
milliProxy: a TCP Proxy Architecture
for 5G mmWave Cellular Systems

Michele Polese∗, Marco Mezzavilla†, Menglei Zhang†,
Jing Zhu�, Sundeep Rangan†, Shivendra Panwar†, Michele Zorzi∗

∗Department of Information Engineering, University of Padova, Italy - e-mail: {polesemi, zorzi}@dei.unipd.it
†NYU Wireless, New York University, NY, USA - e-mail: {menglei, mezzavilla, srangan}@nyu.edu, panwar@catt.poly.edu

�Intel Corporation - e-mail: jing.z.zhu@intel.com

Abstract—TCP is the most widely used transport protocol in
the internet. However, it offers suboptimal performance when
operating over high bandwidth mmWave links. The main issues
introduced by communications at such high frequencies are (i) the
sensitivity to blockage and (ii) the high bandwidth fluctuations due
to Line of Sight (LOS) to Non Line of Sight (NLOS) transitions
and vice versa. In particular, TCP has an abstract view of the end-
to-end connection, which does not properly capture the dynamics
of the wireless mmWave link. The consequence is a suboptimal
utilization of the available resources. In this paper we propose a
TCP proxy architecture that improves the performance of TCP
flows without any modification at the remote sender side. The
proxy is installed in the Radio Access Network, and exploits
information available at the Next Generation Node Base (gNB)
in order to maximize throughput and minimize latency.

This paper was presented at the 2017 51st Asilomar Conference
on Signals, Systems and Computers, Pacific Grove, CA, 2017.
Copyright (c) 2017 IEEE.

I. INTRODUCTION

Communication at mmWave frequencies represents the new
frontier for wireless networks [1]. Nowadays, indeed, most
wireless standards are constrained in a very small bandwidth
which can be allocated in the spectrum below 6 GHz. The
mmWave spectrum (and in general frequencies above 6 GHz)
would allow wireless communications to benefit from wide
chunks of untapped spectrum that could be used to reach very
high data rates.

Millimeter waves are being considered for the next gener-
ation of cellular networks (i.e., 5G), which is currently being
standardized by 3GPP as New Radio (NR) [2], as well as for
public safety [3] and vehicular communications [4], [5]. Several
applications in these scenarios require high data rate, and with
low latency: consider for example real-time video streaming
for remote interaction with autonomous robots, virtual reality
applications or raw sensor data (e.g., from RADAR or LIDAR)
exchanges between vehicles. However, the mmWave technol-
ogy offers both a great potential and a number of challenges,
which are related to the harsh propagation conditions that
must be addressed before mmWaves can be reliably deployed.
The very high path loss can be overcome with beamforming
techniques, which in turn require the design of protocols
that account for directionality [6]. Moreover, mmWaves are
affected by blockage from obstacles (e.g., buildings, trees, the
human body itself) [7], and this has an impact on the service
availability and the achievable data rate.

These limitations have an impact not only on the protocol
stack of the wireless link but also on higher layers protocols,
such as TCP, which is the most widely used transport protocol

in the internet, for a variety of different applications that
require flow control and reliable transmissions. TCP however
suffers in terms of both reduced throughput and high latency
when deployed over an end-to-end connection whose last link
is based on mmWave radios [8], and it is not capable of
delivering the high data rate and low latency performance that
the aforementioned applications require [9].

In this paper we propose the design of milliProxy, a novel
TCP proxy for mmWave mobile networks aimed at fully reap-
ing the benefits of mmWave links to achieve high throughput
with low latency. It is transparent to the end hosts of the
connection, and respects the end-to-end connection semantics.
The main rationale is to split the TCP control loop in the
mmWave RAN to optimize the flow control over the wireless
link. It is based on a cross-layer, data driven approach and
enables a number of optimizations for the operation of TCP in
mmWave networks.

The rest of the paper is organized as follows. In Sec. II, we
extensively discuss the main limitations of TCP over mmWave
links, and provide an overview of the literature related to
TCP proxies for traditional wireless networks. The architecture
of milliProxy is described in Sec. III, and the results of a
performance evaluation campaign are reported in Sec. IV.
Finally, conclusions and future extensions of this work are
provided in Sec. V.

