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Distributed Gaussian Learning over Time-varying Direct&@phs

Angelia Nedi€, Alex Olshevsky and César A. Uribe

Abstract— We present a distributed (non-Bayesian) learning the belief update algorithm where agents observe a paramete
algorithm for the problem of parameter estimation with Gaus-  corrupted by Gaussian noise and likelihood models are Gaus-
sian noise. The algorithm is expressed as explicit updates the sian functions, which results iBaussian beliefsVe present

parameters of the Gaussian beliefs (i.e. means and precisip .. o .
We show a convergence rate of(1/k) with the constant term explicit updates for the beliefs’ mean and variances, thus

depending on the number of agents and the topo|ogy of the pI’OViding an algorithm for the distributed estimation [Ees.
network. Moreover, we show almost sure convergence to the We show almost sure convergence to an optimal parameter

optimal solution of the estimation problem for the general @ase  and establish a convergence ratexfl /k). We also provide

of time-varying directed graphs. simulation results for our algorithm and compare it with
two approaches proposed in [15], [16]. Our results hold
|. INTRODUCTION for the general case of time-varying directed graphs, which

The analysis of distributed (non-Bayesian) learning algcare established by using ideas from the push-sum algorithm
rithm gained popularity since the seminal work of Jadbabaie [6], [17].
et al. [1]. The ability of non-Bayesian updates to combine This paper is organized as follows. Sectloh Il describes
distributed optimization and learning algorithms makenthe the problem setup, as well as the proposed algorithm and
especially useful for the design of distributed estimatiomnain results. Sectidn il provides a detailed comparisah wi
algorithms with provable performance. results from [15], [16] for the case of identically distribd

In the distributed learning setup, a group of agents repbservations for all agents. Sectignl IV shows simulation
peatedly receive signals about a certain unknown state gfsults and comparison with other algorithms. Finally,-con
the world or parameter. No single agent has enough infoglusions and future work are presented in Sedfion V.
mation to accurately estimate the unknown state and, thus,Notation: superscripts refer to agents which are usually
interaction with other agents is needed. Several resuits dndexed by the letters or j. Subscripts indicate instants of
readily available for performance evaluation of distrémit time which are denoted by the letterRandom variables are
learning algorithms for a variety of scenarios. Asymptoti¢lenoted by capital letters, e.§y, and their corresponding
exponential convergence rates where developed in [2], [3galizations by lower case letters, esg. The transpose of a
[4], non-asymptotic bounds in [5], time-varying directedvectorz is denoted as’. The term[A],; denotes the entry
graphs in [6], conflicting hypotheses and linear rates in [7pf a matrix A at thei-th row and thej-th column. For a se-
no-recall approaches to belief sharing in [8] and adveasariquence{ A;} of matrices we letdy.; = ApAg_1--- A1 As
cases in [9], [10]. This list is necessarily incomplete, #mel for £ > t. We denote the Gaussian function by

reader is referred to [11] for an extended set of references. ) 1 (z — 6)2
Most of the previously proposed models assume that the N(8,07) = VZno? ex (_T>

parameter space of the estimation process is finite. Initial
approaches to the study of continuum sets of hypotheses were !l. PROBLEM SETUP, ALGORITHM AND RESULTS
developed in [12], where explicit non-asymptotic ratesever Consider a group of, agents whose goal is to collectively
derived. A similar setup with Gaussian noisy observationsolve the following optimization problem
with nonlinear function of the parameter to be estimated has ) - P
been considered in [13], [14], where almost sure convergenc e F(9) = Z Dcr (1167 (-16)) . (1)
and asymptotic exponential rates for fixed undirected ggaph =1
were established. Allowing the hypotheses set to be infiniwhere D1, (f7[|¢° (-0)) is the Kullback-Leibler divergence
(e.g. a compact subset @™) enables the exploration of between anunknown distribution f* and a parametrized
traditional estimation problems in a distributed mannareO distribution ¢¢(-|#). Each agent has access to realizations
of such problems is the parameter estimation with Gaussiaf a random variableS, ~ f* and a local family of
noise, which is the main concern of this manuscript. parametrized distribution$/i(-|0) | # € ©}, where® is

