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Abstract—Coded-caching delivery is considered over a sym-
metric noisy broadcast channel whose state is unknown at the
transmitter during the cache placement phase. In particular, the
delivery phase is modeled by a state-dependent broadcast channel
where the state remains constant over each transmission block
and is learned by the transmitter (and the receivers) only at the
beginning of each block. A state-adaptive coded caching scheme is
proposed that improves either on rate or decoding latency over
two baseline schemes that are based on standard coded caching.

I. INTRODUCTION

Coded caching [1] has recently emerged as a means to im-

prove content delivery in multiuser networks. The performance

gains offered by coded-caching scale with the number of users

and go beyond those so-called local gains stemming from the

fact that part of the data is locally stored at the receivers. While

earlier works studied network models with noiseless channels

for delivery [1], caching has more recently been studied in

noisy channels, including broadcast channels (BCs) that are

most related to this work. In particular, [2]–[5] consider static

(and known) degraded BCs and propose joint cache-channel

coding schemes that improve rate of communication and attain

new global caching gains when the users have unequal channel

qualities and the weaker receivers have larger cache memories

(or demand less data). Time-varying (fading) BCs and the

interplay between feedback, channel state information and

spatial multiplexing with caching have also been studied in

[6]–[10]. These works apply separate cache-channel coding

architectures; hence, the performance of communication in the

delivery phase is limited by the weakest users. By contrast,

in this work we illustrate the benefits of joint cache-channel

coding schemes for state-dependent BCs even when different

users have equal size caches and i.i.d. channel statistics.

In this work, we model the delivery phase as a state-

dependent BC in which the state sequence is constant over

a coherence block and changes from block to block in an

i.i.d. manner. This channel model subsumes the standard block

fading channel model. The transmitter and receivers learn the

realization of the state at the beginning of each block. This

can be done using pilot symbols and feedback. For clarity

of presentation, we consider state-symmetric BCs in which

all users have equal size caches and statistically equivalent

channels and we assume that the channel is degraded in each

state. Since the state realizations vary over blocks, a receiver

that is strongest in one block can be weakest in the next block.

We propose a coding scheme for state-dependent BCs

termed state-adaptive coded caching hereafter. The caching

phase of our scheme is performed in an uncoded manner,

following the original work of [1]. Our delivery scheme

applies (i) opportunistic user scheduling across blocks and

(ii) generalized coded caching [5] in each block. Specifically,

only the t + 1 receivers with the best channel conditions are

served in each block, t being the coded caching parameter

used in the cache placement [1]. The proposed scheme serves

each of the chosen receivers with a transmission rate that is

proportional to its channel quality; i.e., each chosen receiver

k is served at a rate that approaches I(X ;Yk|S = sb), where

X,Yk, S = sb denote the input, output, and state variables

in block b, respectively. This performance is achieved by a

variation of Tuncel coding [11] where for each receiver k,

the transmitter only encodes bits that are stored in the cache

memories of all the other receivers in the chosen subset. This

implies a state-adaptive virtual cache allocation at the receivers

that allocates a larger portion of cache memories for decoding

at weaker receivers than at stronger receivers. Note that for

the state-symmetric BC considered in this paper, the total rate

and the total required cache size at each user are the same on

average (in the long run) across all users.

The proposed strategy is compared to two baseline schemes

that combine standard coded caching with the opportunistic

BC codes [14] in a separate cache-channel coding architecture.

The first baseline scheme, which we term blockwise coded

caching, operates on a per-block basis and is limited by the

worst channel in each block. A variant of this baseline scheme

in which opportunistic user selection policy is replaced by

a threshold-based user selection policy is discussed in [9].