II. RELATED WORK

A. 5G mmWave networks and challenges for TCP

In this section, we provide an overview of the main chal-
lenges related to the usage of TCP in mmWave cellular net-
works. They can potentially enable gigabit-per-second cell data
rates thanks to the very large bandwidth available [1], but the
deployment of a reliable 5G mmWave network is challenging,
mainly because of the harsh propagation environment at these
frequencies. The high propagation loss can be compensated
using beamforming techniques, with a large number of antennas
in the transceivers, but this requires the design of Physical
(PHY) and Medium Access Control (MAC) layer protocols able
to cope with directionality [6]. Moreover, mmWave frequencies
are sensitive to blockage from a wide range of materials [7],
and, while it is possible to transmit and receive data also in
NLOS exploiting reflections, there is a massive difference in
the achivable data rate and reliability when transitioning from
LOS to NLOS (with differences in the Signal to Interference
plus Noise Ratio (SINR) in the order of 30 dB) and vice versa.

ar
X

iv
:1

71
2.

02
70

0v
1 

 [
cs

.N
I]

  7
 D

ec
 2

01
7



Therefore, it is challenging to completely benefit from the
vast amount of resources, especially when taking into account
the end-to-end performance and the complex interaction be-
tween higher-layer protocols and the mmWave stack, as shown
in previous works [8], [10]–[14]. In particular, the main issues
related to the most widely used transport protocol in end-to-end
networks (i.e., TCP) are related to the slow reactiveness of TCP
with respect to changes in the channel quality of the mmWave
link [8], [10], [12]. This translates into a sub-optimal utilization
of the available resources, since the ramp up of the congestion
window of the most used congestion control algorithms (e.g.,
TCP CUBIC [15] and TCP NewReno [16]) is too slow and
limits the achievable goodput. This issue is more marked in
mmWave links than in traditional sub-6 GHz deployments,
because of an orders-of-magnitude difference in bandwidth
(and thus achievable rate), and it becomes more relevant as
the Round Trip Time (RTT) of the connection increases, as
shown in [12]. Another consequence is the emergence of
the bufferbloat phenomenon [8]. When the channel condition
changes from LOS to NLOS, there is a drop in the data rate
offered by the physical layer. This is a problem because the
packets in excess are buffered at the Radio Link Control (RLC)
layer, and the TCP sender is not aware of the update until
an Active Queue Management (AQM) mechanism or a buffer
overflow drops one or more packets. This causes an increase
in the buffer occupancy and, consequently, in the end-to-end
latency. Finally, there is the possibility of extended outages,
due to blockage and the lack of a fall-back link. TCP reacts
to these events with retransmission timeouts, and halves the
slow start threshold at each of these events. Then, when the
connection resumes, the duration of the slow start phase (with
the exponential increase of the congestion window) is limited,
and the TCP sender stays in congestion avoidance (with a linear
increase of the congestion window) for most of the time, thus
exacerbating the issue related to the slow congestion window
ramp up.

B. TCP Performance Enhancing Proxies

The performance of TCP on wireless networks has been
under the spotlight since the 1990s, when the first cellular
networks capable of data transmission were commercially de-
ployed. Even though TCP faces more challenging conditions
when running on top of mmWave cellular networks, it is
worth describing the main approaches that can be found in
the literature related to the enhancement of TCP performance
on wireless links.

A first comprehensive review on the topic can be found in
a paper by Balakrishnan et al. [17]. The authors claim that
the poor performance of TCP in mobile networks is due to
packet losses over an unreliable channel. However, as shown
in [11], the channel losses can be masked by retransmission
mechanisms. Moreover, the considered links have very low data
rate and small buffers are used in the network. The settings in
a mmWave networks are very different, since large buffers and
retransmissions are already implemented in the wireless link
to make up for packet loss at the price of increased latency
and exposing more the network to the bufferbloat phenomenon.
However, the authors of [17] provide a comparison of different

strategies that can possibly be adapted to mmWave networks,
using TCP Reno as a baseline, and including also TCP split
approaches.

In a more recent paper [18], Liu et al. introduce a TCP proxy
middlebox for the optimization of TCP performance without
the need for any modification to the protocol stack of servers,
clients and base stations. They observe that the adoption of
a new end-to-end TCP congestion control mechanism may be
useless in the presence of HTTP proxies, which are frequently
used in mobile networks. Moreover, they design their solution
for modern LTE networks, characterized by large buffers (in
the order of 5 MB) and bandwidth fluctuations (even if not
as wide as those in mmWave networks [1], [9]), and a fixed
network which does not act as a bottleneck. Their solution is a
middlebox that can be placed anywhere in the mobile operator
core network, and breaks the TCP connection in two segments,
i.e., it does not respect end-to-end connection semantics1. This
box performs some optimizations on the fly, such as (i) not
using the information of the receiver congestion window, which
may be too small with respect to the actual rate available on
the link, given that experimental evaluations on the receiver
buffer in real devices have highlighted that it is never filled;
(ii) changing retransmission patterns by intercepting duplicate
ACKs; (iii) tuning the congestion window with a rate estimation
algorithm. In this design, the TCP connection from the sender
to the receiver is terminated at the middlebox, which buffers
the packets for the final receiver until it can forward them.