In particular, we focus on th&Saussian caseof the a set of parameters. In other words, the agents want to
distributed (non-Bayesian) learning setup in [12]. We gpal determine a parametét € © corresponding to a distribution
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In [12], the authors proposed an algorithm for solving thevhere 7¢ = 1/(c*)? is refereed as the precision of the
general problem of Eq[{1) for compact sé&sc R?. The observations. The Weigh{slk]ij are chosen as
algorithm generates non-Bayesian posteriors beliefsdbase L B o
on local observations and shared beliefs from neighboring (A, = {diﬂ if (j,4) € Eg,

3

(6)

agents. Each agentconstructs a sequende:; }7° ; of be- 0 otherwise
liefs about the hypothesis sét wherey! maps measurable _
subsets of© to real values indicating the belief that thewhered; is the out-degree of nodeat time. Without loss
unknown parametet* is in the given subset. The algorithm of generality, we assume thaj = 7* for all 4.
proposed in [12] is given by
. Remark 1 It is not necessary for each agent to have some
T o H (73‘)“”' (st o)) @) form of informative observations. Indeed, there might be
et = Fi Rl agents with no observations working as buffers for informa-
= tion for which we also expect correct estimategtf These
wherejii = dui /dX is a belief density function, see [18], “blind” agents depend on communicating with other agents
with respect to a reference measuxe Effectively, for a to construct its estimates.
measurable subsdd C ©, we have that the belief tha#*
is in D is given by ui (D) = [, i A(6). Additionally, Remark 2 While our focus is in on the univariate Gaussian
the scalam,; is nonnegative and indicates how much agentase, extensions to the multivariate are similarly possits-
i weights the beliefs coming from its neighbgr with an ing the results of conjugate priors for multivariate Gawssi
understanding that;; = 0 if no interaction between them distributions.

occurs. " . .
In this manuscript, we assume that the observations haveThe next proposition shows that the algorithm in H. (5)

Gaussian distributionand that the likelihoods models are'® a.spe.cific _realizatiqn of EqQ(Z)_for the case of Gaussian
Gaussian, both with bounded second order moments, iqel_strlbutmns in the priors and likelihood models.
Si o~ N(6,(0c")?) and ¢i(-|0,0") = N(0,(c%)?) where
o' > 0 for everyi. This setting corresponds to the cas
of having measurements of the true paramétecorrupted
by some Gaussian noise and the agents being informed that 11 (0; 05, 0") = N (65, (0)?)
the noise is Gaussian with a known variance.

The Kullback-Leibler distance between two univariat
Gaussian distributions andq, wherep = A/(6*, (¢1)?) and

Proposition 1 Let the prior belief density:, of every agent
eDe a Gaussian function, i.e.

nd let the parametric family of distributions for the likel
ood models be Gaussian functions, i.e.

q= ./\/(92, (02)2) is given by gi(sw; (Uz’)2) _ N(@, (O,i)Q).
Dxr (pllg) = 10g0_j + (01)? + (2912— %) _ l Then, for anyk > 1, the pos'Ferior beli_ef density?, giv.en
o (02) 2 by Eg. @), is also a Gaussian function. Moreover, if the

weightsa;; are chosen to be/(d), + 1), then the mean and

Thus, in this case, the problem in Ef] (1) is equivalent to > ,
the standard deviation of the posterior follow EE).

