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Kullback-Leibler Principal Component for

Tensors is not NP-hard

Kejun Huang* Nicholas D. Sidiropoulos†

Abstract

We study the problem of nonnegative rank-one approximation of a nonnegative

tensor, and show that the globally optimal solution that minimizes the generalized

Kullback-Leibler divergence can be efficiently obtained, i.e., it is not NP-hard.

This result works for arbitrary nonnegative tensors with an arbitrary number of

modes (including two, i.e., matrices). We derive a closed-form expression for the

KL principal component, which is easy to compute and has an intuitive proba-

bilistic interpretation. For generalized KL approximation with higher ranks, the

problem is for the first time shown to be equivalent to multinomial latent variable

modeling, and an iterative algorithm is derived that resembles the expectation-

maximization algorithm. On the Iris dataset, we showcase how the derived results

help us learn the model in an unsupervised manner, and obtain strikingly close

performance to that from supervised methods.

1 Introduction

Tensors are powerful tools for big data analytics [1], mainly thanks to the ability to

uniquely identify latent factors under mild conditions [2, 3]. On the other hand, most

detection and estimation problems related to tensors are NP-hard [4]. A similar situ-

ation is encountered in nonnegative matrix factorization, which is essentially unique

under certain conditions [5, 6] and computationally NP-hard [7]. In a lot of applica-

tions, nonnegativity constraints are natural for tensor latent factors as well.

In practice, the latent factors of tensors and matrices are usually obtained by mini-

mizing the mismatch between the data and the factorization model according to certain

loss measures. The most popular loss measures the sum of the element-wise squared

errors, which is conceptually appealing and conducive for algorithm design, thanks to

the success of least-squares-based methods. For example, an effective algorithm for

minimizing the least-squares loss is AO-ADMM [8], and we refer the readers to the

references therein for other least-squares-based methods. From an estimation theoretic

point of view, the least-squares loss admits a maximum-likelihood interpretation under

i.i.d. Gaussian noise. In a lot of applications, however, it remains questionable whether

Gaussian noise is a suitable model for nonnegative data.
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We study the problem of fitting a nonnegative data matrix/tensor Y with low rank

factors, using the generalized Kullback-Leibler (KL) divergence as the fitting criterion.

Mathematically, given a N -way tensor data Y ∈ R
J1×...×JN and a target rank K , we

try to find factor matrices constituting a canonical polyadic decomposition (CPD) that

best approximates the data tensor Y in terms of generalized KL divergence:

minimize
λ,{P (n)}

∑

j1,...,jN

(
−Yj1...jN log

K∑

k=1

λk

N∏

n=1

P
(n)
jnk

+

K∑

k=1

λk

N∏

n=1

P
(n)
jnk

)

subject to λ ≥ 0,P (n)≥ 0,1⊤P (n)= 1
⊤, ∀ n ∈ [N ].

(1)

The conditions imposed in Problem (1) besides nonnegativity are intended for resolving

the trivial scaling ambiguity inherent in matrix factorization and tensor CPD models,

and thus are without loss of generality: the columns of all the factor matrices are nor-

malized to sum up to one, and the scalings are absorbed into the corresponding values

in the vector λ. We adopt the common notation [[λ;P (1), ...,P (N)]] to denote the tensor

synthesized from the CPD model using these factors.

An instant advantage of this formulation is that the loss function of (1) can be

greatly simplified. Thanks to the constraints 1⊤P (n)= 1
⊤, it is easy to see that

∑

j1,...,jN

K∑

k=1

λk

N∏

n=1

P
(n)
jnk

=

K∑

k=1

λk.

Therefore, Problem (1) is mathematically equivalent to

minimize
λ,{P (n)}

−
∑

j1,...,jN

Yj1...jN log

K∑

k=1

λk

N∏

n=1

P
(n)
jnk

+ 1
⊤λ

subject to λ ≥ 0,P (n)≥ 0,1⊤P (n)= 1
⊤, ∀ n ∈ [N ].

(2)

2 Motivation: Probabilistic Latent Variable Modeling

Most of the existing literature motivates the use of generalized KL-divergence by mod-

eling the nonnegative integer data as generated from Poisson distributions [9]. Specifi-

cally, the model states that each entry of the tensor Yj1...jN is generated from a Poisson

distribution with parameter Θj1...jN , and the underlying tensor Θ admits an exact CPD

model Θ = [[λ;P (1), ...,P (N)]]. While it is a simple and reasonable model, the physical

meaning behind the CPD model for the underlying Poisson parameters is not entirely

clear.

