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Abstract—The generalized linear model (GLM), where a ran-
dom vector x is observed through a noisy, possibly nonlinear,
function of a linear transform output z = Ax, arises in a range
of applications such as robust regression, binary classification,
quantized compressed sensing, phase retrieval, photon-limited
imaging, and inference from neural spike trains. WhenA is large
and i.i.d. Gaussian, the generalized approximate message passing
(GAMP) algorithm is an efficient means of MAP or marginal
inference, and its performance can be rigorously characterized
by a scalar state evolution. For generalA, though, GAMP can
misbehave. Damping and sequential-updating help to robustify
GAMP, but their effects are limited. Recently, a “vector AMP”
(VAMP) algorithm was proposed for additive white Gaussian
noise channels. VAMP extends AMP’s guarantees from i.i.d.
GaussianA to the larger class of rotationally invariant A. In
this paper, we show how VAMP can be extended to the GLM.
Numerical experiments show that the proposed GLM-VAMP is
much more robust to ill-conditioning in A than damped GAMP.

I. I NTRODUCTION

We consider the problem of estimating a random vector
x ∈ RN from observationsy ∈ RM generated as shown in
Fig. 1, which is known as thegeneralized linear model(GLM)
[1]. Under this model,x has a prior densitypx andy obeys a
likelihood function of the formp(y|x) = py|z(y|Ax), where
A ∈ RM×N is a known linear transform andz , Ax are
hidden transform outputs. The conditional densitypy|z can be
interpreted as a probabilistic measurement channel that accepts
a vectorz and outputs a random vectory. Although we have
assumed real-valued quantities for the sake of simplicity,it
is straightforward to generalize the methods in this paper to
complex-valued quantities.

A. The Generalized Linear Model

The GLM has many applications in statistics, computer
science, and engineering. For example, instatistical regression
[2], A and y contain experimental features and outcomes,
respectively, andx are coefficients that best predicty from A.
The relationship betweeny and the optimal scoresz = Ax

is then characterized bypy|z. In imaging-related inverse prob-
lems [3],x is an image to recover,A is often Fourier-based,
and py|z models the sensor(s). Incommunicationsproblems
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Fig. 1. Generalized Linear Model (GLM): An unknown random vector
x is observed through a linear transformA followed by a probabilistic
measurement channelpy|z , yielding the measured vectory.

[4], x may be a vector of discrete symbols to recover, in which
caseA is a function of the modulation/demodulation scheme
and the propagation physics. Or,x may contain propagation-
channel parameters to recover, in which caseA is a function
of the modulation/demodulation scheme and the pilot symbols.
In both cases,py|z models receiver hardware and interference.

Below we give some examples of the measurement channels
py|z that are encountered in these applications.

• Robust regression[5] treats y = z + w, and so
py|z(y|z) = pw(y − z), wherepw is the density ofw.
The “standard linear model” treatsw as additive white
Gaussian noise (AWGN) but is not robust to outliers.
Robust methods use i.i.d. heavy-tailed models forw.

• Binary linear classification[6] can be modeled using
ym = sgn(zm + wm), where sgn(v) = 1 for v ≥ 0
and sgn(v) = −1 for v < 0, andwm are i.i.d. errors.
Gaussianwm yields the “probit” model and logisticwm

yields the “logistic” model.
• Quantized compressive sensing[7] modelsym = Q(zm+

wm) with i.i.d. noisewm. Here,Q(·) is a scalar quantizer.
• Phase retrieval[8] usesym = |zm+wm| with zm, wm ∈

C. When wm is i.i.d. circular Gaussian,py|z(y|z) =∏M

m=1 py|z(ym|zm) with Rician py|z(·|z) [9].
• Photon-limited imaging[10] models the number of pho-

tons collected by the sensor,ym, using a Poisson distri-
bution with rate parameterzm. Similar models are used
when inferring parameters fromneural spike trains[11].

