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Abstract—The generalized linear model (GLM), where a ran-
dom vector x is observed through a noisy, possibly nonlinear,
function of a linear transform output =z = Az, arises in a range
of applications such as robust regression, binary classifadion,
quantized compressed sensing, phase retrieval, photonvlited
imaging, and inference from neural spike trains. WhenA is large
and i.i.d. Gaussian, the generalized approximate messagagsing
(GAMP) algorithm is an efficient means of MAP or marginal
inference, and its performance can be rigorously charactézed
by a scalar state evolution. For generalA, though, GAMP can
misbehave. Damping and sequential-updating help to robusty
GAMP, but their effects are limited. Recently, a “vector AMP”
(VAMP) algorithm was proposed for additive white Gaussian
noise channels. VAMP extends AMP’s guarantees from i.i.d.
Gaussian A to the larger class of rotationally invariant A. In
this paper, we show how VAMP can be extended to the GLM.
Numerical experiments show that the proposed GLM-VAMP is
much more robust to ill-conditioning in A than damped GAMP.

I. INTRODUCTION

We consider the problem of estimating a random vector

x € RY from observationgy € R generated as shown in
Fig.[, which is known as thgeneralized linear mod€{GLM)
[1]. Under this modelgx has a prior density,, andy obeys a
likelihood function of the fornp(y|z) = py.(y|Az), where
A € RM*N js a known linear transform and £ Ax are
hidden transform outputs. The conditional dengity. can be
interpreted as a probabilistic measurement channel tcapts
a vectorz and outputs a random vectgr Although we have
assumed real-valued quantities for the sake of simplidity,
is straightforward to generalize the methods in this paper
complex-valued quantities.

A. The Generalized Linear Model

The GLM has many applications in statistics, computer

science, and engineering. For examplestattistical regression

[2], A and y contain experimental features and outcomes,

respectively, and: are coefficients that best predigtfrom A.
The relationship betweeg and the optimal scores = Ax
is then characterized by,|.. In imagingrelated inverse prob-
lems [3], = is an image to recoved is often Fourier-based,
and p, . models the sensor(s). lcommunicationgproblems
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Fig. 1. Generalized Linear Model (GLM): An unknown randomctes
x is observed through a linear transfors followed by a probabilistic
measurement channgl, |, yielding the measured vectgy.

[4],  may be a vector of discrete symbols to recover, in which

caseA is a function of the modulation/demodulation scheme

and the propagation physics. Qr,may contain propagation-

channel parameters to recover, in which casés a function

of the modulation/demodulation scheme and the pilot symbol

In both casesp,,. models receiver hardware and interference.
Below we give some examples of the measurement channels

py|= that are encountered in these applications.

o Robust regressior[5] treats y = z + w, and so
Py|=(Y|2) = pw(y — z), Wherep,, is the density ofw.
The “standard linear model” treats as additive white
Gaussian noise (AWGN) but is not robust to outliers.
Robust methods use i.i.d. heavy-tailed models«or

« Binary linear classification[6] can be modeled using

Ym = Sgn(zm + wy,), Wheresgn(v) = 1 for v > 0

andsgn(v) = —1 for v < 0, andw,, are i.i.d. errors.

Gaussianw,,, yields the “probit” model and logistia,,

yields the “logistic” model.

Quantized compressive sens{@ymodelsy,, = Q(z.,+

wp,) With i.i.d. noisew,,. Here,Q(+) is a scalar quantizer.

« Phase retrieval8] usesy., = |zm + wm| with z,,,, w,, €
C. When w,, is ii.d. circular Gaussianp,.(y|z) =
H%:l py|z(ymlzm) with RiCianpy|z('|2) [9.1

« Photon-limited imaging10] models the number of pho-
tons collected by the sensar,,, using a Poisson distri-
bution with rate parametet,,. Similar models are used
when inferring parameters fromeural spike traing11].

t L[]

B. Inference under the Generalized Linear Model

Our goal is to estimate the random vectorc RY from
the observed measuremenjs € R™. From the Bayesian
viewpoint, there are two major optiongtaximum a posteriori
(MAP) estimationor approximate marginal inferenceThe
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MAP estimate is the posterior maximizer, i.e., assuming a separable prior and measurement channel, i.e.,

z (zly) < {lnp(y|z) + Inps(@)} :
X — arg max X — argmax-4in X N Pgp T
map & x pxly & T Py b p:c(fﬂ) = pr(xn) and py\z(ylz) = H py\z(ymlzm)a
= argmax {Inpy|.(y|Az) + npa(z)} , 1) n=1 m=1 @)

where (@) is due to the monotonicity of the logarithm angut extensions to non-identical factors and non-sepanaple