In this paper we give the choice of generalized KL-divergence as the loss function

a more compelling motivation. Consider N categorical random variables X1, ..., XN ,

each taking J1, ..., JN possible outcomes, respectively. Suppose these random vari-

ables are jointly drawn for a number of times, each time independently, and the out-

come counts are recorded in a N -dimensional count tensor Y , which is the data we are
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given. Denote the joint probability that X1 = j1, ..., XN = jN as Πj1...jN , i.e.

P [X1 = j1, ..., XN = jN ] = Πj1...jN ,

where we have ∑

j1,...,jN

Πj1...jN = 1.

Then the overall probability that, out of M independent draws, the event of X1 =
j1, ..., XN = jN occurs Yj1...jN times is

P [Y ] =
M !∏

(Yj1...jN !)

∏

j1,...,jN

(Πj1...jN )
Yj1...jN ,

where ∑

j1,...,jN

Yj1...jN = M. (3)

The maximum likelihood estimates of the parameters are simply

Πj1...jN =
Yj1...jN

M
.

However, this simple estimate of Π may not be of much practical use. First of all, the

number of parameters we are trying to estimate is the same as the number of possible

outcomes, which is not a parsimonious model; in other words, we are not exploit-

ing any possible structure between the random variables X1, ..., XN , other than the

fact that exists a joint distribution between them. Furthermore, as a result of over-

parameterization, we will need the number of independent draws M to be very large

before we can have an accurate estimate of Π , which is often not the case in practice.

A simple and widely used assumption we can impose onto the set of variables is

the naive Bayes model: Suppose there is a hidden random variable Ξ , which is also

categorical and can take K possible outcomes, such that X1, ..., XN are conditionally

independent given Ξ . The corresponding graphical model is given in Fig. 1. Mathe-

matically, this means

P [X1 = j1, ..., XN = jN |Ξ = k] =

N∏

n=1

P [Xn = jn|Ξ = k] .

Then we have

P [X1 = j1, ..., XN = jN ]

=
K∑

k=1

P [X1 = j1, ..., XN = jN |Ξ = k]P[Ξ = k]

=

K∑

k=1

P[Ξ = k]

N∏

n=1

P [Xn = jn|Ξ = k] .
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Ξ

X1 X2
... XN

Figure 1: A graphical model depicting the probabilistic dependencies between the hid-

den variable Ξ and the observed variables X1, ..., XN , in a naive Bayes model.

Denote

λk = P[Ξ = k] and P
(n)
jnk

= P [Xn = jn|Ξ = k] ,

then it is easy to see that

Π = [[λ;P (1), ...,P (N)]], (4)

which means Π admits an exact CPD model. Even though naive Bayes seems to be a

very specific model, it has recently been shown that it is far more general than meets the

eye—no matter how dependent X1, ..., XN are, there always exists a hidden variable

Ξ such that the depicted naive Bayes model holds, thanks to a link between tensors and

probability established in [10].

Using the CPD parameterization of the multinomial parameterΠ , we formulate the

maximum likelihood estimation of P[Ξ = k] and P[Xn = jn|Ξ = k] as the following

optimization problem:

minimize
λ,{P (n)}

−
∑

j1,...,jN

Yj1...jN log

K∑

k=1

λk

N∏

n=1

P
(n)
jnk

subject to λ ≥ 0,1⊤λ = 1,

P (n)≥ 0,1⊤P (n)= 1
⊤, ∀ n ∈ [N ].

(5)

Problem (5) is different from Problem (2), but the difference is small—in (5), λ is

constrained to sum up to one, whereas in (2), the sum of the elements of λ is penalized

in the loss function. In fact, the two problems are exactly equivalent, despite their

apparent differences.

Theorem 1. Let (λ⋆, {P
(n)
⋆ }) be an optimal solution for Problem (2), then (λ⋆, {P

(n)
⋆ })

is an optimal solution for Problem (5), where

λ⋆ =
1

1
⊤λ⋆

λ⋆.

Before proving Theorem 1, we first show the following lemma, which is interesting

in its own right.

Lemma 1. If λ⋆ is optimal for (2), then

1
⊤λ =

∑

j1,...,jN

Yj1...jN .
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Proof. We show this by checking the optimality condition of (2) with respect to λ.