B. Inference under the Generalized Linear Model

Our goal is to estimate the random vectorx ∈ RN from
the observed measurementsy ∈ RM . From the Bayesian
viewpoint, there are two major options:maximum a posteriori
(MAP) estimationor approximate marginal inference. The
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MAP estimate is the posterior maximizer, i.e.,

x̂map = argmax
x

p(x|y)
(a)
= argmax

x

{ln p(y|x) + ln px(x)}

= argmax
x

{
ln py|z(y|Ax) + ln px(x)

}
, (1)

where (a) is due to the monotonicity of the logarithm and
Bayes rule, and (1) is due to the GLM. From (1), we see
that MAP estimation is equivalent to solving an optimization
problem of the form “argminx {l(x) + r(x)},” with loss
function l(x) , − ln py|z(y|Ax) and regularizerr(x) ,

− ln px(x). Such problems are tractable when the loss and
regularization are both convex. For example, with the AWGN
channelp(y|z) = N (y; z, I/γw) and i.i.d. Laplacian prior
p(xn) = 0.5λ exp(−λ|xn|), MAP estimation reduces to the
LASSO [12] problem “argminx

{
‖y −Ax‖22 +

λ
γw

‖x‖1
}

.”

Tractable MAP optimization objectives, however, are often
only surrogates for desired optimization objectives, suchas
minimizing the mean-squared error (MSE) onx̂ or the clas-
sification error rate induced by the scoresẑ = Ax̂. Likewise,
MAP estimation returns a point estimatêxmap, but reports
nothing about the quality of that estimate. Such considerations
motivate a different approach, known asinference, where
the goal is to compute marginal posteriors likep(xn|y) and
p(zm|y). If p(xn|y) was known, then the minimum MSE
(MMSE) estimate ofxn and the MMSE itself are simply the
mean and variance ofp(xn|y) [13]. Exact marginal inference,
however, is intractable for most problems of interest. Thus,
one must usually settle for an approximation.

One well-known approach to approximate marginal infer-
ence is throughstochastic simulationmethods like MCMC
[14]. But for high dimensional GLMs, such techniques can be
computationally expensive and their convergence is difficult to
assess. Another approach isvariational inference[15]. There,
the true posteriorp(x|y) is approximated by a beliefb(x) that
is restricted to a subset of densitiesQ chosen as a compromise
between fidelity and tractability. For example, the standard
“mean field” approach [16] assumesb(x) =

∏N

n=1 bn(xn)
while the “expectation propagation” approach in [17] assumes
b(x) =

∏M

m=1 bm(aT
mx), whereaT

m is the mth row of A.
Additional constraints on the factorsbm are then needed,
which restricts the choice ofpy|z andpx. Common examples
include exponential-family, log-concavity, or Gaussian-scale-
mixture constraints. Furthermore, high-quality variational in-
ference often require the inversion of anM ×M or N×N
matrix at each iteration, which is impractical for largeM,N .

The approximate message passing(AMP) algorithm [18],
originally proposed for thestandard linear model(SLM)

y = Ax+w with w ∼ N (0, I/γw), (2)

was extended to the GLM in [19]. The resultinggeneralized
AMP (GAMP) algorithm is a computationally efficient ap-
proach to either MAP or marginal inference that places few
restrictions onpx andpy|z. GAMP was originally formulated

assuming a separable prior and measurement channel, i.e.,

px(x) =
N∏

n=1

px(xn) and py|z(y|z) =
M∏

m=1

py|z(ym|zm),

(3)

but extensions to non-identical factors and non-separablepx
and py|z have been proposed (e.g., [20]–[23]). Most signif-
icantly, whenA is large and i.i.d. zero-mean sub-Gaussian
and the separability condition (3) holds, (G)AMP is rigor-
ously characterized by a scalar state evolution whose fixed
points, when unique, are Bayes-optimal [19,24]. However,
(G)AMP can badly misbehave for otherA. For example, small
mean perturbations and/or coefficient correlations inA can
cause (G)AMP to diverge [25]. Although damping [25,26]
and sequential-updating [27] strategies have been proposed to
robustify (G)AMP, they are limited in their effect.