A third approach is described in [21], where Ren et al.
introduce a TCP proxy in the mobile network base station. This
study, however, is focused on the UMTS architecture. Their
approach is based on a queue control mechanism: by using
the sliding mode variable structure (SMVS) control theory
the buffer queue length at the base station is kept at the
same size. This proxy does not respect the end-to-end TCP
semantics, because it terminates the connection at the proxy.
The advertised window at the proxy is used to limit the sending
rate of the server and to avoid buffering delays. At the proxy,
a control mechanism is used to keep the queue length at a
reference value, by inferring the bandwidth available at the base
station.

Some other interesting approaches that respect the end-to-
end TCP semantics are (i) Mobile TCP (M-TCP) [22], which
freezes the TCP sender when it senses imminent congestion,
in order to avoid packet loss and connection timeouts; and (ii)
Snoop [23], also from Balakrishnan et al., which performs local
retransmissions when TCP packet losses are sensed, in order
to improve the connection reactiveness. I-TCP [24], instead, is
a TCP split approach, not compliant with the end-to-end TCP
semantics, that uses a traditional TCP congestion control also
on the wireless link and does not yield a great performance
improvement.

In [25], a performance enhancement proxy for mmWave

1According to [19], [20], the end-to-end principle, which states that certain
functions in the internet are designed to work at the end hosts, is a founding
paradigm of the internet. A proxy that splits the TCP connection into two
independent segments does not respect the end-to-end TCP semantics, meaning
that ACKs may be sent to the sender before the packet is actually received by
the other end host.



cellular networks is proposed. It is installed in the base stations,
and breaks the end-to-end TCP semantics by sending early
ACKs to the server. Moreover it performs batch retransmis-
sions, i.e., it retransmits the packets that were detected as lost
as well as the segments with a sequence number which is close
to that of the lost packets. The detection of the lost packets
however assumes that on the link only Hybrid Automatic
Repeat reQuest (HARQ) retransmissions are performed, while
in general with TCP the RLC Acknowledged Mode (AM) is
also used. In the performance evaluation, moreover, the authors
of [25] limit the application data rate to 100 Mbit/s, which can
be usually sustained also in NLOS. Therefore, the performance
analysis does not account for the very high data rates that can
be achieved with mmWave and for the wide rate variations
of the LOS to NLOS (or vice versa) transitions. Finally, it
focuses only on the throughput and delivery ratio for a single
user, without considering the latency and thus the bufferbloat
problem.

III. END-TO-END PROXY ARCHITECTURE FOR MMWAVE

In this section we describe our TCP proxy architecture for
mmWaves, called milliProxy, and highlight the main innova-
tions with respect to the solutions reported in Sec. II. Impor-
tantly, by being transparent to both the end points of the TCP
flow, milliProxy respects the end-to-end semantics of the TCP
connection, as opposed to most of the proposed approaches
cited in Sec. II. The key functionalities of milliProxy are (1) the
ability to split the control loop of the connection with a different
and tunable Flow Window (FW) policy at the source server
and at the proxy, as well as (2) the capability of controlling
the Maximum Segment Size (MSS) of the connection in the
portion between the proxy and the User Equipment (UE).

A. Proxy Architecture

MilliProxy is a TCP proxy which can be implemented and
deployed as a network function, composed of several modules
that can be updated or changed. It can be placed in the
gNB, fully benefiting from the interaction with the mmWave
protocol stack, or in a node in the core network, sharing out-
of-band information with the gNB to which the TCP receiver
is connected. According to the position of the proxy, there
may be the need to design a mechanism to cope with the
user mobility. For example, if the proxy is in the gNB, when
the UE performs a handover the network has to transfer the
milliProxy’s state from the source to the target gNB. If instead
the proxy is in an edge node of the core network, then it can
manage multiple cells without the need to forward the state for
each UE handover. Additional considerations on this issue are
left for future work.