Bayes rule, gnd[{l) _is dug to the GLM‘. Frof (1).’ WE S€fnd py|= have been proposed (e.d.. [20]5[23]). Most signif-
that MAP estimation is equivalent to solving an optimizatio

bl ¢ the f . i v with | icantly, when A is large and i.i.d. zero-mean sub-Gaussian
?ro em of the form dargming {l(w)d—i— r(m%}’, with 10SS 54 the separability conditioi](3) holds, (G)AMP is rigor-
unction i(z) = —lInp,.(y|Az) and regularizerr(z) = sly characterized by a scalar state evolution whose fixed
—Inpg(x). Such problems are tractable when the loss a (Eints, when unique, are Bayes-optimal [[19,24]. However,
regularization are both convex. For example, with the AWG )AMP can badly misbehave for othet Foréxample small
channelp(y|z) = N(y;z,I/v.) and iid. Laplacian prior 0., perturbations and/or coefficient correlationsdincan
p(n) :-OL?AGXE%_M?"D’ .MAP est|mat|02n re‘juces to” the cause (G)AMP to diverge [25]. Although damping [25,26]
LASSO [12] problem tirg ming, {|ly — Az|3 + 5-ll2lli }"  ang sequential-updating [27] strategies have been prdpose
L L robustify (G)AMP, they are limited in their effect.

Tractable MAP optimization op;e_chyes, hoyve\{er, are often In this paper, we propose a new methodology for both MAP
only surrogates for desired optimization objectives, sash estimation and approximate inference under the GLM. Our

minimizing the mean-squared error (MSE) anor the clas- - othod leverages theector AMP(VAMP) [28] framework.
sification error rate induced by the scoies- Az. Likewise,

MAP estimation returns a point estimafn.p, but reports Il. VAMP EOR THE STANDARD LINEAR MODEL
nothing about the quality of that estimate. Such considsrat We first review the VAMP algorithm, which extends SLM-

motivate a different approach, known asference where . . . )
: . . . based AMP from i.i.d. sub-Gaussiat to “right-rotationally
the goal is to compute marginal posteriors liker,|y) and invariant” (RRI) A. RRI random matrices are described by

p(zm|y). If p(x,|y) was known, then the minimum MSE _ T . o

(MMSE) estimate ofr,, and the MMSE itself are simply the an SVD A = USV W'th. v umformly d|st_r|buted over _the
mean and variance @fx,,|y) [13]. Exact marginal inference, group of orthogonal matrices, aIIowmg arbitrary deteristio
however, is intractable for most problems of interest. Thugﬂsnges'rilé(\)’\gﬁSsi;og]r;'rgg;]iztzgt’bv;'tg l:;%?aF?AtZAe,\/\I/ZIution
one must usually settle for an approximation. whose fixed points agree with the replica prediction of MMSE.

One well-known approach to approximate marginal imce;\_lumerical experiments iri_[28] suggest that VAMP performs

ence is throughstochastic simulatiormethods like MCMC very F:Iose to the replica prediction even at .mOder?‘Fe di-
[14]. But for high dimensional GLMs, such techniques can ngrgsmrr:s art;d W'tl? Etrongly non—zeirao-meadn or ;:l'chondsmgrl\]ﬂp
computationally expensive and their convergence is difftou - uch ro ust enhavior 1S not o serve W't. the S-
assess. Another approachviariational inferencd[l5]. There, algorithm [29], Wh'Ch enjoys the same f|>§ed po'nts as VAMP
the true posteriop(z|y) is approximated by a beliéfz) that but does not rellably converge to those flxeq pomts: o

is restricted to a subset of densiti@xhosen as a compromise Th? VAMP _algorithm for th](\a] SLM]@) IS “SpECI.fI(_Ed "'n
between fidelity and tractability. For example, the stadda‘ngor_'thm (3. _There,gl(-,v) : R — R is a denplsmg
“mean field” approach[[16] assumegz) — HNﬂ b () function identical to that used in the (G)AMP algorithm, and

while the “expectation propagation” approachlin|[17] asesm(91(r,7)) is its divergence at, i.e.,

b(x) = [[,,—; bm(al x), wherea! is the mth row of A. dg,(r, ,
A(dciitionlz;{mcolnstré\ints )on the factors, are then needed, (gi(r,7) = Ntr{%w} for i=1,2. (4
which restricts the choice of . andp,. Common examples
include exponential-family, log-concavity, or Gauss&uale-
mixture constraints. Furthermore, high-quality variaibin-
ference often require the inversion of ad x M or N x N g, (r, )] = /x b 7, ) dar )
matrix at each iteration, which is impractical for largé, N. guirV)ln g ) Cn

