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Abstract—Two-dimensional sparse arrays with hole-free dif-
ference coarrays, like billboard arrays and open box arrays, can
identify O(N2) uncorrelated source directions (DOA) using N
sensors. These arrays contain some dense ULA segments, leading
to many sensor pairs separated by λ/2. The DOA estimation
performance often suffers degradation due to mutual coupling
between such closely-spaced sensor pairs. This paper introduces
a new 2D array called the half open box array. For a given
N , this array has the same hole-free coarray as an open box
array. At the same time, the number of sensor pairs with small
separation is significantly reduced. 1

Index Terms—Planar sparse arrays, open box arrays, partially
open box arrays. half open box arrays, mutual coupling, DOA
estimation.

I. INTRODUCTION

Planar arrays find useful applications in beamforming, radar,
imaging, and commuincations [1]–[3]. They can jointly esti-
mate the azimuth and elevation of sources [1]. Some well-
known planar array geometries include uniform rectangular
arrays (URA), uniform circular arrays (UCA), and hexangonal
arrays, in which elements are placed uniformly on regular
contours [1]. However, these array configurations usually suf-
fer from significant mutual coupling, resulting in considerable
interferences between sensor outputs [4], [5].

It is well-known that large sensor separations help to reduce
the mutual coupling effect [4], [5]. Hence, linear sparse arrays,
in which the number of sensor pairs with small separations
is much smaller than uniform linear arrays (ULA), are more
robust to mutual coupling [6]. Examples of linear sparse arrays
include minimum redundancy arrays (MRA) [7], nested arrays
[8], coprime arrays [9], super nested arrays [6], [10], and
other generalizations [11]. All these sparse arrays can resolve
O(N2) uncorrelated sources given O(N) sensors, whereas
ULAs identify at most N−1 sources with N elements [1], [6]–
[9], [11]. Among these, super nested arrays and coprime arrays
are significantly robust to mutual coupling effects because
they have very few sensor pairs with small separations. Super
nested arrays have an additional advantage over coprime arrays
because the coarrays are filled (hole-free). Unlike MRAs
which share the hole-free property, the sensor locations in a
super nested array also have a simple closed form.

For planar arrays, it is also desirable to have closed-form
sensor locations, large difference coarrays, and less mutual
coupling, like super nested arrays. However, such planar arrays
are not explored in literature. Some existing designs enjoy
closed-form sensor locations with hole-free coarray, including
billboard arrays, 2D nested arrays, and open box arrays [12]–
[14]. Hence, these planar sparse arrays can also distinguish
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more sources than sensors [15]. Nevertheless, none of them
takes the mutual coupling issue into account.

In this paper, starting from open box arrays, we will
develop a novel family of planar arrays, called partially open
box arrays. By redistributing sensors properly, partially open
box arrays are guaranteed to possess hole-free coarrays with
enhanced degrees of freedom, which makes it possible to
detect more sources than sensors. Next, we will present half
open box arrays, which inherit most of the good properties of
partially open box arrays. Moreover, the number of sensor
pairs with unit horizontal spacing (λ/2) in half open box
arrays, is as small as 2, indicating that mutual coupling
decreases significantly. These properties will be given in depth
later.

This paper is outlined as follows. Section II reviews the data
model and several well-known planar arrays, like URA, bill-
board arrays, 2D nested arrays, and open box arrays. In Section
III, open box arrays are generalized into partially open box
arrays and half open box arrays. Section IV demonstrates the
superior performance for the proposed arrays in the presence
of mutual coupling while Section V concludes this paper.