The basic structure of the proxy is shown in Fig. 1. An
instance of the proxy is created for each TCP flow which
goes through the node in which it is installed, so that different
policies can be enabled for different users, or different flows of
the same user. Each instance has its own customizable buffer
(set by default to 10 MB), flow window module and ACK
management unit. The buffer is used to store the payload of the
TCP packets before they can be delivered to the TCP receiver,
and the ACK management unit checks for incoming ACKs to

Flow 
Buffer

Flow window 
management module

ACK management 
module

milliProxy instance

Server
UE

End-to-end flows

Server

UE

Flow 
Buffer

Flow window 
management module

ACK management 
module

milliProxy instance

Figure 1: Architecture of milliProxy

clear the contents of the buffer. The flow window policy is the
equivalent at the proxy of the congestion window mechanism
at the TCP sender, i.e., it controls the amount of data that
can be forwarded by the proxy. The policy is not hard-coded
into the proxy, but is loaded as a module, according to the
implementation of the TCP congestion control mechanisms in
the Linux kernel [26]. The ACK management unit of the proxy
modifies the advertised window in each ACK that is relayed to
the server in order to enforce the proxy flow window value also
at the TCP sender. According to [27], the TCP sender selects
the minimum between its congestion window and the received
value of the advertised window as the maximum number of
bytes it can send. Similarly to [10], the advertised window
in the modified ACKs is set to be equal to the flow window
determined at the proxy. This makes it possible to capture
both components of the network, and adapt accordingly: the
wired part is regulated by the classical TCP congestion control
selected, while the wireless channel is used in a cross-layer
fashion by the proxy, which selects the proper value of the
advertised window.

The presence of the buffer makes it possible to tune the
MSS of the connection between the proxy and the UE differ-
ently from that of the other part of the connection, enabling
further optimizations. If the MSS of the overall connection is
limited by the Maximum Transmission Unit (MTU) of some
intermediate networks using ethernet as link layer technology
(i.e., the MSS is at most 1460 bytes), then the proxy buffers
the 1460-byte payloads, and can send a larger segment which
aggregates multiple payloads of the end-to-end connection. For
example, fourteen 1460-bytes payloads received back-to-back
in a small time interval can be combined into a single 20440-
bytes segment which is sent from the proxy to the UE. This
increases the efficiency of the transmission process in the last
mile of the connection, i.e., in the mmWave wireless link,
because of the smaller overhead of the TCP/IP headers (in
the previous example, just one TCP/IP header is used instead
of fourteen), and because fewer uplink resources have to be
scheduled for the transmission of ACKs from the UE [28].
Notice that aggregation is generally performed also at the RLC
and MAC layers of very high-bandwidth connections in order to
improve the transmission efficiency [29], [30], and the larger
MSS helps also this process, since fewer concatenation and



Data packet 
OUT

Data packet 
IN Payload (MSS 1)

Header Option 
Processing

RTT Estimate
Window scaling

Flow 
Buffer

max TX SN

max acked SN

Payload (MSS 2)

Header

Flow 
Window

Update FW

ACK IN

ACK 
management 

module

ACKs OUT

Figure 2: Packets processing in a milliProxy instance.

segmentation operations are required at the transmitter and the
receiver.

Fig. 2 depicts how a packet is processed by milliProxy. By
design, it is completely transparent to the UE, i.e., the TCP
receiver. It intercepts all the packets belonging to the flows it
is handling, and the payload of data packets is stored in the
proxy buffer. Any options in the packet header are processed,
for example to estimate the RTT, as will be described in
the following sections, or to handle the advertised window
scaling. The payload will then be sent as part of a larger
segment as soon as the flow window allows it. When an
ACK is received, the proxy checks its sequence number, and
marks the corresponding bytes in the buffer as received, which
will then be discarded, allowing the flow window to advance.
Consequently, a number of ACKs corresponding to the number
of original packets received (approximatively equal to the ratio
between the MSS of the proxy-UE connection and that of the
server-proxy connection) is sent to the TCP sender. In each
ACK the advertised window value is overwritten with the value
of the flow window in the proxy.

B. RTT estimation
The estimation of the RTT can be performed using the TCP

timestamp option [31]. This option is symmetric, i.e., it is added
both to data packets at the TCP sender and to ACKs at the
receiver. It has a total length of 10 bytes, and contains two
timestamps. The first (TSval) is that of the clock of the end
host that transmits the packet, the second (TSecho) is the TSval

of a recently received packet from the other end host. Its usage
is advised in [31] in order to improve the TCP performance,
in terms of both throughput and security.