Under a separable prior, as [0 (3), VAMP could be configured
for approximate marginal inference by choosipgas

. . . b(@n;Tn, ) X pa(@n)N (200, 1/7), (6)
The approximate message passi(gMP) algorithm [18], . . . o
originally proposed for thestandard linear mode{SLM) whereb(zy; [71k]n, 71x) is VAMP's iteration# approximation
_ of the marginal posteriop(z,|y). Likewise, VAMP can be
y=Ax+w with w~N(0,1/v), (2)  configured for MAP inference by choosing as
was extended to the GLM in_[19]. The resultiggneralized [91(r,7)]n = arg max b(z,; rm, 7). @)

AMP (GAMP) algorithm is a computationally efficient ap-
proach to either MAP or marginal inference that places felon-separable priorg, are implicitly supported by Algo-
restrictions orp, andp,,,. GAMP was originally formulated rithm[d, although the simpler Monte-Carlo divergence agpro



Algorithm 1 VAMP for the SLM

Algorithm 2 VAMP for the GLM

Require: LMMSE estimatorg, (72, 2 ) from (10), denoiser Require: LMMSE estimatorsg,, andg., from (15) or [18),

g1 (-,7k), and number of iteration&’.
1: Select initialr1o and~;o > 0.

2. for k=0,1,...,K do

3./l Denoising

4 T =g1(r1ie, k), oak = (g1 (T1k, V1))
5 1o = (T1k — a1xrix)/ (1 — cuk)

6: Yo = Yik(l — a1x)/aik

7. /[l LMMSE estimation

8 Zop = go(Tak,V2k), 2k = (g5(T2k, V2k))
9 ripn = (o — agkrar) /(1 — azg)

10: Y1 en = Yor (1 — aak)/ ook
11: end for
12: Returnz k.

denoisery,; andg,;, and number of iteration&’.

1: Select initialryg, p1g,v10 > 0,710 > 0.
2. for k=0,1,...,K do

./l Denoisingx

ZTip = Gu1(T1k, M1k), 0k = (9L (T1k, V1K)
ror = (Z1x — a1x”1x)/(1 — 01g)

vor = Y1k(l — cur) /a1

/I Denoisingz

Zik = G.1(P1g> Tik)s Bik = (951 (P1gs T1x))
Dy, = (Elk - ﬁlkplk)/(l - Bik)
100 7ok = k(1 — Bix)/ Bk
11: // LMMSE estimation ofz
120 Tog = Guo(T2k, Pogs Y2k, T2k), Q2 = (Goal---))
13 T pp = (Bor — aoprar) /(1 — aor)
140 Y1 = Yor(l — cor)/aoy
/I LMMSE estimation ofz

©e AR

imation from [23, Section V.B] has also been observed to Wor]r?f

well in VAMP [B0]. In general,g,(-,) can be interpreted as 16
“denoising” the AWGN-corrupted pseudo-measuremept=

x + N (0, I/vx) using prior knowledge of. iS:
The function g, (rar,v2x) : RY — RY in line [8 of 20

Zok, = 922(T2k, Por, Y2k, Tok)s - Pok = (9a(--))
Digp = (Z2k — Bakpoy)/ (1 — Ba)
T1 e = Tor(l — Bok)/Bok

. end for
. Returnz 1 .

Algorithm [I performs LMMSE estimation ofc from the
AWGN-corrupted measurements] (2) under the pseudo-prior

€T ~ N(’I"Qk, I/’}/Qk), i.e.,

9o(rai, v2r) = (YwATA + 72161)71 (vw ATy + Y2rm2r) (8)
(gh(ran, v2r)) = Y2k N~ tr [( ATA + ) ] (9)

the more general “GEC” algorithm frorn [31] with a particular
diagonalization operator.

The per-iteration matrix inverse ifil(§)}(9) can be avoidgd b In the sequel, we will usée;, € RY andz;; € RM to

precomputing the SVDA = USV", after which

g (T2, 72r) = VDi (Y + 721V rag) (10)
N
1 Yok
’ Y 11
(95(T2r, Y2r)) N 2 ws2 + P (11)

denote the two sub-vectors of the outputggfat iterationk
(for i = 1,2), and we will user;, € RN andp,, € RM to
denote the two sub-vectors of the inpuigto As in SLM-based
VAMP, we will use the pseudo-measurement model =
x + N(0,I/v1;) when denoisingz and the pseudo-prior
x ~ N(rap, I/ve) for LMMSE estimation ofz. Likewise,

wherey = 7,8TU "y and D}, is the N x N diagonal matrix we will use pseudo-measurements, = z + N(0,I/71;)
With [Dy]nn = (vws2 +v2:) L. Sincey can be precomputed, when denoisingz and the pseudo-price ~ N (py,, I /7ak)
the complexity of VAMP is dominated by two matrix-vectorfor LMMSE estimation ofz. A rigorous justification of these

multiplies per iteration, just like AMP.