II. PRELIMINARIES

A. The Data Model

Suppose D uncorrelated sources impinge on a planar array,
whose sensors are located at nd. Here n = (nx, ny) ∈ Z2 is an
integer-valued vector and d = λ/2 is the minimum separation
between sensors. The sensor locations n form a set S. The ith
source has complex amplitude Ai ∈ C, azimuth φi ∈ [0, 2π],
and elevation θi ∈ [0, π]. If mutual coupling is absent, the
sensor output on S can be modeled as

xS =

D∑
i=1

AivS(θ̄i, φ̄i) + nS, (1)

where θ̄i = (d/λ) sin θi cosφi and φ̄i = (d/λ) sin θi sinφi
are the normalized DOA. The element of the steering vec-
tor vS(θ̄i, φ̄i) corresponding to the sensor at (nx, ny) ∈ S
is ej2π(θ̄inx+φ̄iny). Signals and noise are assumed to be
zero-mean and uncorrelated. That is, E[Ai] = 0,E[nS] =
0,E[AiA

∗
j ] = σ2

i δi,j ,E[nSn
H
S ] = σ2I,E[Ain

H
S ] = 0, where

σ2
i and σ2 are the ith source power and the noise power,

respectively. δp,q is the Kronecker delta.
For uncorrelated sources, the covariance matrix of xS can

be expressed as

RS = E[xSx
H
S ] =

D∑
i=1

σ2
i vS(θ̄i, φ̄i)v

H
S (θ̄i, φ̄i) + σ2I. (2)



Vectorizing (2) and removing duplicated entries yield the
signal on the difference coarray:

xD =

D∑
i=1

σ2
i vD(θ̄i, φ̄i) + σ2e0, (3)

where e0 is a column vector with 〈e0〉(nx,ny) = δnx,0δny,0.
The bracket notation 〈xS〉n denotes the value of the sig-
nal at the support location n ∈ S. For instance, if S =
{(0, 0), (1, 0), (0, 1)} and xS = [4, 5, 6]T , then 〈xS〉(0,0) = 4,
〈xS〉(1,0) = 5, and 〈xS〉(0,1) = 6 [16]. D is the difference
coarray, which is defined as

Definition 1 (Difference coarray). For a planar array specified
by S, its difference coarray D is defined as the differences
between sensor locations:

D = {n1 − n2 | n1,n2 ∈ S}.

For example, if S consists of (0, 0), (1, 0), (2, 0), (0, 1),
(2, 1), (0, 2), (2, 2), then the difference coarray D is composed
of integer vectors (mx,my) such that −2 ≤ mx,my ≤ 2. The
uniform rectangular part of D is denoted by U. In this example,
D = U, and such array is said to have a hole-free coarray.

The set U influences the estimation capability of the array S.
It is possible to resolve source DOAs using 2D spatial smooth-
ing MUSIC based on the signals on U [15]. Furthermore, the
number of identifiable uncorrelated sources is of the order of
the size of U, under realistic assumptions [17]. As a result, for
appropriate sparse arrays with N physical sensors, the sizes
of D and U are both O(N2), indicating that we can identify
more sources than sensors.

If mutual coupling is present, the data model (1) becomes

xS =

D∑
i=1

AiCvS(θ̄i, φ̄i) + nS, (4)

where C is the mutual coupling matrix. The entries of C can
be written as [4]

〈C〉n1,n2 =

{
c(‖n1 − n2‖2), if ‖n1 − n2‖2 ≤ B,
0 otherwise,

(5)

where n1,n2 ∈ S denote the sensor locations. Here ‖ · ‖2
is the `2-norm of a vector and c(·) are the mutual coupling
coefficients. It is assumed that c(0) = 1 and |c(k)/c(`)| = `/k
[4], implying that the arrays with larger sensor separations,
like sparse arrays, tend to reduce mutual coupling. To quantify
mutual coupling, we first define the weight function:

Definition 2 (Weight function). Let a planar array be specified
by S, and let its difference coarray be D. The weight function
w(m) is the number of pairs with separation m ∈ D, i.e.,

w(m) = |{(n1,n2) ∈ S2 | n1 − n2 = m}|.

We will use w(m) and w(mx,my) interchangeably if m =
(mx,my). It was shown in [6] that smaller weight functions at
small sensor separations reduce the effect of mutual coupling
significantly.