In this paper, we propose a new methodology for both MAP
estimation and approximate inference under the GLM. Our
method leverages thevector AMP(VAMP) [28] framework.

II. VAMP FOR THESTANDARD L INEAR MODEL

We first review the VAMP algorithm, which extends SLM-
based AMP from i.i.d. sub-GaussianA to “right-rotationally
invariant” (RRI) A. RRI random matrices are described by
an SVDA = USV T with V uniformly distributed over the
group of orthogonal matrices, allowing arbitrary deterministic
U andS. It was shown in [28] that, with large RRIA, VAMP
can be rigorously characterized by a scalar state evolution
whose fixed points agree with the replica prediction of MMSE.
Numerical experiments in [28] suggest that VAMP performs
very close to the replica prediction even at moderate di-
mensions and with strongly non-zero-mean or ill-conditioned
A. Such robust behavior is not observed with the S-AMP
algorithm [29], which enjoys the same fixed points as VAMP
but does not reliably converge to those fixed points.

The VAMP algorithm for the SLM (2) is specified in
Algorithm 1. There,g1(·, γ) : RN → R

N is a “denoising”
function identical to that used in the (G)AMP algorithm, and
〈g′

1(r, γ)〉 is its divergence atr, i.e.,

〈g′
i(r, γ)〉 =

1

N
tr

{
∂gi(r, γ)

∂r

}
for i = 1, 2. (4)

Under a separable prior, as in (3), VAMP could be configured
for approximate marginal inference by choosingg1 as

[g1(r, γ)]n =

∫

R

xn b(xn; rn, γ) dxn (5)

b(xn; rn, γ) ∝ px(xn)N (xn; rn, 1/γ), (6)

whereb(xn; [r1k]n, γ1k) is VAMP’s iteration-k approximation
of the marginal posteriorp(xn|y). Likewise, VAMP can be
configured for MAP inference by choosingg1 as

[g1(r, γ)]n = argmax
xn

b(xn; rn, γ). (7)

Non-separable priorspx are implicitly supported by Algo-
rithm 1, although the simpler Monte-Carlo divergence approx-



Algorithm 1 VAMP for the SLM

Require: LMMSE estimatorg2(r2k, γ2k) from (10), denoiser
g1(·, γ1k), and number of iterationsK.

1: Select initialr10 andγ10 ≥ 0.
2: for k = 0, 1, . . . ,K do
3: // Denoising
4: x̂1k = g1(r1k, γ1k), α1k = 〈g′

1(r1k, γ1k)〉
5: r2k = (x̂1k − α1kr1k)/(1− α1k)
6: γ2k = γ1k(1− α1k)/α1k

7: // LMMSE estimation
8: x̂2k = g2(r2k, γ2k), α2k = 〈g′

2(r2k, γ2k)〉
9: r1,k+1 = (x̂2k − α2kr2k)/(1− α2k)

10: γ1,k+1 = γ2k(1− α2k)/α2k

11: end for
12: Returnx̂1K .

imation from [23, Section V.B] has also been observed to work
well in VAMP [30]. In general,g1(·, γ) can be interpreted as
“denoising” the AWGN-corrupted pseudo-measurementr1k =
x+N (0, I/γ1k) using prior knowledge ofx.