Without loss of generality, we can assume that λ⋆ > 0 strictly, because otherwise

the rank can be reduced. Since the inequality constraints with respect to λ are not

attained as equalities, their corresponding dual variables are equal to zero, according to

complementary slackness. The KKT condition for (2) with respect to λ then reduces

to the gradient of the loss function of (2) with respect to λ at λ⋆ being equal to zero.

Specifically, setting the derivative with respect to λk equal to zero yields

∑

j1,...,jN

Yj1...jN∑
κ λ⋆κ

∏
ν P

(ν)
jνk

N∏

n=1

P
(n)
jnk

= 1.

Therefore

K∑

k=1

λ⋆k =

K∑

k=1


λ⋆k

∑

j1,...,jN

Yj1...jN∑
κ λ⋆κ

∏
ν P

(ν)
jνk

N∏

n=1

P
(n)
jnk




=
∑

j1,...,jN

Yj1...jN∑
κ λ⋆κ

∏
ν P

(ν)
jνk

(
K∑

k=1

λ⋆k

N∏

n=1

P
(n)
jnk

)

=
∑

j1,...,jN

Yj1...jN .

We now prove Theorem 1 with the help of Lemma 1.

Proof of Theorem 1. We show that (λ⋆, {P
(n)
⋆ }) is optimal for (5) via contradiction.

Suppose (λ⋆, {P
(n)
⋆ }) is not optimal for (5), then there exists a feasible point (λ♭, {P

(n)
♭
})

such that

−
∑

j1,...,jN

Yj1...jN log

K∑

k=1

λ♭k

N∏

n=1

P
(n)
♭jnk

< −
∑

j1,...,jN

Yj1...jN log

K∑

k=1

λ⋆k

N∏

n=1

P
(n)
⋆jnk

Define λ♭ = Mλ♭, then (λ♭, {P
(n)
♭
}) is clearly feasible for (2). Furthermore, we have

−
∑

j1,...,jN

Yj1...jN log

K∑

k=1

λ♭k

N∏

n=1

P
(n)
♭jnk

+ 1
⊤λ♭

= −
∑

j1,...,jN

Yj1...jN log

K∑

k=1

λ♭k

N∏

n=1

P
(n)
♭jnk

−M logM +M

< −
∑

j1,...,jN

Yj1...jN log

K∑

k=1

λ⋆k

N∏

n=1

P
(n)
⋆jnk

−M logM +M

= −
∑

j1,...,jN

Yj1...jN log

K∑

k=1

λ♭k

N∏

n=1

P
(n)
⋆jnk + 1

⊤λ⋆,
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where the equalities stems from Lemma 1. This means (λ♭, {P
(n)
♭
}) gives a smaller loss

value for (2) than that of (λ⋆, {P
(n)
⋆ }), and contradicts our assumption that (λ⋆, {P

(n)
⋆ })

is optimal for (2).

A similar but less general result for the case when N = 2 is given in [11], in the

context of nonnegative matrix factorization using generalized KL-divergence loss.

The take home point of this section is that we can find the maximum likelihood es-

timate of the hidden variable in the naive Bayes model by taking the nonnegative CPD

of the data tensor. In a way, our analysis suggests that the generalized KL-divergence

is a more suitable loss function to fit nonnegative data than, for example, the L2 loss.

3 KL Principal Component

Now that we have established how important Problem (2) is in probabilistic latent vari-

able modeling, we focus on a specific case of (2) when K = 1. This case corresponds

to extracting the “principal component” of a nonnegative tensor under the generalized

KL-divergence loss. We will show, in this section, that this specific problem is not only

computationally tractable, but admits an extremely simple closed form solution.

Let us first rewrite Problem (2) with K = 1. In this case, the diagonal loadings λ

become a scalar λ, and the individual factor matrices P (n) become vectors p(n):

minimize
λ,{P (n)}

−
∑

j1,...,jN

Yj1...jN log λ
N∏

n=1

p
(n)
jn

+ λ

subject to λ ≥ 0,p(n)≥ 0,1⊤p(n)= 1, ∀ n ∈ [N ].

(6)

A salient feature of this case when K = 1 is that there is no summation in the log, just

a product. Therefore, we can equivalently write Problem (6) as

minimize
λ,{P (n)}

−
∑

j1,...,jN

Yj1...jN

(
logλ+

N∑

n=1

log p
(n)
jn

)
+ λ

subject to λ ≥ 0,p(n)≥ 0,1⊤p(n)= 1, ∀ n ∈ [N ].