Our proposed strategy also operates on a per-block basis

but employs a joint cache-channel coding architecture such

that the communication to stronger users is not limited by

weaker users. It therefore achieves higher rates than blockwise

coded caching. The second baseline scheme, which we term

ergodic coded caching, codes over the entire communication

duration, i.e., over many blocks. This results in symmetric

channel conditions for all the receivers and eliminates the rate-

bottleneck issue of weak receivers in a coherence block. It

has, however, the drawback that decoding is performed only

at the end of transmission. In state-adaptive coded caching

(as well as in the first baseline scheme), decoding can be

performed after each block so that a part of the message

bits can be recovered earlier. This is particularly beneficial
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in video streaming in which one wishes to start watching a

movie as soon as some of the bits are recovered1. We quantify

this notion by a new delay measure termed the decoding

latency factor that describes the extent to which decoding is

performed sequentially. We show a factor of two improvement

in decoding latency factor of the new state-adaptive coded

caching scheme over the second baseline scheme.

II. PROBLEM DEFINITION

Consider a state-dependent K-receiver broadcast channel

(BC) with (finite) input, output, and state alphabets X,Y, and

S. Given the time-i channel input Xi ∈ X and state Si ∈
S, receiver k ∈ K := {1, . . . ,K}’s time-i output Yk,i ∈ Y

follows the broadcast channel law

pYk|X,S(yk,i|xi, si). (1)

For simplicity, we consider state-symmetric BCs in which for

any permutation on users ν : K → K there exists a permutation

on states πν : S → S, so that for all s ∈ S, x ∈ X, y ∈ Y, we

have (see [13, Definition 1] for the two-user definition):

pS(s) = pS(πν(s)) (2a)

pYk|X,S(y|x, s) = pYν(k)|X,S(y|x, πν(s)), ∀k ∈ K. (2b)

Moreover, we assume that the BC is stochastically degraded

[12] in any state realization S = s.

The state sequence S1, S2, . . . , stays constant over a co-

herence interval of Ts channel uses and then changes in an

independent and identically distributed (i.i.d.) manner. I.e.,

S(b−1)Ts+1 = . . . = SbTs
= S′

b, b = 1, 2, . . .

where S′
1, S

′
2, . . . is an i.i.d. sequence distributed according to

a given distribution pS′(·).
The transmitter has access to a database with D independent

messages (files) W1, . . . ,WD , each consisting of nR i.i.d.

random bits. Here, n denotes the blocklength and R the

message rate. Each receiver k demands exactly one of the

messages, which we denote by Wdk
. Receiver k ∈ K has

access to a local cache memory of nM bits.

Communication takes place in two phases. The first cache

placement phase is assumed to take place during a period of

low network congestion and is thus assumed error free. In this

phase, the transmitter stores information about the messages

in each of the K receivers’ cache memory. So, in receiver k’s

cache memory, it stores

Vk := gk(W1, . . . ,WD)

for some function gk : {1, . . . , 2
nR}D → 2nM that is known

to all terminals. The cache content Vk is known only to the

transmitter and receiver k. During the placement phase, it is

unknown which messages are demanded by the users; so gk
cannot depend on the demands.

The subsequent delivery phase takes place during periods

of high network congestion and is modeled by the state-

dependent BC in (1). At the beginning of the delivery phase,

1The assumption here is that the movie is encoded using multi-description
coding and thus the order of the bits is not relevant. Otherwise, it is also
possible to prioritize the bits.

each receiver demands one of the messages in the library; i.e.,

receiver k demands message Wdk
. At this time, the transmitter

and all receivers get informed about all receivers’ demands,

d = (d1, d2, . . . , dK). The transmitter then computes the

sequence of channel inputs as

Xi := f (i)(d,W1, . . . ,WD, Si), i ∈ {1, . . . , n},

where f (i) : {1, . . . , D}K × {1, . . . , 2nR}D × Si → X.
Decoding is performed online. In particular, we present

coding schemes in which receivers recover a certain number

of message bits after each coherence interval Ts. Let

B =
n

Ts

(3)

denote the number of coherence blocks encountered when

communicating over n channel uses. The online decoding

procedure is described as follows. After each coherence block

b ∈ {1, . . . , B}, receiver k recovers mk,b new bits of its

desired message Wdk
using the decoding operation

Ŵk,b := ϕk,b(d, Y
bTs

k ,Vk, S
bTs),

where ϕk,b : {1, . . . , D}K × YbTs × Vk × SbTs →
{1, . . . , 2mk,b}. The final estimate of the receiver for message

Wdk
is then composed of the concatenation of all the estimates

(Ŵk,1, Ŵk,2, . . .).
To capture the nature of online decoding, we study the

following average expected delay per bit

L̄bit := max
d

1

K

K
∑

k=1

E

[

n
∑

b=1

mk,b · bTs

]

1

(R−M/D)n
, (4)

where the worst case over all possible demands is considered.