The function g2(r2k, γ2k) : RN → RN in line 8 of
Algorithm 1 performs LMMSE estimation ofx from the
AWGN-corrupted measurements (2) under the pseudo-prior
x ∼ N (r2k, I/γ2k), i.e.,

g2(r2k, γ2k) :=
(
γwA

TA+ γ2kI
)−1(

γwA
Ty + γ2kr2k

)
(8)

〈g′
2(r2k, γ2k)〉 = γ2kN

−1 tr
[(
γwA

TA+ γ2kI
)−1]

(9)

The per-iteration matrix inverse in (8)-(9) can be avoided by
precomputing the SVDA = USV T, after which

g2(r2k, γ2k) = V Dk

(
ỹ + γ2kV

Tr2k
)

(10)

〈g′
2(r2k, γ2k)〉 =

1

N

N∑

n=1

γ2k
γws2n + γ2k

, (11)

whereỹ = γwS
TUTy andDk is theN ×N diagonal matrix

with [Dk]nn = (γws
2
n+γ2k)

−1. Sinceỹ can be precomputed,
the complexity of VAMP is dominated by two matrix-vector
multiplies per iteration, just like AMP.

III. VAMP FOR THEGENERALIZED L INEAR MODEL

Algorithm 1 applies VAMP to the SLM. We now show how
a small modification allows its application to the GLM. Our
approach exploits the equivalence relationship

z = Ax ⇔ 0 =
[
A−I

] [x
z

]
⇔ y = Ax+w, (12)

wherey , 0, A ,
[
A−I

]
, x , [ xz ], andw ∼ N (0, I/γe)

as γe → ∞. Comparing (12) to (2), we see that our GLM
can be expressed as an SLM wherex has two sub-vectors,
the first inRN and the second inRM . Because these two sub-
vectors can behave very differently, we propose a modified
VAMP that separately tracks the precision of each. The result,
shown in Algorithm 2, can be interpreted as an instance of

Algorithm 2 VAMP for the GLM
Require: LMMSE estimatorsgx2 andgz2 from (15) or (16),

denoisersgx1 andgz1, and number of iterationsK.
1: Select initialr10,p10, γ10 > 0, τ10 > 0.
2: for k = 0, 1, . . . ,K do
3: // Denoisingx
4: x̂1k = gx1(r1k, γ1k), α1k = 〈g′

x1(r1k, γ1k)〉
5: r2k = (x̂1k − α1kr1k)/(1− α1k)
6: γ2k = γ1k(1 − α1k)/α1k

7: // Denoisingz
8: ẑ1k = gz1(p1k, τ1k), β1k = 〈g′

z1(p1k, τ1k)〉
9: p2k = (ẑ1k − β1kp1k)/(1 − β1k)

10: τ2k = τ1k(1− β1k)/β1k

11: // LMMSE estimation ofx
12: x̂2k = gx2(r2k,p2k, γ2k, τ2k), α2k = 〈g′

x2(. . . )〉
13: r1,k+1 = (x̂2k − α2kr2k)/(1− α2k)
14: γ1,k+1 = γ2k(1− α2k)/α2k

15: // LMMSE estimation ofz
16: ẑ2k = gz2(r2k,p2k, γ2k, τ2k), β2k = 〈g′

z2(. . . )〉
17: p1,k+1 = (ẑ2k − β2kp2k)/(1− β2k)
18: τ1,k+1 = τ2k(1− β2k)/β2k

19: end for
20: Returnx̂1K .

the more general “GEC” algorithm from [31] with a particular
diagonalization operator.

In the sequel, we will usêxik ∈ RN and ẑik ∈ RM to
denote the two sub-vectors of the output ofgi at iterationk
(for i = 1, 2), and we will userik ∈ RN andpik ∈ RM to
denote the two sub-vectors of the input togi. As in SLM-based
VAMP, we will use the pseudo-measurement modelr1k =
x + N (0, I/γ1k) when denoisingx and the pseudo-prior
x ∼ N (r2k, I/γ2k) for LMMSE estimation ofx. Likewise,
we will use pseudo-measurementsp1k = z + N (0, I/τ1k)
when denoisingz and the pseudo-priorz ∼ N (p2k, I/τ2k)
for LMMSE estimation ofz. A rigorous justification of these
models is postponed for future work.