B. Known Closed-Form Planar Sparse Arrays
In this subsection, we will review some known planar arrays

on rectangular grids with regular geometries, in Fig. 1.
The URA places NxNy sensors on an Ny-by-Nx rectan-

gular grid, as demonstrated in Fig. 1(a) for 36 sensors. The
billboard array [12] consists of three ULA on a square aperture
(Nx = Ny) and the total number of sensors is 3(Nx − 1).
The 2D nested array [14] is depicted in Fig. 1(c). In this
example, this array is the cross product of two identical 1D
nested arrays with N1 = N2 = 3 (notation as in [8]) and the
number of sensors is (N1 +N2)2. Finally, the open box array
[13] assigns Nx + 2Ny − 2 sensors on the boundaries of a
rectangular aperture, which is formally defined as

Definition 3 (Open box arrays). Let Nx and Ny be positive
integers satisfying Nx ≥ Ny . An open box array is character-
ized by a integer set SOBA, defined by

SOBA ={(0, 0), (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1)}
∪G1 ∪H1 ∪H2,

where G1 = {(nx, 0)|nx ∈ g1}, H1 = {(0, ny)|ny ∈ h1}, and
H2 = {(Nx−1, ny)|ny ∈ h2}. Here g1 = {1, 2, . . . , Nx−2}
and h1 = h2 = {1, 2, . . . , Ny − 2}.

Fig. 1(d) marks the sets G1, H1, and H2 in rectangles on
the bottom, on the left, and on the right, respectively.

All of the arrays in Fig. 1 have 36 physical sensors and
hole-free coarrays (D = U). However, the sizes of difference
coarrays are different. The largest |D| is exhibited by the open
box array (665), followed by the billboard array (625), the 2D
nested array (529), and finally the URA (121). Larger |D| of-
fers better spatial resolution and more resolvable uncorrelated
sources, so that the open box array is preferred in Fig. 1.

Next, we will consider the weight functions with small
separations, such as w(1, 0), w(0, 1), w(1, 1), and w(1,−1),
as listed in Fig. 1. Notice that for the arrays mentioned above
these weights are not small. For instance, the open box array
has w(1, 0) = 17 and w(0, 1) = 18, due to the dense ULA
on the boundaries. It is desirable to reduce w(1, 0), w(0, 1),
w(1, 1), and w(1,−1) simultaneously, so that mutual coupling
can be mitigated.

III. GENERALIZATION OF OPEN BOX ARRAYS

In this section, we will develop generalizations of open box
arrays. The reason why we start with open box arrays is that,
based on Fig. 1, they have the largest aperture for the same
number of sensors, leading to the best spatial resolution.

A. Partially Open Box Arrays
The main idea of partially open box arrays is to redistribute

the elements in the dense ULA, so that the weight functions
for small separations decrease. In this paper, we focus on the
set G1 ∪ {(0, 0), (Nx − 1, 0)}, i.e., the Nx sensors on the
bottom of Fig. 1(d). These sensors contribute to the weight
function w(1, 0). If we can relocate some of these sensors, it
is possible to reduce w(1, 0).

However, if we move these sensors arbitrarily, the difference
coarray would no longer be hole-free so that the spatial
resolution is degraded. To keep the difference coarray intact,
we consider the following notations: Let SOBA be an open
box array with sizes Nx and Ny , as in Definition 3, and let
DOBA be the difference coarray. Assume we select P distinct
sensors, located at (np, 0) ∈ SOBA for p = 1, 2, . . . , P and
P < Nx, These sensors are relocated to P distinct locations,
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(a) the URA
Aperture: 5× 5 = 25
w(1, 0) = 30, w(0, 1) = 30,

w(1, 1) = 25, w(1,−1) = 25.
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(b) the billboard array
Aperture: 12× 12 = 144
w(1, 0) = 12, w(0, 1) = 12,

w(1, 1) = 10, w(1,−1) = 1.
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(c) the 2D nested array
Aperture: 11× 11 = 121
w(1, 0) = 18, w(0, 1) = 18,

w(1, 1) = 9, w(1,−1) = 9.
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(d) the open box array
Aperture: 9× 17 = 153
w(1, 0) = 17, w(0, 1) = 18,

w(1, 1) = 1, w(1,−1) = 1.