Normalization is by (R−M/D)n because we wish to average

only over the number of transmitted bits but not over the bits

that are already stored in the cache memory. Expectation is

over the random state, channel realizations and messages.

We consider the worst-case error probability over demands:

P (n)
e := max

d∈{1,...,D}K
P

[ K
⋃

k=1

{

Ŵk 6= Wdk

}

]

.

We also assume that the coherence time Ts and the number

of blocks B tend to infinity, i.e., Ts, B → ∞. Under this

assumption, for positive rates R > 0, the delay L̄bit also

tends to infinity. We, therefore, further normalize it by the

blocklength n, yielding the decoding latency factor ρ̄:

ρ̄ , lim
n→∞

L̄bit

n
. (5)

Definition 1 A triple (M, R, ρ) is achievable, if there exists a

sequence (in n) of caching and delivery encoders and decoders

with cache and message rates M and R such that

lim
n→∞

P (n)
e = 0 and ρ̄ ≤ ρ. (6)

III. STATE-ADAPTIVE CODED-CACHING

Our proposed scheme has a parameter t ∈ {0, . . . ,K − 1},

where t + 1 indicates the number of users that are simulta-

neously served in the delivery phase. E.g., parameter t = 0
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corresponds to opportunistic broadcasting, which is known

to achieve the maximum sum-rate and symmetric rate [14,

Chapter 6] when there are no cache memories.

We start with some definitions. Fix t ∈ {0, . . . ,K−1}. Let

Gt
1, . . . ,G

t

(Kt )
denote all size-t subsets of K, i.e., all sets of t

users. Choose a conditional probability law pX|S so that

pX|S(x|s) = pX|S(x|πν (s)), ∀x ∈ X, s ∈ S, (7)

for any set of permutations πν introduced in (2).

Define the mapping Gt+1 : S → Kt+1 such that for all s ∈
S, k ∈ Gt+1(s), and j ∈ (K\Gt+1(s)), the channel pYj |X,S=s

is stochastically degraded with respect to pYk|X,S=s. In our

scheme, Gt+1(s) is the set of “active” receivers in a block

with state S′ = s. The symmetry condition (2) ensures that

G(S) is uniformly distributed over all t+ 1-user sets of K.

Define for k ∈ K:

R =
t+ 1

K − t
· I

(

X ;Yk|S, {k ∈ Gt+1(S)}
)

− ǫ. (8)

Note by (2) and (7) that the choice of k does not matter. Here,

{k ∈ Gt+1(S)} denotes the event that index k is an element

of Gt+1(s). Let the cache size be

M =

(

K−1
t−1

)

(

K
t

) RD =
t

K
RD. (9)

Distribute the nR bits of file Wd into
(

K
t

)

queues

Qd,Gt
1
, . . . , Qd,Gt

(Kt )
, each consisting of nR ·

(

K

t

)−1
bits2

Placement Phase: For each k and ℓ ∈
{

1, . . . ,
(

K
t

)}

such that

k ∈ Gt
ℓ, store all the bits of queue Qd,Gt

ℓ
in receiver k’s cache

memory. The cache content of user k is thus:

Vk =
{

Qd,Gt
ℓ
: d ∈ {1, . . . , D} and

ℓ ∈

{

1, . . . ,

(

K

t

)}

s.t. k /∈ Gt
ℓ

}

. (10)

Notice that each sub-message is stored at exactly t receivers.

Moreover, the placement of the information does not depend

on the realization of the channel state. By (9), this placement

satisfies the memory constraint of nM bits.

Delivery Phase: Delivery is block-by-block in our scheme.