If both the end hosts share the same clock, the estimation of
the RTT is composed by two phases as follows. In the first one,
which is shown in Fig. 3, the milliProxy instance estimates the
latency on the path from the UE to the server. The timestamp
TSecho of the data packet sent from the server to the UE
corresponds to the time t−1 at which the UE sent an ACK.
Similarly, the timestamp TSval in the same packet corresponds
to the time instant t0 at which the server transmitted the
data packet. Given the very high packet rate that is sustained
in mmWave networks, it is unlikely to observe a significant
time interval between receiving the ACK corresponding to
TSecho and sending the data packet corresponding to TSval.

milliProxy

!"# = %&'()*

!+ = %&,-. !/*0

ACK

Data

Figure 3: RTT computation at the proxy.

Therefore, the latency of the uplink path can be estimated as
TUE→server = t0 − t−1. In a similar fashion, it is possible to
use the timestamp values carried by ACK packets to estimate
the latency on the downlink path Tserver→UE. Finally, the RTT
is estimated as RTTe = Tserver→UE + TUE→server.

If instead the two end hosts do not have the same clock, or
if the TCP timestamp option is not supported, other methods
can be used to estimate the RTT as reported in [32].

C. Integration with the 5G protocol stack

The proxy is configured to collect some statistics from the
connected 5G gNB. According to the location of the proxy,
this data collection can be performed with or without delay.
If the proxy is installed in the gNB, the information can be
retrieved instantaneously, whereas if it resides in a node in the
core or edge network some signaling is necessary, which would
introduce some incremental latency. Thanks to this information
it is possible to enable a cross-layer approach, which is useful
for the design of flow window management algorithms driven
by the performance and the statistics of the mmWave link.

More information associated with each user can be retrieved
from the protocol stack of the gNB. The first is the RLC buffer
occupancy B, which can be seen as a signal of a congestion
event and a consequent increase in latency. The second is an
estimate of the PHY layer data rate between the UE and the
gNB. In [18] this is done by measuring the number of bytes
transmitted in the previous slots, dividing it by the duration of
the slots. This approach, however, is sensitive to the actual rate
that is injected in the network by the TCP source, and can lead
to an underestimation of the available rate if the source rate
does not saturate the connection. This limitation is particularly
relevant in mmWave networks, where it takes a long time for
the TCP source to reach a full utilization of the available



resources. In our previous works [10], [33], instead, we rely
on the information provided by the Adaptive Modulation and
Coding (AMC) module at the MAC layer. By knowing the
channel quality of a UE it is possible to compute the modulation
and coding scheme, predict how many bytes the scheduler could
allocate to the user (with full buffer assumption) in the next
time slot, and divide by its duration to obtain an achievable
data rate Re that is not influenced by the source rate. Another
useful metric that can be acquired in a cross-layer setup is the
SINR of the UE, which could give an indication on the link
status: for example, if it is below a certain threshold, then the
proxy will know that the UE is in outage.

D. Window Management

The management of the flow window is an essential compo-
nent of milliProxy. In this paper we propose a scheme based
on the computation of the Bandwidth-Delay Product (BDP).
The implementation and testing of alternative FW management
policies is left for future works.

In the BDP-based scheme, the FW management module
uses three different kinds of cross-layer data: the RLC buffer
occupancy B, the estimated data rate Re and the estimated
RTT RTTe. The latter is filtered, and the minimum value
RTTmin is selected following the approach in [10], [33]–[35],
so that the queuing latency at the RLC layer or at intermediate
buffers is not taken into account. The flow window is then
computed as w = bRTTminRec. When the RTT estimate is
not yet available (i.e., for the first ACK after the reception
of the SYN packet), the flow window is arbitrarily initialized
to a high value of 400 MB. Moreover, it is possible to make
the policy more conservative when the RLC buffer occupancy
exceeds a predefined value (e.g., 2 MB). In this case, the flow
window is set to w = max{bRTTminRec − 2B, 0}.

IV. PERFORMANCE EVALUATION

A. ns-3 mmWave module

In order to evaluate the performance of milliProxy in an end-
to-end scenario, we implemented the proxy in ns-3 [36], an
open source network simulator which also features a mmWave
cellular protocol stack. A complete description of the mmWave
module is provided in [37], [38]: it features a complete 3GPP-
like protocol stack in the gNBs and UEs, with a custom
PHY/MAC layers implementation, based on a dynamic Time
Division Duplexing (TDD) scheme designed for low latency
communications [39], RLC, Packet Data Convergence Protocol
(PDCP) and Radio Resource Control (RRC) layers. The chan-
nel model is based on the 3GPP channel model for frequencies
above 6 GHz [40], and it models the time correlation among
the channel impulse responses computed for moving users in
order to account for spatial consistency.