g ~(0-0')
min F'(0) > 2(01)2 ®3) Before presenting our main results, we state two auxiliary
i=1 lemmas from [17] that describe the geometric convergence
which is convex with a unique solution for the product of column stochastic matrices.
n T i\ 2
9* = M, (4) Lemma 2 [Corollary 2.a in [17]] Let the graph sequence
i=1 3 1/(c9)? {Gr} be B-strongly connectadThen, there is a sequence
j=1 {#1} of stochastic vectors such that
However, the exact value of’ is unknown and each | [Ak:t];; — Pi| < CAFE forall £>t>0

agenti has access only to noisy observations of the form . .
Si — 0 + ¢, wheree! ~ A(0, (o%)2). Moreover, variances where {A4;} is as in Eq.(€) and the constant€' and X

are only known locally, i.e. ageritonly knowsg? satisfy the following relations:
We propose the following distributed algorithm for soIving(l) For generalB-strongly connected graph sequences }

1

the problem in Eq.[{3) over time-varying directed graphs 1 \7F
Thy1 = Z [Ak];; it (52) (2) If every graphgy, is regular withB =1
j=1
n S C=v2 X=1-1/4n’
3 [l 0+ sha ™
J=

erl = (5b) There is an integeB > 1 such that the graplﬁv, ylEtDB-1 Ez> is

T4 i=kB
k+1 strongly connected for ak > 0



Lemma 3 [Corollary 2.b in [17]] Let the graph sequence where the terms involvind:¢: 7’6 cancel out and the fol-

{Gr} be B-strongly connected, and define lowing positive terms are removed from the denominator
[Akono]i—FTZ > 0. .
§ £ inf ( min [Ak:oln]i) ) Then by the fact thatDy,.;1]; + ¢},n > ¢ on the denomi-
k20 \1sisn nator and using Lemnid 2 on the third term it follows that

Then,§ > 1/n"B. Moreover, if everyG, is regular and . . [Apodiagir) (8 — 0*1)],
strongly connected (i.eB = 1), thens = 1. Furthermore, |E[6]11] — 67| < o
the sequencée,} from LemmaR satisfies], > 6/n for all o e

e 760" — 0*|  CTnazl|0 — 0%1|1
k>0andj=1,...,n. + )

Now, we proceed to state our two main results showing ina|ly, the desired result follows by Holders inequality
the convergence properties of the algorithm in 4. (5).  the first term with||[Ax.odiad(T)]i||cc = Tmaz and grouping

_ the second and third terms sing% > 1.
Lemma 4 The expected mean procedg[d;]} converges to

6* for all 7 with a convergence rate ad(1/k). Moreover, \E[Gi |- 67| < max; [Ag.0]i; 77 |60 — 9*1|I1+
the constant terms depend on the topology of the network, ki - kOTmin
the precision of the observations and the initial guess. 2CTmaz||0 — 0*1]|1

EdTmin(1 — A
Proof: In fact, we will prove the bound Tmin ) u
< mar (||90 — o1+ 2C116 —9*1|1) The first term in Eq.[[7) shows the dependency on the
= Tminkd 1—A initial estimated), while the second term shows depends on
(7)  the heterogeneity of mean of local observations. The nétwor

With Tyas = max; 77, and 7., is the smallest non-zero gopology and the number of agents is characterized bnd

precision among all agents.
First, define a new variable as, = 760, then from
Eq. (BD) it follows that

|E[0h41] — 0"

We are now ready to state our main result about the almost
sure convergence of the proposed algorithm.

Theorem 5 Let the graph sequence of interactions

Tpr1 = Agay + diag(T) sk 41 {Gr}72, be B-strongly connected. Moreover, assume
k Si~N(6,(6")?) and ¢i(-|0) = N(0,(c?)?) for all i.
= Ap.oxo + ZAk:tdiaqT)st + diag(7)sk+1 Then, the sequencf)i} generated by Eq(5) converges

t=1 almost surely t@*, i.e.

where diagr) is a diagonal matrix withdiag(7)],, = 7* and lim 6 = §*  as. Vi

g =[xk, 2R, T = T sk = [sh, ..., S0 k—o0

k k k k k
Adding and subtracting_"_, ¢.7’s, from the preceding A proof of Theorem[b is not shown due to space
relation we obtain constraints. Nonetheless, its result follows by the bodnde

k _ _ k ) variance assumption of the observations and the weighted
i1 = Agoto + Y Dydiag(t)s: +diag(r)sii1 + Y _0k7'se  Jaw of large numbers in [19].