Fig. 1. Examples of planar arrays with N = 36 elements. Bullets denote physical sensors and crosses represent empty space. The minimum separation
between sensors is half of the wavelength of the incoming waveform.

(ap, bp) /∈ SOBA, yielding a new planar array S′ and its
difference coarray D′. Then we have the following lemma:

Lemma 1. DOBA = D′ only if 1 ≤ ap ≤ Nx − 2 and 1 ≤
bp ≤ Ny − 1 for all p = 1, 2, . . . , P , i.e., only if the new
sensor locations are inside the original array aperture.

Proof. According to Definition 3, the difference coarray D can
be expressed as

DOBA = {(mx,my) ∈ Z2 | −Nx + 1 ≤ mx ≤ Nx − 1,

−Ny + 1 ≤ my ≤ Ny − 1}. (6)

The proof can be divided into four cases:
1) If ap < 0, consider the sensor pair in S′: (Nx−1, Ny−1)

and (ap, bp). Their difference is (Nx−1−ap, Ny−1−bp) /∈
DOBA, since the first coordinate Nx − 1− ap > Nx − 1.

2) If ap > Nx− 1, for the sensor pair (ap, bp), (0, Ny − 1) ∈
S′, the difference becomes (ap, bp − Ny + 1) /∈ DOBA

because ap > Nx − 1.
3) If bp < 0, we can take the sensor pair of (0, Ny − 1) and

(ap, bp). The difference is (−ap, Ny − 1− bp) /∈ DOBA.
4) If bp > Ny−1, we have the following chain of arguments.

Since P < Nx, there must exist a element (n′, 0) ∈ S′.
Then the difference between (ap, bp) and (n′, 0) is (ap −
n′, bp) /∈ DOBA, because bp > Ny − 1.

These arguments show that 0 ≤ ap ≤ Nx − 1 and 0 ≤ bp ≤
Ny − 1 are necessary for DOBA = D′. Furthermore, since
(ap, bp) /∈ SOBA, the necessary condition becomes 1 ≤ ap ≤
Nx − 2 and 1 ≤ bp ≤ Ny − 1, which proves this lemma.

Lemma 2. DOBA =D′ only if (0, 0) ∈ S′ and (Nx−1, 0) ∈ S′,
where all notations are as stated before Lemma 1.

Proof. Assume that DOBA = D′. We obtain (Nx−1, Ny−1) ∈
DOBA = D′. Due to Lemma 1, the only sensor pair with this
separation is (Nx−1, Ny−1) and (0, 0), implying (0, 0) ∈ S′.
Similar arguments applies to the sensor pair of (Nx−1, 0) and
(0, Ny − 1), which proves this lemma.

Lemma 1 and 2 indicate that for the sensors located on the
bottom of open box arrays, only those at (n, 0), where 1 ≤
n ≤ Nx− 2, can be redistributed within the original aperture.
For simplicity, we assume all the new sensor locations have
y-coordinate Ny − 1, i.e., bp = Ny − 1 for all p in Lemma 1,
which leads to the definition of partially open box arrays:
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Fig. 2. Examples of partially open box arrays with Nx = 18 and Ny =
10. (a) g1 = {1, 2, 3, 5, 6, 7, 9, 13, 15},g2 = {1, 3, 5, 6, 7, 9, 13}, and (b)
g1 = g2 = {1, 3, 5, 7, 9, 11, 13, 15}. In both cases, g2 satisfies Theorem 1.

Definition 4 (Partially open box arrays). For two positive
integers Nx and Ny with Nx ≥ Ny , a partially open box array
has the sensor locations defined by the integer set SPOBA,

SPOBA ={(0, 0), (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1)}
∪G1 ∪G2 ∪H1 ∪H2,

where G1 = {(nx, 0) | nx ∈ g1}, G2 = {(nx, Ny − 1) | nx ∈
g2}, H1 = {(0, ny) | ny ∈ h1}, H2 = {(Nx − 1, ny) | ny ∈
h2}. Here g1, g2, h1, and h2 satisfy
1) g1 and g2 are subsets of {1, 2, . . . , Nx − 2}.
2) |g1|+ |g2| = Nx − 2.
3) h1 = h2 = {1, 2, . . . , Ny − 2}.