The independence between the random variablesx and the
random variablesy conditioned onz implies that the function
g1 decouples across the two sub-vectors. That is, we can write
x̂1k = gx1(r1k, γ1k) and ẑ1k = gz1(p1k, τ1k) for denoisers
gx1(·, γ1k) : RN → RN and gz1(·, τ1k) : RM → RM .
The construction ofgx1 remains the same as described in
Section II, and the construction ofgz2 is similar but with
py|z(y|·) replacingpx(·). Lines 5-6 and 9-10 of Algorithm 2
follow directly from lines 5-6 of Algorithm 1.

Lines 12-18 of Algorithm 2 implement LMMSE estimation
of x = [ xz ] under the SLM in (12) and the pseudo-prior

x =

[
x

z

]
∼ N

([
r2k
p2k

]
,

[
I/γ2k

I/τ2k

])
. (13)

Because the likelihood and prior are both Gaussian, the



LMMSE estimate is equivalent to the MAP estimate

argmax
x

p(x|y) = argmin
x

{− ln p(y|x)− ln p(x)} (14)

= argmin
x,z

γe‖Ax− z‖22 + γ2k‖r2k − x‖22 + τ2k‖p2k − z‖22.

Zeroing the gradients w.r.t.x and z, taking γe → ∞, and
substituting the SVDA = USV T into the result, we get

gx2(r2k,p2k, γ2k, τ2k) = V Dk

(
τ2kS

TUTp2k + γ2kV
Tr2k

)

gz2(r2k,p2k, γ2k, τ2k) =Agx2(r2k,p2k, γ2k, τ2k), (15)

whereDk is anN ×N diagonal matrix such that[Dk]nn ,

(τ2ks
2
n + γ2k)

−1. An alternative expression forgx2 is

gx2(r2k,p2k, γ2k, τ2k)

= r2k + V ST
(γ2k
τ2k

I + SST
)−1(

UTp2k − SV Tr2k
)
. (16)

Both (15) and (16) are derived in the Appendix.
Recalling the definition of the divergence in (4), we see that

α2k from line 12 of Algorithm 2 equalsN−1 times the trace
of the Jacobian∂gx2/∂r2k = γ2kV DkV

T, and so (16) gives

α2k = 〈g′
x2(r2k,p2k, γ2k, τ2k)〉 =

1

N

N∑

n=1

γ2k
τ2ks2n + γ2k

. (17)

Similarly, β2k from line 16 of Algorithm 2 isM−1 times the
trace of the Jacobian∂gz2/∂p2k = τ2kSDkS

T, and so

β2k = 〈g′
z2(r2k,p2k, γ2k, τ2k)〉 (18)

=
1

M

N∑

n=1

τ2ks
2
n

τ2ks2n + γ2k
=

M

N
(1− α2k). (19)

The above explains lines 12 and 16 of Algorithm 2. Lines 13-
14 and 17-18 of Algorithm 2 follow directly from lines 9-10
of Algorithm 1.

IV. N UMERICAL EXPERIMENTS

We now show the results of a numerical experiment onone-
bit compressed sensing, where the goal was to recover the
sparse signalx ∈ RN from measurements

ym = sgn
(
[Ax+w]m

)
for m = 1, . . . ,M. (20)

For our experiment, we dreww ∼ N (0, I/γw) and we
constructedx with 16 non-zero coefficients whose amplitudes
were drawn i.i.d.N (0, 1) and whose indices were drawn inde-
pendently and uniformly at random. Also, we usedN = 512
andM = 2048, and we adjustedγw to achieve a signal-to-
noise ratioE{‖Ax‖2}/E{‖w‖2} = 40 dB.

