements. This is particularly critical in the design of neural 

prosthetics, where not only are there financial costs to instrumenting brain, and medical risks 

associated with invasive measures, but where particular interfaces - and in particular 

penetrating electrodes or other probes - displace and irreversibly damage the subject of the 

measurements.

Data assimilation is an iterative prediction-correction scheme that synchronizes a 

computational model to observed dynamics, allows one to reconstruct model variables from 

incomplete, noisy observations, and provides for forecasting of future states.

We assert that data assimilation methods, coupled with dynamical models that embody the 

governing mechanisms of brain state, will allow for more robust neural prosthetic 

controllers. We further hypothesize that once such methods are used to validate the models 

they utilize, which will involve expensive measures of the variables embodied in the models, 

that they can be scrutinized to identify the least-costly measures that will allow sufficient 

observation to achieve the desired levels of control.

II. Sleep Modeling and Data Assimilation

The field of sleep research has a history of using mathematical models to frame 

understanding of both sleep homeostasis and circadian influences. One of the striking 

elements about the sleep-wake regulatory system (SWRS) is that it induces what are believe 

to be distinct, non-overlapping brain states.

Early models include the Reciprocal Interaction model for the transitions between REM and 

NREM sleep [15] and the Two- Process model for homeostatic sleep drive / circadian 

pacemaker interactions [16]. Each of these models had significant impact as conceptual 

models that guided experimental investigations and provided a context for interpreting 

experimental results. Based on more recent results, physiologically based mathematical 

models have been developed to provide quantitative underpinnings for the classical and more 

recent conceptual models of sleep regulation [14], [17]–[20]. Broadly speaking, these 

models utilize interacting elements that represent neuronal population groups.

The model developed by Diniz-Behn and Booth [14] and adopted by us [1], is illustrated in 

Fig. 2.a. Each oval represents a cell group whose steady-state output firing rate is a 

sigmoidal function of its input, and the dynamics follow first order kinetics. The input to 
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each group is mediated by excitatory or inhibitory neurotransmitters from other groups, and 

a function of their firing rates. The governing nonlinear equations can be found in [1].

In earlier work we demonstrated an Unscented Kalman Filter (UKF) based toolkit as applied 

to models of the Sleep-Wake-Regulatory system [1]. In particular, we used model-generated 

data as ground truth, and demonstrated the ability to reconstruct full model state from noisy 

measurements of a subset of the model variables, methods of optimizing the DA 

computation, and assessing which variables or variable-combinations provided suitable 

reconstruction of state through an empirical observability coefficient (EOC).

In addition, we demonstrated that, in principle, model parameters could be individually fit to 

optimize the reconstruction and that converged to those of the data generator. Such 

parameter fitting is critical for neural prosthetics in part because of a lack of a-priori 

knowledge of the correct or best parameters for any brain, and in part because of the inherent 

non-stationarity of biological systems. Finally, we demonstrated that with a rather naive 

observation model, we could reconstruct model state from the hypnogram, which is the time 

series of classified state of vigilance.

III. RESULTS

Here we extend upon our previous results on three fronts: First, we have implemented 

scheme that allows for simultaneous fitting of multiple parameters. Second, we have made a 

more sophisticated observer model for UKF-based DA of hypnogram data that allows for 

better reconstruction of model variables. And third, we present the first application of this 

technique to observe the SWRS of a freely behaving chronically implanted animal.

A. Improved Multiparameter Fitting

Our original parameter estimation method [1] is an iterative reconstruction - multiple step 

shooting method not unlike that described by Voss, et. al [22]. In our initial implementation, 

we first used the UKF with fixed parameters to reconstruct and smooth estimated state space 

for a sufficient period of the dynamics. We then seeded the model with initial conditions on 

the reconstructed space, and measured how fast they diverged away from the reconstructed 

trajectory. Recall that the UKF is an iterative prediction-correction scheme, and this 

divergence, which is illustrated in the upper two rows of Fig. 3a, results from not correcting 

these dynamics.

We then minimized the mean-square divergence through a random walk in parameter offsets. 

By iterating between trajectory reconstruction and least-squares fitting, we achieve an 

expectation-maximization fitting algorithm.