To give some feelings for partially open box arrays, let us
consider two examples in Fig. 2, where Nx = 18, Ny = 10
and the sets G1, G2, H1, and H2 are marked in rectan-
gles. Fig. 2(a) illustrates a partially open box array with
g1 = {1, 2, 3, 5, 6, 7, 9, 13, 15} and g2 = {1, 3, 5, 6, 7, 9, 13},
which are subsets of {1, 2, . . . , 16}. Furthermore, |g1|+|g2| =



9 + 7 = 16 satisfies the second item in Definition 4. Fig. 2(b)
also satisfies Definition 4. The missing elements (crosses) in
G1 migrate to the elements (bullets) in G2.

Next, we will develop the difference coarray of partially
open box arrays. The following theorem states a necessary
and sufficient condition under which a open box array and a
partially open box array share the same hole-free difference
coarray:

Theorem 1. Consider an open box array and a partially
open box array with the same Nx and Ny , as defined in
Definition 3 and 4, respectively. Then, their difference coarrays
are identical if and only if {g1, Nx− 1−g2} is a partition of
{1, 2, . . . , Nx−2}, i.e., if and only if 1) g1∪ (Nx−1−g2) =
{1, 2, . . . , Nx − 2} and 2) g1 and Nx − 1 − g2 are disjoint.
Here Nx − 1− g2 = {Nx − 1− g | g ∈ g2}.
Proof. Let SOBA and SPOBA be an open box array and a
partially open box array, respectively. Their difference coarrays
are denoted by DOBA and DPOBA. It is clear that DPOBA ⊆
DOBA, due to (6) and Lemma 1.

(Sufficiency) We will show that if {g1, Nx − 1 − g2} is a
partition of {1, 2, . . . , Nx − 2}, then DOBA ⊆ DPOBA. That
is, for every m = (mx,my) ∈ DOBA, there exists at least one
sensor pair (n1,n2) ∈ S2

POBA such that n1 − n2 = m. Note
that we only need to check half of the elements in DOBA,
since weight functions are symmetric, i.e., w(m) = w(−m)
[8]. If {g1, Nx− 1−g2} is a partition of {1, 2, . . . , Nx− 2},
then {g2, Nx−1−g1} is also a partition of {1, 2, . . . , Nx−2}.
Due to this property, we can identify at least one (n1,n2) pair
for any given difference (mx,my), as listed in Table I, which
proves the sufficiency.

(Necessity) If {g1, Nx − 1 − g2} is not a partition of
{1, 2, . . . , Nx−2}, then g1∪(Nx−1−g2) 6= {1, 2, . . . , Nx−2}
or g1 and Nx − 1 − g2 are not disjoint. Here we divide
into two cases: For the first case, if g1 ∪ (Nx − 1 − g2) 6=
{1, 2, . . . , Nx − 2}, there must exist n0 ∈ {1, 2, . . . , Nx − 2}
such that n0 /∈ g1 and n0 /∈ Nx − 1 − g2, since g1 and g2

are subsets of {1, 2, . . . , Nx − 2} (the first item in Definition
4). We will show that, (Nx − 1− n0, 1) /∈ DPOBA.

Suppose there exist (n1,n2) ∈ S2
POBA such that n1−n2 =

(Nx− 1− n0, 1). This means the y coordinates of n1 and n2

must differ by 1. According to Definition 4, there are only two
cases of n1 and n2:
1) If n1 ∈ H2 and n2 ∈ G1, then the difference (Nx −

1 − n0, 1) is achieved only when n1 = (Nx − 1, 1) and
n2 = (n0, 0). We have n1 ∈ H2 but n2 /∈ G1, since
n0 /∈ g1.