Consider the coherence block b ∈ {1, . . . , B} and assume that

the channel state is realized to be S′
b = sb. At the beginning

of each coherence block, the transmitter retrieves the next

µk,Gt+1(sb) , Ts ·

(

I
(

X ;Yk|S = sb
)

− ǫ ·
K − t

t+ 1

)

(11)

bits from queue Qdk,Gt+1(sb)\{k}, for k ∈ Gt+1(sb). Denote

the bits retrieved from queue Qdk,Gt+1(sb)\{k} by Wk,b. If the

queue is empty, let Wk,b be the all-zero string.

Use a random codebook

C
Ts

b =
{

x
Ts

b (w) : w ∈
{

1, . . . , 2Tsr(sb)
}

}

(12)

of rate

r(sb) , max
k∈Gt+1(sb)

I(X ;Yk|S = sb)− ǫ ·
K − t

t+ 1
(13)

2We assume n ≥
(

K

t

)

since our interest is in the regime n → ∞.

with entries drawn i.i.d. according to a given law pX|S(·|sb).
The transmitter sends the codeword

x
Ts

b

(

⊕

k∈Gt+1(sb)
Wk,b

)

(14)

over the channel. Here
⊕

describes the XOR operation of the

submessages after zero-padding to the same length.

Decoding is done sequentially after each block b = 1, 2, . . ..
Consider decoding at receiver k ∈ K. Suppose S′

b = sb and

k ∈ Gt+1(sb). Receiver k can retrieve bits from the queues
{

Qdk,G
t
ℓ
: ℓ ∈

{

1, . . . ,

(

K

t

)}

s.t. k ∈ Gt
ℓ

}

(15)

that are stored in its local cache. To recover the missing bits,

it uses the retrieved bits to form the XOR-message

WXOR,b(k) :=
⊕

i∈Gt+1(sb)\{k}
Wi,b. (16)

It then extracts a subcodebook C̃b,k

(

WXOR,b(k)
)

from Cb that

contains all codewords that are compatible with WXOR,b(k):

C̃b,k

(

WXOR,b(k)
)

:=
{

x
Ts

b

(

w ⊕̄ WXOR,b(k)
)

}

.

Finally, it collects the outputs in coherence block b, and

applies a maximum likelihood decoder based on the extracted

subcodebook C̃b,k

(

WXOR,b(k)
)

to recover the bits Wk,b. If

k /∈ Gt+1(sb), receiver k does not decode anything in this

block b.

Performance Analysis: Given that S′
b = sb, the number of

bits mk,b recovered by a given receiver k ∈ K at the end of

coherence block b is

mk,b =

{

0, if k /∈ Gt+1(sb)

TsI
(

X ;Yk|S = sb
)

− ǫTs(K−t)
t+1 if k ∈ Gt+1(sb).

These bits pertain to queue Qdk,Gt+1(sb)\{k} and are useful

information bits unless this queue is empty.

Notice that the symmetry conditions (2) and (7) imply

that
∑

s : k∈Gt+1(s) pS(s)I(X ;Yk|S = s) does not depend

on the receiver index k. Moreover, (2) ensures that the set

Gt+1(S) is uniformly distributed over all t+1-user subsets of

K. As a consequence, when averaged over the random state

realization, for each block b the same expected number of bits

is transmitted from each of the queues
{

Qdk,G
t
ℓ
: k /∈ Gt

ℓ

}

.

By the ergodicity of the process {S′
b} and because during

the initialization procedure each queue is allocated the same

number of bits, when B → ∞, almost all transmitted bits are

useful information bits and all queues will be emptied at the

end of the transmission as long as the message rate R satisfies:

R < lim
B→∞

1

BTs

B
∑

b=1

mk,b +
M

D

=
∑

s∈S : k∈Gt+1(s)

pS(s)

(

I
(

X ;Yk|S = s
)

−
ǫ(K−t)

t+ 1

)

+
M

D

(a)
= I(X ;Yk|S, {k ∈ Gt+1(S)})P[k ∈ Gt+1(S)]

−
ǫ(K−t)

t+ 1
P[k ∈ Gt+1(S)] +

M

D
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(b)
=

t+ 1

K
I(X ;Yk|S, {k ∈ Gt+1(S)}) +

M

D
−

K − t

K
ǫ

(c)
=

t+ 1

K − t
I(X ;Yk|S, {k ∈ Gt+1(S)})− ǫ, (17)

where (a) holds because P[S = s, k ∈ Gt+1(s)] = P[S = s]
and I(X ;Yk|S = s, {k ∈ Gt+1(s)}) = I(X ;Yk|S = s) for all

s such that k ∈ Gt+1(s); (b) holds because P[k ∈ Gt+1(S)] =
t+1
K

and (c) holds by (9).