(7)

Noticing that − log is a convex function, the exciting observation we see in Problem (7)

is that it is in fact convex! This already means that it can be solved optimally and

efficiently [12], but we will in fact show a lot more: that it admits very simple and

intuitive closed-form solution.

Remark. It may seem obvious from our derivation that once we try rewriting Prob-

lem (2) with K = 1, one will immediately see that this problem has hidden convexity

in it. However, to the best of our knowledge, we are the first to point out this fact. In

hindsight, there is a subtle caveat that plays a key role in spotting this hidden convexity:

we fixed the inherent scaling ambiguities by constraining all the columns of the factor

matrices to sum up to one; as a result, the sum of all the entries of the reconstructed

tensor, which appears in the generalized KL-divergence loss, boils down to simply the

sum of the diagonal loadings. If this trick is not applied to the problem formulation,

6



there is still a multi-linear term in the loss of (7), and the hidden convexity is not at all

obvious.

We now derive an optimal solution for Problem (7) by checking the KKT condi-

tions. For convex problems such as (7), KKT condition is not only necessary, but also

sufficient for optimality. Using Lemma 1, we immediately have that

λ =
∑

j1,...,jN

Yj1...jN = M.

For the variable p(n), let ξ(n) denote the dual variable corresponding to the equality

constraint 1⊤p(n) = 1, and q(n) denote the nonnagative dual variable corresponding

to the inequality constraint p(n) ≥ 0, for all n = 1, ..., N . The loss function in (7)

separates down to the components, and the term corresponding to p
(n)
jn

is

−
∑

j1,...,jn−1,
jn+1,...,jN

Yj1...jN log p
(n)
jn

= −y
(n)
jn

log p
(n)
jn
,

where we denote

y
(n)
jn

=
∑

j1,...,jn−1,
jn+1,...,jN

Yj1...jN . (8)

We see that p
(n)
jn

cannot be equal to zero if y
(n)
jn

6= 0, because otherwise it will drive

the loss value up to +∞; according to complementary slackness, this means the corre-

sponding q
(n)
jn

= 0. If y
(n)
jn

= 0, then p
(n)
jn

does not directly affect the loss value of (7),

even when it equals to zero, using the convention that 0 log 0 = 0. Since we have the

constraint 1⊤p(n) = 1, such a p
(n)
jn

should be equal to zero at optimality, otherwise the

other entries in p(n)will be smaller, leading to a larger loss value in (7).

Suppose y
(n)
jn

6= 0. Setting the derivative of the Lagrangian with respect to p
(n)
jn

equal

to zero, we have

−
y
(n)
jn

p
(n)
jn

− q
(n)
jn

+ ξ(n)= 0.

As we explained, q
(n)
jn

= 0 according to complementary slackness. Therefore,

p
(n)
jn

= y
(n)
jn
/ξ(n).

The dual variable ξ(n) should be chosen so that the equality constraint 1⊤p(n) = 1

is satisfied. Together with our argument that p
(n)
jn

= 0 if y
(n)
jn

= 0, we come to the

conclusion that

p
(n)
jn

=
y
(n)
jn

1
⊤y(n)

=
y
(n)
jn

M
.

The result we derived in this section is summarized in the following theorem.
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Theorem 2. The KL principal component of a nonnegative tensor Y , i.e., the solution

to Problem (6), is

λ = M and p
(n)
jn

=
y
(n)
jn

M
, (9)

where M and y
(n)
jn

are defined in (3) and (8), respectively.

Now let us take a deeper look at the solution we derived for Problem (6). Suppose

the data tensor Y is generated by drawing from the joint distribution P[X1, ..., XN ]
M times. Our definition of y(n) in (8) essentially summarizes the number of times

each possible outcomes of Xn occurs, regardless of the outcomes of the other random

variables. As a result, the optimal KL principal component factor p(n) is in fact the

maximum likelihood estimate of the marginal distribution P[Xn]. On hindsight, the

simple solution we provide for KL principal component in Theorem 2 becomes very

natural. The case when K = 1 means the latent variable Ξ can only take one possible

outcome with probability one, which means Ξ is not random. In other words, we are

basically assuming that X1, ..., XN are independent from each other. As a result, the

joint distribution factors into the product of the marginal distributions

P [X1, ..., XN ] =
N∏

n=1

P[Xn],

and the marginal distributions can be simply estimated by “marginalizing” the obser-

vations, collected in Y , and then normalizing to sum up to one. This is elementary in

probability. However, in the context of finding the principal component of a nonnega-

tive tensor using generalized KL-divergence, it is not at all obvious. Furthermore, the

argument based on categorical random variables only applies to nonnegative integer

data, whereas our derivation of the KL principal component of a tensor is not restricted

to integers or rational numbers, but works for general real nonnegative numbers as well.