B. Scenario and parameters

The main simulation parameters are reported in Table I. In
this paper we focus on testing the performance of milliProxy in
a single user scenario, in order to evaluate the responsiveness
of the proxy architecture to channel variations, from LOS to
NLOS and viceversa. In order to model them, some obstacles
are randomly deployed in the simulation scenario between the

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50

Y
 [m

]

X [m]

mmWave
gNB

UE path at
speed vUE

Figure 4: Randomly generated simulation scenario. The three grey rectangles
represent obstacles such as buildings, cars, trees.

Parameter Value

mmWave carrier frequency 28 GHz
mmWave bandwidth 1 GHz
3GPP Channel Scenario Urban Micro
Max PHY layer rate 3.2 Gbit/s
S1 link latency DS1 1 ms
Latency from PGW to server DRS [1, 5, 10, 20] ms
RLC AM buffer size BRLC [10, 20] MB
RLC AM Reordering Timer 1 ms
RLC AM Report Buffer Status timer 2 ms
UE speed v 5 m/s
TCP MSS1 (server - proxy) 1400 byte
TCP MSS2 (proxy - UE) 20000 byte

Table I: Simulation parameters

gNB (which is at coordinates (25, 100) m) and the UE (moving
from (0, 0) m to (50, 0) at speed v). As the user moves, it will
experience multiple transitions, with a random duration of each
LOS or NLOS phase in each different run of the simulation.
An example of scenario is shown in Fig. 4. All the results are
averaged over 50 independent simulation runs.

C. Results

Fig. 5 shows a comparison of both goodput and RAN latency
when milliProxy is deployed in the gNB or not, for different
RLC buffer sizes BRLC and fixed-network latencies. It can be
seen that milliProxy performs better in terms of both goodput
and latency, with a goodput gain of up to 2.24 times (combined
with a latency reduction of 1.98 times) with the highest DRS ,
or a latency reduction of 43 times with a similar goodput in the
edge server scenario (i.e., DRS = 1 ms). MilliProxy is therefore
effective at reducing the impact of the bufferbloat issue: when
the channel switches from a LOS to a NLOS state, milliProxy
can reduce the TCP sending rate faster, and thereby avoid
extra queuing latency. On the other hand, when the channel
quality improves, milliProxy is able to (i) track the available
data rate at the physical layer and (ii) promptly inform the
TCP sender of the increased resource availability, which indeed
results in higher goodput. The performance of milliProxy is
independent on the buffer size, since it manages to keep the
buffer occupancy and consequently the RLC queuing delay to a
minimum. As shown in Fig. 5 and extensively discussed in [28],



2 6 11 21

500

1,000

1,500

One-way end-to-end latency DS1 +DRS [ms]

G
oo

dp
ut

[M
bi

t/s
]

milliProxy, B = 10 MB TCP NewReno, B = 10 MB
milliProxy, B = 20 MB TCP NewReno, B = 20 MB
UDP

(a) TCP goodput

2 6 11 21
0

50

100

150

One-way end-to-end latency DS1 +DRS [ms]

R
A

N
la

te
nc

y
[m

s]

milliProxy, B = 10 MB TCP NewReno, B = 10 MB
milliProxy, B = 20 MB TCP NewReno, B = 20 MB

(b) Latency in the RAN (from the PDCP at the eNB to that at the UE)

Figure 5: Comparison of goodput and Radio Access Network (RAN) latency
with and without milliProxy, for different buffer sizes B.

DS1 +DRS [ms] 2 6 11 21

BRLC = 10 MB 11.8008 4.7547 2.5574 1.9888
BRLC = 20 MB 43.3299 11.5578 5.8104 3.6988

(a) RAN latency reduction when using milliProxy, i.e., ratio between the latency
with TCP NewReno and that with milliProxy.

DS1 +DRS [ms] 2 6 11 21

BRLC = 10 MB 1.1941 1.6875 1.7202 2.2430
BRLC = 20 MB 1.0135 1.1448 1.0765 1.9901

(b) TCP goodput gain when using milliProxy, i.e., ratio between the goodput
with milliProxy and with TCP NewReno.

Table II: Goodput and latency performance gains with milliProxy.

traditional approaches without proxy result in higher goodput at
the price of increased RAN latency when using larger buffers.