Notice further that by the choice in (11), the probability of

decoding error in each block tends to 0 as Ts → ∞.

For finite n = TsB the average expected delay per bit is:

L̄bit

(a)
=

1

K

K
∑

k=1

1

(R −M/D)n

B
∑

b=1

ESb
[mk,b] · bTs

(b)
=

1

BTs

· T 2
s ·

B
∑

b=1

b =
Ts(B + 1)

2
, (18)

where (a) follows by the definition in (4); and (b) because

ESb
[mk,b] = R −M/D and n = BTs. The decoding latency

factor of the proposed state-adaptive coded caching is thus:

ρ̄ = lim
Ts,B→∞

(B + 1)Ts

2n
= lim

Ts,B→∞

(B + 1)Ts

2BTs

=
1

2
. (19)

For each t ∈ {0, 1, . . . ,K − 1}, define

Rt :=
t+ 1

K − t
· max
pX|S : (7) holds

I
(

X ;Y1|S, {1 ∈ Gt+1(S)}
)

(20)

Mt :=
t

K
DRt (21)

By time/memory-sharing arguments [1] and by optimizing

over pX|S , the presented analysis (with ǫ → 0) establishes the

following theorem.

Theorem 1 State-adaptive coded caching achieves all rate-

memory pairs on the upper convex envelope of

{(Rt,Mt) : t = 0, 1, . . . ,K − 1} (22)

with decoding latency factor ρ̄ = 1
2 .

Remark 1 Including input distributions pX|S that satisfy (7)

but don’t maximize (20) does not increase the set of achievable

rate-memory pairs in Theorem 1, because they are subsumed

by the upper convex envelope operation.

Remark 2 The maximization in (20) can be re-written as:

max
pX|S

1

K

K
∑

k=1

I
(

X ;Yk|S, {k ∈ Gt+1(S)}
)

(23)

where the maximization is over all (also non-symmetric) input

distributions. This follows from the symmetry condition (2).

Remark 3 The proposed scheme only serves the best t + 1
receivers in each block. We could combine transmissions to

various sets of t + 1 receivers in a single block by means

of superposition or Marton coding. But since for each state

realization the BC is assumed degraded, these techniques do

not increase the set of achievable rate-memory-latency triples.

IV. COMPARISON TO BASELINE SCHEMES

Two baseline schemes derived from standard coded caching

are described and compared to the proposed state-adaptive

coded caching scheme. The results are summarized in Table I.

A. Blockwise Coded Caching

Fix a parameter t ∈ {0, . . . ,K − 1}. Consider a separate

cache-channel coding scheme with placement strategy as in

Section III and a delivery strategy that combines standard

coded caching [1] of parameter t with an opportunistic BC

code that in each coherence block serves only the t + 1
strongest receivers. Specifically, it sends an XOR-message

produced by the coded caching algorithm to these strongest

t + 1 receivers. With this scheme, the performance in each

block is limited by the worst of the t + 1 best receivers. In

fact, at the end of coherence block b with state S′
b = sb, the

number of bits recovered at receiver k ∈ Gt+1(sb) is:

mk,b =















0, if k /∈ Gt+1(sb)

Ts min
j∈Gt+1(sb)

I
(

X ;Yj |S = sb
)

−ǫTs(K−t)
t+1 if k ∈ Gt+1(sb).