2) If n1 ∈ G2 and n2 ∈ H1, then n1 = (Nx−1−n0, Ny−1)
and n2(0, Ny − 2). We obtain n1 /∈ G2 since n0 /∈ Nx −
1− g2.

For the second case, if g1 and Nx − 1 − g2 are not disjoint,
then the size of g1 ∪ (Nx − 1− g2) can be expressed as

|g1|+ |Nx − 1− g2| − |g1 ∩ (Nx − 1− g2)|
< |g1|+ |g2| = Nx − 2,

which also implies g1 ∪ (Nx − 1− g2) 6= {1, 2, . . . , Nx − 2}.
These arguments complete the proof.

Let us consider some examples of Theorem 1. Open box
arrays are special cases of partially open box arrays with
g1 = {1, 2, . . . , Nx − 2} and g2 being the empty set, which
satisfy Theorem 1. For the partially open box arrays in Fig. 2,

the corresponding g1 and g2 also satisfy Theorem 1, so their
difference coarrays are hole-free, and the same as DOBA.

Furthermore, Theorem 1 offers simple and straightforward
design methods for partially open box arrays with hole-free
difference coarrays. The first step is to choose g1 to be a subset
of {1, 2, . . . , Nx − 2}. Next, g2 can be uniquely determined
since {g1, Nx − 1− g2} is a partition of {1, 2, . . . , Nx − 2}.
Finally, the closed-form sensor locations are given in Defini-
tion 4. The freedom in the choice of such g1 can be exploited
to reduce mutual coupling effects as explained next.

B. Half Open Box Arrays
In this subsection, we will study the half open box array,

which is the partially open box array with reduced mutual
coupling. This is done by setting g1 and g2 to be ULA with
separation 2, so that the weight function w(1, 0) is as small
as 2. The half open box arrays are defined as:

Definition 5 (Half open box arrays). The half open box array
with parameters Nx and Ny is a partially open box array with

g1 = {1 + 2` | 0 ≤ ` ≤ b(Nx − 3)/2c}, (7)
g2 = {Nx − 1− 2` | 1 ≤ ` ≤ b(Nx − 2)/2c}. (8)

According to (7), g1 represents an ULA whose left-most
element is 1 and the interelement spacing is 2. It can be shown
that (7) and (8) meet Theorem 1, so that the difference coarray
of the half open box array is the same as that of the open box
array, and hence, hole-free. The sensor positions for the half
open box array can also be obtained from Defintion 4 and 5
readily, even for large Nx and Ny .

Fig. 2(b) illustrates the half open box array with Nx = 18
and Ny = 10. It can be seen that, |g1| = |g2| = 8 and the
weight functions for Fig. 2(b) are listed as follows:

w(1, 0)=2, w(0, 1)=18, w(1, 1)=1, w(1,−1)=1. (9)

Compared to the open box array in Fig. 1(d), w(1, 0) decreases
from 17 to 2 while w(0, 1), w(1, 1), and w(1,−1) remain the
same. To be more precise, the weight function w(1, 0) can be
specified by the following Theorem:

Theorem 2. If Nx ≥ 3, then the weight function w(1, 0) for
the half open box array is 2.

Proof. To evaluate w(1, 0), it suffices to consider the elements
whose y coordinates are either 0 or Ny−1, due to Definition 4.
Since Nx ≥ 3, g1 is not empty. It is obvious that the elements
(1, 0) and (0, 0) lead to w(1, 0). First consider Nx to be an
odd number. According to (7), Nx−2 ∈ g1, so (Nx−1, 0) and
(Nx−2, 0) also contribute to w(1, 0). In this case, the smallest
and the largest elements in g2 are 2 and Nx− 3, respectively,
implying there are no sensor pairs with separation 1 if the y
coordinates are Ny − 1. On the other hand, if Nx is even, the
only two sensor pairs contributing to w(1, 0) are (1, 0), (0, 0)
and (1, Ny − 1), (0, Ny − 1), which completes this proof.