This method has some advantages over other DA approaches that update the parameters in 

parallel with state estimation. The first is that by averaging over a longer time, this method 

better separates the system dynamics from parameter variations and better achieves the ideal 

that parameters, if not fixed, should vary on time scales slower than the dynamical variables. 

It also addresses instabilities that arise when the parameters of interest only affect the 

dynamics in select regions of state space.
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The current version suitable for estimation of multiple parameters simultaneously is an 

extension of this multiple shooting method. Here the shooting method utilizes a full 

estimation step that minimizes the square divergence between the reconstructed trajectory 

and the dynamics. In particular we apply the least-squares fitting approach for nonlinear 

dynamics developed by Marquardt [21].

Nonlinear least squares methods involve an iterative improvement to parameter values in 

order to minimize the sum of the squares of the errors between the function and the 

measured data points. The Levenberg-Marquardt curve-fitting method is a combination of 

two minimization methods (Fig. 3a): the gradient descent method and the Gauss-Newton 

method. In the gradient descent method, the sum of the squared errors is reduced by 

updating the parameters in the steepest-descent direction. In the Gauss-Newton method, the 

cost function - the sum of the squared errors - is reduced by assuming the least squares 

function is locally quadratic, and finding the minimum of the quadratic.

The Levenberg-Marquardt method acts as a gradient-descent method when the parameters 

are far from their optimal value, and as a Gauss-Newton method when the parameters are 

close to their optimal value. In detail, it is tuned via the parameter λ, which is adjusted on an 

iteration by iteration basis based on the total cost function value.

The performance of our parameter estimation method is illustrated in Fig. 3b. Parameter 

estimation is performed by minimizing the cumulative divergence between short model-

generated trajectories and UKF-reconstruction. In practice, the minimization step is applied 

to UKF-reconstructed trajectories that are at least one sleep-wake cycle long in order to 

sample the state space. Additionally, the short trajectories are set such that they are long 

enough for parameter differences to cause significant divergence between model-generated 

trajectories and UKF-reconstructed dynamics.

Shown in the upper two rows of Fig. 3b are the divergences of model-generated trajectories 

from the reconstructed state trajectory for two state variables. As the fitting progresses in 

time (latter columns), the dynamics track better. In the lower panels are shown the 

simultaneous changes in the three parameters being estimated (upper panel), the cost 

function (second panel), and reconstruction error values for the two variables in the upper 

panels.

B. Observation model from Hypnogram

One of the major challenges for observing the SWRS in detail in living animals is that the 

cell groups that perform this regulation are small and deeply embedded in the brainstem. 

Therefore directly measuring them with invasive probes is challenging and often highly 

damaging to delicate systems that are critical for organism survival. It is therefore 

advantageous to observe these dynamics through the DA tools using less invasive / less 

costly measurements.

One approach that we introduced in [1] was to invert the classified SOV time series into 

estimates of the cell group firing rates. In particular, we utilized the SOV-dependent median 
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firing rate value as the inversion. Although this worked, the fidelity from the ground-truth 

data was large, and some of the finer features of the dynamics were not well-reconstructed.

Here we extend this inversion to include information about time since the last state 

transition. In particular, we use model generated data to create distributions of firing rates as 

a function of time since transition into each SOV. The means of these distributions over time, 

shown for three firing rate variables for each SOV in Fig. 4b, along with their variance, are 

used to translate the SOV as a function of time into probability of firing rate, which is 

handed to the UKF for each observation time.

Shown in the various panels in Fig. 4c are these input values (blue traces), the UKF 

reconstructed values (red traces), and the ground truth (black traces). In all cases except for 

the random thalamic input noise δ the reconstruction is good. In the lowest panel is shown 

the hypnogram generated from the reconstructed state space, and the original ground truth 

generated hypnogram. Note that even the brief awakenings are well represented by the 

reconstructed dynamics.

C. Reconstruction of SWRS Dynamics from Live Animals

To date, all the results shown have been reconstruction of model generated data. One of the 

major challenges is to apply this to real biological systems for which even the validity of the 

model is in question.