4 KL Approximation with Higher Ranks

If K > 1 in Problem (2), there is more than one term in the logarithm; as a result, the

nice transformation from (6) to (7) cannot be directly applied. There is a way to apply

something similar, and that is through the use of Jensen’s inequality [13] (applied to

the − log function)

− logEz ≤ −E logz.

We use this inequality to define majorization functions for the design of an iterative

upperbound minimization algorithm [14].

Suppose at the end of iteration t, the obtained updates are λt and {P (n)t}. At the

next iteration, we define

Ψ t
j1...jNk = λt

k

N∏

n=1

P
(n)t
jnk

/ K∑

κ=1

λt
κ

N∏

n=1

P
(n)t
jnκ. (10)

8



According to this definition, it is easy to see that Ψ t
j1...jNk ≥ 0 and

∑K
k=1 Ψ

t
j1...jNk = 1.

Assuming Ψ t
j1...jNk > 0, we have

− Yj1...jN log

K∑

k=1

λk

N∏

n=1

P
(n)
jnk

= −Yj1...jN log

K∑

k=1

Ψ t
j1...jNk

Ψ t
j1...jNk

λk

N∏

n=1

P
(n)
jnk

≤ −Yj1...jN

K∑

k=1

Ψ t
j1...jNk logλk

N∏

n=1

P
(n)
jnk + const. (11)

Furthermore, equality is attained if λ = λt and P (n)= P (n)t, ∀n ∈ [N ]. This defines a

majorization function for iteration t+1, and the minimizer of (11) is set to be the update

of this iteration. Since (11) and the loss function of (2) are both smooth, the conver-

gence result of the successive upperbound minimization (SUM) algorithm [14] can be

applied to establish that this procedure converges to a stationary point of Problem (2).

We should stress again that this procedure is made easy only after the multi-linear

term in (1) is equivalently replaced by the sum of the diagonal loadings in (2) through

our careful problem formulation. Otherwise, the multi-linear term still remains, which

together with (11) does not end up being a simpler function to optimize.

The majorization function (11) is nice, not only because it is convex, but also since

it is reminiscent of the loss function (7) when K is equal to one—it decouples the vari-

ables down to the canonical components, i.e., λk and the k-th columns of P (1), ...,P (N);

each of the sub-problems takes the form of (7), replacing Yj1...jN with Yj1...jNΨ
t
j1...jNk.

As a result, the update for iteration t + 1 boils down to something similar to what we

have derived in the previous iteration. Specifically, define

M t
k =

∑

j1,...,jN

Yj1...jNΨ
t
j1...jNk

and

y
(n)t
jnk

=
∑

j1,...,jn−1,
jn+1,...,jN

Yj1...jNΨ t
j1...jNk,

then

λt+1
k = M t

k and P
(n)t+1
jnk = y

(n)t
jnk

/
M t

k. (12)

A nice probabilistic interpretation can be made to understand this algorithm. In the

context of probabilistic latent variable modeling, the conditional distributions P[Xn|Ξ]
can be easily estimated if the joint observation X1 = j1, ..., XN = jN , and Ξ = k
is given, because then we can collect all the observations with Ξ = k and use the

techniques derived in the previous section. Now that we do not observeΞ , what we can

do is to try to estimate P[Ξ|X1, ..., XN ] instead. The Ψ defined in (10) does exactly

the job using the current estimate of λ and {P (n)}. Using this estimated posterior

distribution of Ξ , we have a guess of the portion of Yj1...jN that jointly occurs withΞ =

9



k, and use that to obtain a new estimate of P[Ξ] and P[Xn|Ξ]. This is exactly the idea

behind the expectation-maximization (EM) algorithm [15]. Almost the same algorithm

has been derived by Shashanka et al. [16], and the special case when N = 2 is the EM

algorithm for probabilistic latent semantic analysis (pLSA) [17]. However, we should

mention that these algorithms were originally derived in the context of multinomial

latent variable modeling, and without the help of Theorem 1, it was not previously

known that they can be used for generalized KL-divergence fitting as well.