By symmetry, and when B → ∞, for any k ∈ K the message

rate to receiver k is:

R =
∑

s∈S : 1∈Gt+1(s)

pS(s)

(

min
j∈Gt+1(sb)

I(X ;Yj |S=s)−
ǫ(K−t)

t+ 1)

)

+
M

D
. (24)

The required cache size M and the decoding latency factor

are similar as for the state-adaptive coded caching scheme:

M =
t

K
RD and ρ̄ =

1

2
. (25)

Plugging (25) into (24), taking ǫ → 0, and optimizing over

pX|S yields the desired value for the rate Rt in Table I.

B. Ergodic Coded Caching

Fix a parameter t ∈ {0, . . . ,K − 1}. The scheme combines

standard coded caching with an opportunistic BC code that

codes over the entire blocklength n. That means, in each block

transmission is only to the best t+ 1 receivers, but decoding

is performed only at the end of the entire blocklength n. That

means, the XOR-message sent to a given a set of t+1 receivers

is decoded based on all the blocks where the opportunistic

scheduling chooses to transmit to these t + 1 receivers. This

allows to exploit the ergodic behaviour of the blocks. Ergodic

coded caching achieves the same rate-memory pairs as state-

adaptive coded caching. The price to pay is the worst case

decoding latency factor ρ̄ = 1.

V. GAUSSIAN FADING CHANNELS

Consider a Rayleigh block-fading channel

Yk,i = hk,iXi + Zk,i, (26)
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Scheme Expected Rate Rt Decoding Latency Factor ρ

State-Adaptive Coded Caching
t+ 1

K − t
· max
pX|S : (7) holds

I(X ;Y1|S, {1 ∈ Gt+1(S)}) 1/2

Blockwise Coded Caching
∑

s∈S : 1∈Gt+1(s)

pS(s) max
pX|S : (7) holds

min
j∈Gt+1(s)

I(X ;Yj |S = s) 1/2

Ergodic Coded Caching
t+ 1

K − t
· max
pX|S : (7) holds

I(X ;Y1|S, {1 ∈ Gt+1(S)}) 1

TABLE I: Comparison of rate and decoding latency factor for the different coded-caching adaptations.

with channel coefficients that remain constant over a block,

hk,i = h′
k,b, ∀i = (b− 1)Ts + 1, . . . , bTs, (27)

and with {h′
k,b} an i.i.d. complex Gaussian sequence with

zero-mean unit-variance symbols. The noise sequence {Zk,i}
is also i.i.d. complex Gaussian of unit variance. Inputs

X1, . . . , Xn are subject to an expected average block power

constraint P .

Let h′ := (h′
1, . . . , h

′
k) and fix t ∈ {0, . . . ,K − 1}. Here,

Gt+1(h′) denotes the set of t + 1 users with largest channel

coefficients in h
′. The maximum in Theorem 1 is attained by

a zero-mean Gaussian input of state-dependent instantaneous

power P (h′), which can be found using the Karush-Kuhn-

Tucker conditions on the equivalent maximization problem

(23). This proves achievability of the upper convex envelope

of all rate-memory pairs

Rt =
t+ 1

K − t
Eh′

[

log
(

1 + |h′
1|

2P (h′)
) ∣

∣{1 ∈ Gt+1(h′)}
]

(28)

Mt =
t

K
DR. (29)

where P (h′) is the waterfilling solution characterized by:

λ =
∑

k∈Gt+1(h′)

1

x(h′) + 1
|h′

k
|2

(30)

P (h′) = [x(h′)]+ (31)

P = Eh′ [P (h′)] . (32)

Figure 1 compares the rates achieved by state-adaptive and

blockwise coded caching (CC) under opportunistic and non-

opportunistic designs. A non-opportunistic design refers to a

variation of the schemes where time-sharing is applied in each

block to serve all subsets of t + 1 users during the same

fraction of time. Each marked memory-rate point corresponds

to a choice of the parameter t, with the left-most point

corresponding to t = 0 and the right-most point corresponding

to t = K − 1. The curve is obtained by time/memory-sharing

between the points. The rate-memory pairs lying to the right

of the right-most (t = K − 1) point are achieved by a scheme

that stores a part of each message in every cache memory

and applies placement and delivery strategies with parameter

t = K − 1 to the remaining part of the files.
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