Ill. VAMP FOR THE GENERALIZED LINEAR MODEL

models is postponed for future work.

The independence between the random variablesd the
random variableg conditioned onz implies that the function

Algorithm[I applies VAMP to the SLM. We now show how91 decouples across the two sub-vectors. That is, we can write

a small modification allows its application to the GLM. Ouff1k = 9x1

approach exploits the equivalence relationship
z=Az & 0=[A-I t’] & y=Az+w, (12)

wherey £0, A £ [A—I], T £ [Z], andw ~ N(0,1/7.)

(r1k,v1k) andZ1, = g,1(pys, T1k) fOr denoisers
g.1Coyie) : RY — RN and g,,(-,71) : RM — RM,
The construction ofg,,; remains the same as described in
Section[), and the construction @f,, is similar but with
Py|=(yl-) replacingpz(-). Lines[3t6 and19-10 of Algorithrin] 2
follow directly from lines[3-6 of Algorithr 1.

asv. — oo. Comparing [(IR) to[(2), we see that our GLM Lines[I2FI8 of AlgorithmiR2 implement LMMSE estimation
can be expressed as an SLM wharehas two sub-vectors, of = [Z] under the SLM in[(IR) and the pseudo-prior

the first inR" and the second iR" . Because these two sub-
vectors can behave very differently, we propose a modified
VAMP that separately tracks the precision of each. The tesul

(13)

o[- () [ 1))

shown in Algorithm[2, can be interpreted as an instance BEcause the likelihood and prior are both Gaussian, the



. . . . 0 ‘ A
LMMSE estimate is equivalent to the MAP estimate —A— AD-GAMP
5 | [~ vawe |
argmax p(Z|y) = argmin {—Inp(y|z) —Inp(T)}  (14)
T g
. 210 i
= argmin || Az — 2[3 + 1k lrak — @l + okllpo — 213
-15 1
Zeroing the gradients w.r.tc and z, takingv. — oo, and §
substituting the SVDA = USV" into the result, we get Z 20| .
()
G2 (T ok, Doy, Y2k, Tok) = V Dy (o1 S U pyy, + 721V 12k g5t 1
[
9.2(T2k, Pogs Yok Tok) = Ao (T2k, Pogs Yok T2k ), (15) & 30l |
whereD,, is an N x N diagonal matrix such thgiDy],,, = i
(T2152 + v2) 1. An alternative expression fay,, is 34 ]
o2 (720, Pok, V2, T2) _40100 10! 107 e 10" 10 10°
—1 .
=T + VST(?I +88T)  (U'py— SV'ra). (16) condition number
2k

. ) . Fig. 2. Debiased NMSE versus condition numkér) at the final algorithm
Both (I3) and[(1b) are derived in the Appendix. iteration, averaged ovef00 realizations.

Recalling the definition of the divergence [d (4), we see that
asy, from line[I2 of Algorithm2 equalsv—! times the trace
of the Jacobia®g,,/dr2. = 721,V D, V', and sol(I6) gives has a sufficiently high condition number. Thus, this matrix-
generation model provides an effective test for the stabil-
ok = (o (Poks Pogr Yok T2k ) Z 3276 (17) ity. of AMR methods. Rgcovery performance was assessed
N TokS2 + Yok using “debiased” normalized mean-squared error (ANMSE),
; 2 |2 2 iaai
Similarly, 8oy, from line[I8 of Algorithm(2 isM —! times the . c<® le® w||h/|\33|\ I'dThe d(;eb|asmlg V\(/jas_u?ed be_cause the
trace of the Jacobiaflg o /Opy, — xS DxS", and so measurement channel discards amplitude information.
=2/ T2k ’ Figure[2 plots the average dNMSE achieved by VAMP and