Computationally, although the definition of Ψ in (10) helps us obtain simple ex-

pressions (12) and intuitive interpretations, we do not necessarily need to explicitly

form them when implementing the method for memory/computation efficiency consid-

erations. To calculate λt+1 and {P (n)t+1} as in (12), we first define Ỹ t such that

Ỹ t
j1...jN

= Yj1...jN

/ K∑

κ=1

λt
κ

N∏

n=1

P
(n)t
jnκ.

This operation requires passing through the data once, and if Y is sparse, Ỹ t has

exactly the same sparsity structure. Then,

λt+1
k = λt

kỸ
t×1p

(1)t
k ...×Np

(N)t
k , (13)

where ×n denotes the n-mode tensor-vector multiplication [18], and p
(n)t
k denotes the

k-th column of P (n)t. As for the factor matrices,

P (n)t+1 = P (n)t ∗ MTTKRP

(
Ỹ t, {P (ν)t}, n

)
(14)

followed by column normalization to satisfy the sum-to-one constraint, where ∗ de-

notes matrix Hadamard (element-wise) product, and MTTKRP stands for the n-mode

matricized tensor times Khatri-Rao product of all the factor matrices {P (ν)t} except

the n-th one.

It is interesting to notice that the update rules (13) and (14) are somewhat similar

to the widely used multiplicative-update (MU) rule for NMF [19] and NCP [9]. The

big difference lies in the fact that MU updates the factors alternatingly, whereas EM

updates the factors simultaneously. This makes the EM algorithm extremely easy to

parallelize—for N -way factorizations, we can simply take N cores, each taking care

of the computation for the n-th factor, and we can expect an almost ×N acceleration,

if the sizes of all the modes are similar.

5 Illustrative Example

We give an illustrative example using the Iris data set downloaded from the UCI Ma-

chine Learning repository. The data set contains 3 classes of 50 instances each, where

each class refers to a type of iris plant. For each sample, four features are collected:

sepal length/width and petal length/width in cm. The measurements are discretized into

0.1cm intervals, and the four features range between 4.3 ∼ 7.9, 2.0 ∼ 4.4, 1.0 ∼ 6.9,

and 0.1 ∼ 2.5cm, respectively. We therefore form a 4-way tensor with dimension

10
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Figure 2: Learned P[feature|class] in three colors for the three iris classes. Left: class

label is given. Right: class label not given.

37 × 25 × 60 × 25; for a new data sample, the corresponding entry in that tensor is

added with one.

Suppose the four features are conditionally independent given the class label. We

can then collect all the samples from the same class into one tensor, and invoke Theo-

rem 2 to estimate their individual conditional distributions P[feature|class], which are

shown on the left panel of Fig. 2. This learned conditional distribution can then be used

to classify new samples, which is the idea behind the naive Bayes classifier [20].

Now suppose the class labels are not given to us. We then collect all the data sam-

ples into a single tensor. We still assume that the features are conditionally independent

given the class label, even though the class label is now latent (unobserved). As per our

discussion in Section 4, we can still try to estimate the conditional distribution using

the EM algorithm (12). We run the EM algorithm from multiple random initializations,
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and the result that gives the smallest loss is shown on the right of Fig. 2.

The astonishing observation is that the learned conditional distribution is almost

identical to the one learned when the class label is given to us. This suggests that the

conditional independence between features given class labels is actually a reasonable

assumption in this case, contrary to the common belief that naive Bayes is an “over-

simplified” model. It is also interesting to notice that this nice result is obtained using

only 150 data samples, which is extremely small considering the size of the tensor.

6 Conclusion

We studied the nonnegative CPD problem with generalized KL-divergence as the loss

function. The most important result of this paper is the discovery that finding the KL

principal component of nonnegative tensor is not NP-hard. To make matters nicer, we

derived a very simple closed-form solution for finding the KL principal component.

This is a surprisingly pleasing result, considering that in the field of tensors “most

problems are NP-hard” [4]. Borrowing the idea for finding the KL principal compo-

nent, an iterative algorithm for higher rank KL approximation was also derived, which

is guaranteed to converge to a stationary point and is easily and naturally parallelizable.
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