= = Remark 3 The specific selection of weights a8(d), + 1)

with Dyt = Agt — ¢ 1, and¢y, is as in Lemmal2. is a design choice. Theorel 5 still holds for any sequence
Following a similar procedure, from Ed.(5a) it holds thalpf column stochastic matriceéA,} with every non-zero
k entry bounded from bellow away from zero, and with positive
Thr1 = ApoTo + Z Dyt + kdpl'T + 7. diagonal entries.
t=1 I1l. I DENTICAL DISTRIBUTIONS FOR ALL AGENTS
Going back to the original variabl,, we have that A specific version of the proposed problem is the case
E[p. ] = when all ag(_ents ot_>ser_ve independent realizations of the sam
k+1 random variable, i.eSi ~ N(6*, (c%)*). Recently, authors
[Arodiag7)80)i + Y1, [Dr.diag(7)d]; + 70" + kéi7’0  in [15], [16] have explored this case. Specifically, in [16]
[As:07oli + Zle[Dk:tT]i + ki 1T + 7 the authors are concerned with the effects of the network

o ] ) ] topology on the convergence rate of the distributed mean
By subtractingg™ on both sides of the previous relation andagtimation problem. They show mean square consistency of

taking the absolute value, we obtain the following algorithm
; [Ag:odiag(ro) (6o — 071)], : Eo< : 1
E[0;, ] — 0" < —=t L — E ' 97 i 3
Ol =0 = [ Dl roge S DAL AN T

L (91‘ o 9*)

‘ Sr, [DidiagT) (6 — 61)],
Zf:l[Dk:tT]i + kd)}'cl/T

- and provide explicit rates for different network topologiie
Y oie1[Dit)i + ki1’

Note that the algorithm in Eq[8) reduces to Hd. (5) when




7 =1 in such a way that] = k for all 4, and the graph is for two different graphs topologies, namely: path/linegra
static with a doubly stochastic weight matrix. and a lattice/grid graph.

In [15], the authors proposed a new distributed Gaussic 102
learning algorithm where communication between agents
noisy. Following the non-Bayesian learning without recal @  F~&==z----_
approach proposed in [8] they develop the specific reatinati 001
for Gaussian random variables. Additionally, they conside o
the sequence of observatiofis, } as coming from an agent, '_ 10°f

denoted as: + 1, and thus a different weighting strategy is < —Ea (51)/d
i i i —o| | = = -0k
proposed. Their algorithm is 07 oK)
Ty =Th+ dyT (9a) . Ea. ©)
1 7 4 10 : :
. S Tial 10° 10* 10° 10° 10* 10°
S (9b) k
k+1

. i L. i . . Fig. 1. Simulations results of algorithms in Ef] (5) and E8) for a
with the specific condition thatk =7 forall j #4, ay = lattice/grid graph of 25 nodes for an average behavior o Blonte

¢i for j = i and ai = 6",1 + ¢ with ¢ ~ A(0,7), with  carlo simulations.

n+l _ i
aj" = s;. The authors showed almost sure convergence iy a1 shows the absolute error of the estimated value

. 2

of thz a!gogthn;\. Mo_reovbe f,a dconvtirgenie rateQk 2‘:_) i 0* for the lattice/grid graph with 25 agents. It is assumed that
was gerived, wherg 1S a bound on the uniiorm connectivity S! ~ N(4,1). An average over 500 Monte Carlo simulations
to the truth observations antlis the maximal degree over

is shown for one arbitrary agent. In addition, the theosedtic
all the networks. :
; . . .convergence rates are also shown for comparison purposes.
One particular characteristic of the algorithm proposed i