Bor, = <9;2(r2k,p2k772k77'2k)> (18) by the adaptively damped (AD) GAMP algorithm from [25]
kst M versus condition numbex(A). The dNMSE was evaluated
= — Z 2k = —(1—ag). (19) for k(A) ranging from1 (i.e., row-orthogonal) tol0°® (i.e.,
TokS% +ver N

highly ill-conditioned A), and averaged oveéi00 independent

The above explams I|né§l12 aind 16 of AlgoritAin 2. Lihes 1glraws of A, =, andw. For this experiment, VAMP perfectly
14 and IW-18 of Algorithrfi]2 follow directly from lindg[@oknew the priorp,, and measurement-channgl. (although if

of Algorlthm[] not the technique in_[32] could be used for automatic tuning)
and it was initialized using1p = 0, p;; = 0, v10 = 1075,
IV. NUMERICAL EXPERIMENTS andryy = 1078, The figure shows that AD-GAMP accurately

We now show the results of a numerical experimenona- recoveredr for x(A) < 103 but failed at higher condition
bit compressed sensingvhere the goal was to recover thdumbers. By contrast, VAMP accurately recovesedver the

sparse signat € RY from measurements full tested range of:(A). o
Figure[3 plots the average dNMSE versus iteration for con-

Yym = sgn ([Az +w],) for m=1,..., M. (20)  dition numberss(A) € {1,316, 105}. The figures show that,
For our experiment, we drew ~ A(0,1/v,) and we for the range ofx(A) where AD-GAMP accurately recovers
constructede with 16 non-zero coefficients whose amplitudes’,‘c VAMP converges faster: in aboud iterations compared
were drawn i.i.d (0, 1) and whose indices were drawn inde!© 30-40 forﬁAD -GAMP. Meanwhile, at the extreme case of
pendently and uniformly at random. Also, we ustd= 512 *(4) = 10°, VAMP converges in less thag0 iterations.

and M — 2048, and we adjusted,, to achieve a signal-to- Thus, these experiments suggest that the convergence speed
noise ratioE{HA:nH?}/E{HwH?} :w40 dB. of VAMP is relatively insensitive to the condition number of

Following [25], we constructedd ¢ RM*N from the large, rotationally invariant.

singular value decomposition (SVDA = USVT, where

orthogonal matricedJ and V' were drawn uniformly with APPENDIX

respect to the Haar measure. That &, was rotationally

invariant. The singular values,, were a geometric series, To derive [15){(1b), we zero the gradient of the costid (14)
i.€., Sn/spn_1 = p ¥n > 1, with p and s; chosen to W.rt.x andz at z,; andZzy, yielding the equations

achieve a desired condition numbefA) £ s1/smin M,N B T/ an ~ ~

with ||A||2 = N. It was shown in [[25.26] that s(tand)ard 0= %{ (Aw%: Z2t) +73’“(w2k —ra) (D)
AMP (and even damped AMP) diverges when the matix 0 = 7e(Zok — ATok) + T2k (Zok — Pay,); (22)



(7]

m ° ‘

o, —A— AD-GAMP

w 20 —+— VAMP

20 - ]

4] [e]

Z

S a0 ‘ (9]
10° 10" k(A) =316 107 10°

o 0 Y T T

o, —A— AD-GAMP [10]

w —+— VAMP

0 20

=

= [11]
100 1 2 3

o Y

S, —A— AD-GAMP [12]

w 20 —+— VAMP

20 ]

4] [13]

Z

T .40 : : [14]
10° 10 10° 10°

iterations
Fig. 3. Debiased NMSE versus iteratidnat several condition numbers [15]
k(A) = 1in (@), x(A) = 316.23 in (b), andx(A) = 10° in (c), averaged

over 500 realizations.
[16]
[17]

which can be rewritten as

YekT2k | _ YeATA + ol — AT Zog 23)
T2k Doy —YeA (Tok + )] |22k ]
19
Inverting the block matrix i2n|123) via the Schur complemen[t ]
Q2 VATA + 9] — - ATA = i e ATA + oI

Jr
gives (after temporarlly suppressmg thie’ index) [20]
N -1 Ye =1 AT [21]
[m2] _ Q T2+7e 2 A {727“2]
~T = B 1T .
Z2 o 2 _AQ! T2+,Y I+ T2+,Y AQ A" 2P
22
Taking v, — oo then givesQ = o AT A + Yo, and 221
?21@ _ Q' QAT [yanrax (24) [23]
Zok AQ P AQTTAT| | kDo
I - 24
= [A:| (TQkATA—l-"kaI) 1(721@""21@ +TQkATp2k). (25) [24]
Plugging the SVDA = USVT into (Z8) yields [I5). An [?°]
alternative expression results from the matrix inversemra:
-1
Bon = 7o+ AT(ZET+ AAT)  (py — Ara), (26) 129
T2k
and plugging the SVDA = USV" into (Z8) yields [Ib).
[27]
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