Here we report some of the first results in applying these methods to data collected from 

living brain. The details of the experiments will be documented in the future, but are 

summarized here.

Experimental Methods

All protocols and procedures were approved by the Animal Care Committee of the 

Pennsylvania State University, University Park, and all experiments were performed in 

accordance with relevant guidelines and regulations. Rats were implanted with microwire 

bundles of electrodes in brainstem targets including the pedunculopontine tegmental (PPT) 

and dorsal raphe (DR) nuclei, with hippocampal depth, and cortical screw electrodes. After 

1–2 weeks recovery, animals were connected to a recording system and microwire bundles 

advanced until clear unit recordings were apparent. Animals were then returned to their 

home-cage and monitored for periods of 1–5 hours.

Recordings were then analyzed as follows: Combinations of hippocampal and cortical field 

potentials along with head acceleration were used to score state of vigilance [23]. Separately, 

microwire depth electrodes were analyzed to extract unit firing events using standard 

software packages (NeuroExplorer and Offline Sorter, Plexon inc, Dallas Tx). Units were 

further identified as separable single units, or non-separable multi-units, and their firing rates 

computed over time.
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Experimental Results

Shown in Fig. 5 are the results from applying the methods described in Sec. III-B. In 

particular, the hippocampal and cortical recordings were used to classify the SOV for the 

animal as shown in upper panel of Fig. 5. We then passed this hypnogram (Fig. 4a) through 

the inversion observation model (Fig. 4b) to reconstruct SWRS state. The REM-active firing 

rates in the PPT from this reconstruction are shown in the lower panel of Fig. 5(red trace), 

along with the multi-unit firing rates simultaneously measured from the PPT (black).

Because the PPT firing rate was not used in the original classification of the animal’s SOV, it 

serves as an independent measure from the reconstructed state. The correspondence is 

reasonably good, and accurately predicts the onset of firing rate increases. We are currently 

repeating this process across multiple animals and recordings to investigate how well these 

models correspond to actual cell group dynamics.

IV. Conclusion

We have outlined here a novel paradigm for neural prosthetics that utilizes data assimilation 

and mechanistic based models as observers of brain state. We have demonstrated this 

method computationally and in experiment for observing the sleep-wake regulatory system 

(SWRS) which is comprised of brain-stem related cell groups.
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Fig. 1. General Structure of a Neural Prosthetic
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Fig. 2. Sleep-Wake Regulatory Model
The network model is taken from [1], [14]. 2a Network Model structure, adapted from [1]. 

2b Example dynamics of the model. System state, illustrated by the hypnogram in the upper 

trace, is determined from the dominant cell group activity - if the REM active group is 

active, then the state is in REM, otherwise if the WAKE active groups are high it is AWAKE, 

otherwise it is in NREM.
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Fig. 3. Multiple-Parameter Estimation
(a) Illustration of the Levenberg-Marquardt algorithm [21]. For parameter small, the 

approach follows a Gauss-Newton methodology, otherwise it follows a Gradient-Descent 

approach. This serves to accelerate convergence close to the minimum of the cost function. 

(b) Output of the multi-parameter fitting algorithm.

Bahari et al. Page 11

Conf Rec Asilomar Conf Signals Syst Comput. Author manuscript; available in PMC 2017 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Reconstruction From Hypnogram
(a) From observations of behavioral SOV is determined the hypnogram and the transition 

times between state. (b) From model generated data, the probability of firing rate is 

determined as a function of state and time since state change. (c) This SOV/hypnogram to 

firing rate probability is used as the observation function in the UKF reconstruction, shown 

here also for model generated data. Note that even brief awakenings are well-reconstructed.
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Fig. 5. In Vivo Hypnogram to PPT Firing Rate
For data acquired

Bahari et al. Page 13

Conf Rec Asilomar Conf Signals Syst Comput. Author manuscript; available in PMC 2017 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	I. Introduction
	II. Sleep Modeling and Data Assimilation
	III. RESULTS
	A. Improved Multiparameter Fitting
	B. Observation model from Hypnogram

	C. Reconstruction of SWRS Dynamics from Live Animals
	Experimental Methods
	Experimental Results

	IV. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5