[15] is that, apart from traditional literature on distribd No simulation of the algorithm in EqLY8) is shown since it

. ._reduces to the same algorithm as in Edg. (5) for the simulated
learning, the authors do not assume agents communicate, .o

over a sufficientlyconnected networkK-strong connectivity
in Theorem[®). They replace this assumption by a s
calledtruth-hearing assumptiowhich works as & /~-strong
connectivity with then + 1 node that provides direct noisy
observations off*. Thus, it is required that every node
receives signals from node + 1 at least once in every
time interval of lengthl /~. If all agents receive independent
observations from identical distributions, connectivifythe

Figure[2 shows the simulation results for the same scenario
%s in Figurd 1l but now for a path/line graph of 15 agents.
As predicted by the theoretical convergence rate bounds, th
proposed algorithm in Eql}(5) decays @$1/k) where the
topology of the network affects only the constant whereas
the proposal in Eq[{9) depends explicitly on the maximum
degree among all graphs &X1/k'/%).

network and truth hearing assumptions both serve the sat 10°
purpose of guarantying the diffusion of the informationove L _____
the network, otherwise some form of connectivity betwee 10° oS om e — e
agents is needed. < T, T
In addition to different connectivity assumptions, onemai ' 107 — 06
characteristic of the algorithm in Ed.](9) is that agents d £ - = = ok
not differentiate the signad, coming from the observations 207 O(1/k)
i J i —Eq.(9)
of the parameter, and the signgls; } coming from other
agents. Every agent treats both signals similarly. The kisig 10°5 S ) - ” s
. : . . ; 10 10 10 10 10 10
for observations of;, and neighbors signal®; } 7, decay. K

Whereas in our approach in Ef] (5) the weight $grdecays
to zero and the weight for the convex combinatiod @},  Fig. 2. Simulations results of algorithms in EQ] (5) and @).for a path
goes to one. This indeed shows that we do require trgsaph of 25 nodes. Average behavior over 500 Monte Carlo latioos.

identification of signals coming from either agents or the Next, we will show that for the case of each agent
noisy_parameter observations. This extra informatiqn d:OU'having noise with different standard deviations, by using
explain why our approach has better performance in termsformation about the current estimate precision (+8. a

of convergence rates. better performance is achieved. Figlite 3 shows the absolute
error on the estimation d@f* for the algorithm in Eq.[{5) that
IV. SIMULATIONS uses precision information and the proposal in [E§. (8) that

In this section, we provide simulation results for ourassumes uniform precision. In this simulation, agents have
proposed algorithm and we compare its performance witheterogeneous precisions such tHat~ N (4,4). That is, in
results in [15], [16]. Initially, we will consider the same the path graph, the first agent haS= 1, the last agent, on
scenario as in [15], [16] with static undirected graphs waith the other hand, has™ = n. This implies that agent has
agents having identical distributions in thaewmiseless beliefs the highest variance in its observations. We have chosen to
sharing We will evaluate the performance of the algorithmsshow the results for agentonly.



10? graphs. The proposed algorithm is shown to be a specific
case of a more general class of distributed (non-Bayesian)
learning methods. Almost sure converge as well as an ekplici
convergence rate is shown in terms of the network topol-
ogy and the number of agents. Comparisons with recently
proposed approaches are presented. Future work should
consider nonlinear observations of the paramétethat
is S ~ N(g'(9),(c%)?) for some functiong: © — R.
Ongoing work develops similar parameter estimation ap-
proaches for the larger case of the exponential family of
distributions on the natural parameter space. A partiular
Fig. 3. Simulations results of algorithms in E@] (5) and EE) for a  interesting case is when the parameteris changing with
path graph of 25 nodes with heterogeneous precisions(i®). Average time, either arbitrarily, on some form of Markov process or
behavior aver 500 Monte Carlo simulations. other dependencies. This case renders observations tat be no
identically distributed nor independent.

1 *
0! - 6]
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