A comparison between different configuration options for
milliProxy is given in Fig. 6. In particular, we are interested in
studying the sensitivity of goodput and latency with respect to
the delay Dinfo in the acquisition of the cross-layer information
from the gNB: it is equal to 0 when milliProxy is deployed in

2 6 11 21
1,000

1,200

1,400

1,600

One-way end-to-end latency DS1 +DRS [ms]

G
oo

dp
ut

[M
bi

t/s
]

Dinfo = 0, Tinfo = 10 ms
Dinfo = 3 ms, Tinfo = 10 ms

(a) TCP goodput

2 6 11 21
0

10

20

30

One-way end-to-end latency DS1 +DRS [ms]

R
A

N
la

te
nc

y
[m

s]
Dinfo = 0, Tinfo = 10 ms
Dinfo = 3 ms, Tinfo = 10 ms

(b) Latency in the RAN (from the PDCP at the eNB to that at the UE)

Figure 6: Comparison of goodput and RAN latency with different milliProxy
configurations. Dinfo represents the latency needed to forward the cross-layer
information from the gNB to milliProxy, Tinfo is the periodicity at which this
information is collected.

the gNB, and greater than 0 when installed in a node in the core
or edge network. We consider Dinfo = 3 ms, i.e., we assume
that the latency between the proxy deployed in the core/edge
network and the gNB will be smaller than 3 ms. As shown in
Fig. 6, the two tested configurations have a similar behavior
in terms of both goodput and latency, showing that milliProxy
is robust with respect to different possible deployments in the
edge network or in the gNBs.

V. CONCLUSIONS

In this paper we introduced milliProxy, a novel proxy de-
signed to enhance the performance of TCP in mmWave cellular
networks. We described the main challenges related to the
usage of TCP on top of mmWave links, and the main proxy
designs from the literature. MilliProxy splits the TCP control
loop in two segments, while keeping the end-to-end semantics
of TCP. It has a modular design, which enables the use of
different MSS values and flow window management algorithms
in the two portions of the connection (i.e., wired and wireless).
The window control policy can benefit from the interaction of
milliProxy with the protocol stack of the mmWave networks,
which enables cross-layer approaches. We showed how a FW
policy based on the BDP of the end-to-end connection allows a
reduction in latency of up to 10 times or an increase in goodput



of up to 2 times with respect to traditional TCP NewReno, as
well as a robustness with respect to where milliProxy is placed
in the network.

MilliProxy is an option to reach high goodput with low
latency with TCP in mmWave networks. As part of our future
work we will test the proxy performance in a wide variety
of scenarios in ns-3, analyzing the performance with multiple
users, and with different flow window policies, and will con-
sider the implementation in a real setup.

REFERENCES

[1] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular
wireless networks: Potentials and challenges,” Proc. IEEE, vol. 102, no. 3,
pp. 366–385, Mar 2014.

[2] 3GPP, “Study on New Radio (NR) Access Technology - Physical Layer
Aspects - Release 14,” TR 38.802, 2017.

[3] M. Mezzavilla, M. Polese, A. Zanella, A. Dhananjay, S. Rangan,
C. Kessler, T. Rappaport, and M. Zorzi, “Public Safety Communications
above 6 GHz: Challenges and Opportunities,” IEEE ACCESS Special
Section on Mission Critical Public-Safety Communications: Architectures,
Enabling Technologies, and Future Applications, 2017.

[4] J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C. R. Bhat, and R. W.
Heath, “Millimeter-wave vehicular communication to support massive
automotive sensing,” IEEE Communications Magazine, vol. 54, no. 12,
pp. 160–167, Dec 2016.

[5] M. Giordani, A. Zanella, and M. Zorzi, “Millimeter wave communication
in vehicular networks: Challenges and opportunities,” in 2017 6th IEEE
International Conference on Modern Circuits and Systems Technologies
(MOCAST), May 2017.

[6] H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, and
M. Zorzi, “Millimeter wave cellular networks: A MAC layer perspective,”
IEEE Transactions on Communications, vol. 63, no. 10, pp. 3437–3458,
Oct 2015.

[7] S. Singh, F. Ziliotto, U. Madhow, E. M. Belding, and M. J. W.
Rodwell, “Millimeter Wave WPAN: Cross-Layer Modeling and Multi-
Hop Architecture,” in 26th IEEE International Conference on Computer
Communications (INFOCOM), May 2007, pp. 2336–2340.