Following [25], we constructedA ∈ RM×N from the
singular value decomposition (SVD)A = USV T, where
orthogonal matricesU and V were drawn uniformly with
respect to the Haar measure. That is,A was rotationally
invariant. The singular valuessn were a geometric series,
i.e., sn/sn−1 = ρ ∀n > 1, with ρ and s1 chosen to
achieve a desired condition numberκ(A) , s1/smin(M,N)

with ‖A‖2F = N . It was shown in [25,26] that standard
AMP (and even damped AMP) diverges when the matrixA
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Fig. 2. Debiased NMSE versus condition numberκ(A) at the final algorithm
iteration, averaged over500 realizations.

has a sufficiently high condition number. Thus, this matrix-
generation model provides an effective test for the stabil-
ity of AMP methods. Recovery performance was assessed
using “debiased” normalized mean-squared error (dNMSE),
minc∈R ‖cx̂−x‖2/‖x‖2. The debiasing was used because the
measurement channel discards amplitude information.

Figure 2 plots the average dNMSE achieved by VAMP and
by the adaptively damped (AD) GAMP algorithm from [25]
versus condition numberκ(A). The dNMSE was evaluated
for κ(A) ranging from1 (i.e., row-orthogonal) to106 (i.e.,
highly ill-conditionedA), and averaged over500 independent
draws ofA, x, andw. For this experiment, VAMP perfectly
knew the priorpx and measurement-channelpy|z (although if
not the technique in [32] could be used for automatic tuning)
and it was initialized usingr10 = 0, p10 = 0, γ10 = 10−8,
andτ10 = 10−8. The figure shows that AD-GAMP accurately
recoveredx for κ(A) < 103 but failed at higher condition
numbers. By contrast, VAMP accurately recoveredx over the
full tested range ofκ(A).

Figure 3 plots the average dNMSE versus iteration for con-
dition numbersκ(A) ∈ {1, 316, 106}. The figures show that,
for the range ofκ(A) where AD-GAMP accurately recovers
x, VAMP converges faster: in about10 iterations compared
to 30-40 for AD-GAMP. Meanwhile, at the extreme case of
κ(A) = 106, VAMP converges in less than20 iterations.
Thus, these experiments suggest that the convergence speed
of VAMP is relatively insensitive to the condition number of
large, rotationally invariantA.

APPENDIX

To derive (15)-(16), we zero the gradient of the cost in (14)
w.r.t. x andz at x̂2k and ẑ2k, yielding the equations

0 = γeA
T(Ax̂2k − ẑ2k) + γ2k(x̂2k − r2k) (21)

0 = γe(ẑ2k −Ax̂2k) + τ2k(ẑ2k − p2k), (22)
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which can be rewritten as
[
γ2kr2k

τ2kp2k

]
=

[
γeA

TA+ γ2kI −γeA
T

−γeA (τ2k + γe)I

] [
x̂2k

ẑ2k

]
. (23)

Inverting the block matrix in (23) via the Schur complement
Q , γeA

TA + γ2kI − γ2

e

τ2k+γe

ATA = γeτ2k
τ2k+γe

ATA + γ2kI
gives (after temporarily suppressing the “k” index)
[
x̂2

ẑ2

]
=

[
Q−1 γe

τ2+γe
Q−1AT

γe

τ2+γe
AQ−1 1

τ2+γe
(I +

γ2

e

τ2+γe
AQ−1AT)

] [
γ2r2
τ2p2

]
.

Taking γe → ∞ then givesQ = τ2kA
TA+ γ2kI and

[
x̂2k

ẑ2k

]
=

[
Q−1 Q−1AT

AQ−1 AQ−1AT

] [
γ2kr2k

τ2kp2k

]
(24)

=

[
I

A

] (
τ2kA

TA+ γ2kI
)−1(

γ2kr2k + τ2kA
Tp2k

)
. (25)

Plugging the SVDA = USV T into (25) yields (15). An
alternative expression results from the matrix inversion lemma:

x̂2k = r2k +AT
(γ2k
τ2k

I +AAT
)−1

(p2k −Ar2k), (26)

and plugging the SVDA = USV T into (26) yields (16).
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