Therefore, the estimation performance for the half open box
array would be better than the open box array in the presence
of mutual coupling, as we shall demonstrate next.

IV. NUMERICAL EXAMPLES

Consider the planar arrays with 36 sensors, listed in Fig.
1 and 2. We choose D = 10, uncorrelated, equal-power
sources, whose normalized DOAs are randomly drawn from
(θ̄i, φ̄i) ∈ [−0.45, 0.45]2. The SNR is 0 dB and the number



TABLE I
12 CASES IN THE PROOF OF THEOREM 1

Case mx my n1 n2

1 0

0

(0, 0) ∈ SPOBA (0, 0) ∈ SPOBA
2 g1 (mx, 0) ∈ G1 (0, 0) ∈ SPOBA
3 Nx − 1− g2 (Nx − 1, Ny − 1) ∈ SPOBA (Nx − 1−mx, Ny − 1) ∈ G2
4 Nx − 1 (Nx − 1, 0) ∈ SPOBA (0, 0) ∈ SPOBA

5 0

1, . . . , Ny − 1

(0,my) ∈ SPOBA (0, 0) ∈ SPOBA
6 Nx − 1− g1 (Nx − 1,my) ∈ SPOBA (Nx − 1−mx, 0) ∈ G1
7 g2 (mx, Ny − 1) ∈ G2 (0, Ny − 1−my) ∈ SPOBA
8 Nx − 1 (Nx − 1,my) ∈ SPOBA (0, 0) ∈ SPOBA

9 0

−Ny + 1, . . . ,−1

(0, 0) ∈ SPOBA (0,−my) ∈ SPOBA
10 g1 (mx, 0) ∈ G1 (0,−my) ∈ SPOBA
11 Nx − 1− g2 (Nx − 1, Ny − 1 +my) ∈ SPOBA (Nx − 1−mx, Ny − 1) ∈ G2
12 Nx − 1 (Nx − 1, Ny − 1 +my) ∈ SPOBA (0, Ny − 1) ∈ SPOBA
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Fig. 3. The true source directions (in circles) and the estimated directions (in
crosses) for (a) the URA, (b) the billboard array, (c) the 2D nested array, (d)
the open box array, (e) the partially open box array, and (f) the half open box
array. The horizontal and vertical axes stand for θ̄ and φ̄, respectively. The
error is defined as E = (

∑D
i=1 ((θ̄i − ̂̄θi)2 + (φ̄i − ̂̄φi)2)/D)1/2, where

(θ̄i, φ̄i) and (̂̄θi, ̂̄φi) are the true and estimated normalized DOA, respectively.

of snapshots is 500. The mutual coupling model (5) has
c(1) = 0.25, c(`) = c(1)e−j2π(`−1)/5/`, and B = 10. The
data is generated using (4) and the DOA are estimated from
2D unitary ESPRIT [18] on the finite-snapshot version of (3).
The results are shown in Fig. 3, where the true directions and
the estimated directions are marked in circles and crosses,
respectively. In this example, only the newly proposed half
open box array resolves all these sources correctly, while the
others miss at least one source. Note that we do not apply
any decoupling algorithm to compensate mutual coupling. The
performance improvement is due to the array geometry.

Note that the number of sources is much smaller than
sensors (10 � 36). Theoretically, sparse arrays can resolve
more sources than sensors in the absence of mutual coupling
[15]. However, if mutual coupling is present, this is more
challenging, and it will be explored in greater detail in future.

V. CONCLUDING REMARKS

In this paper, we first proposed partially open box arrays,
which generalize open box arrays by redistributing some
sensors while preserving the difference coarray. We then

developed half open box arrays which are partially open box
arrays with the additional property that mutual coupling effects
are reduced significantly.

It can be seen from (9) that the weight function w(0, 1) is
still large, compared to w(1, 0), w(1, 1), and w(1,−1), since
the elements whose x coordinates are 0 or Nx − 1 are fixed.
In the future, it will be of considerable interst to decrease
w(0, 1) by relocating those sensors, so that mutual coupling
can be reduced further.
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