[8] M. Zhang, M. Mezzavilla, R. Ford, S. Rangan, S. S. Panwar, E. Mellios,
D. Kong, A. R. Nix, and M. Zorzi, “Transport Layer Performance
in 5G mmWave Cellular,” in 2016 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Apr 2016, pp. 730–
735.

[9] M. Polese, R. Jana, and M. Zorzi, “TCP and MP-TCP in 5G mmWave
Networks,” IEEE Internet Computing, vol. 21, no. 5, pp. 12–19, Sept
2017.

[10] M. Zhang, M. Mezzavilla, J. Zhu, S. Rangan, and S. Panwar, “The
Bufferbloat Problem over Intermittent Multi-Gbps mmWave Links,”
Nov. 2016. [Online]. Available: https://arxiv.org/abs/1611.02117

[11] M. Polese, R. Jana, and M. Zorzi, “TCP in 5G mmWave Networks:
Link Level Retransmissions and MP-TCP,” in 2017 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), May
2017.

[12] M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Mobility Manage-
ment for TCP in mmWave Networks,” in Proceedings of the 1st ACM
Workshop on Millimeter-Wave Networks and Sensing Systems, co-located
with ACM MobiCom’17, ser. mmNets ’17, 2017, pp. 11–16.

[13] S. K. Saha, A. Garg, and D. Koutsonikolas, “A first look at TCP per-
formance in indoor IEEE 802.11ad WLANs,” in 2015 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Apr
2015, pp. 63–64.

[14] S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim, “WiFi-Assisted 60 GHz
Wireless Networks,” in Proceedings of the 23rd Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’17.
ACM, 2017, pp. 28–41.

[15] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 64–74, July 2008.

[16] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC 6582, 2012.

[17] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A
comparison of mechanisms for improving TCP performance over wireless
links,” IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 756–
769, Dec 1997.

[18] K. Liu and J. Y. Lee, “On Improving TCP Performance over Mobile Data
Networks,” IEEE Transactions on Mobile Computing, vol. 15, no. 10, pp.
2522–2536, Oct 2016.

[19] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degrada-
tions,” RFC 3135, June 2001.

[20] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in
system design,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288,
Nov 1984.

[21] F. Ren and C. Lin, “Modeling and improving TCP performance over
cellular link with variable bandwidth,” IEEE Transactions on Mobile
Computing, vol. 10, no. 8, pp. 1057–1070, Aug 2011.

[22] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,”
ACM SIGCOMM Computer Communication Review, vol. 27, no. 5, pp.
19–43, Oct 1997.

[23] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving TCP/IP
performance over wireless networks,” in Proceedings of the 1st annual
international conference on Mobile computing and networking. ACM,
1995, pp. 2–11.

[24] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for mobile hosts,”
in Proceedings of the 15th International Conference on Distributed
Computing Systems. IEEE, 1995, pp. 136–143.

[25] M. Kim, S.-W. Ko, and S.-L. Kim, “Enhancing TCP End-to-End
Performance in Millimeter-Wave Communications,” arXiv preprint
arXiv:1709.00717, 2017.

[26] M. Casoni, C. A. Grazia, M. Klapez, and N. Patriciello, “Implementation
and validation of TCP options and congestion control algorithms for ns-
3,” in Proceedings of the 2015 Workshop on ns-3. ACM, 2015, pp.
112–119.

[27] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC
5681, September 2009.

[28] M. Zhang, M. Polese, M. Mezzavilla, J. Zhu, S. Rangan, S. Panwar,
and M. Zorzi, “Will TCP Work in mmWave 5G Cellular Networks?”
submitted to IEEE Communication Magazine, 2017.

[29] 3GPP, “NR - Radio Link Control (RLC) protocol specification - Release
15,” TS 38.322, 2017.

[30] D. Skordoulis, Q. Ni, H. H. Chen, A. P. Stephens, C. Liu, and A. Ja-
malipour, “IEEE 802.11n MAC frame aggregation mechanisms for next-
generation high-throughput WLANs,” IEEE Wireless Communications,
vol. 15, no. 1, pp. 40–47, Feb 2008.

[31] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger, “TCP Exten-
sions for High Performance,” RFC 7323, Sep 2014.

[32] B. Veal, K. Li, and D. Lowenthal, “New Methods for Passive Estimation
of TCP Round-trip Times,” in Proceedings of the 6th International
Conference on Passive and Active Network Measurement, ser. PAM’05,
2005, pp. 121–134.

[33] T. Azzino, M. Drago, M. Polese, A. Zanella, and M. Zorzi, “X-TCP: A
Cross Layer Approach for TCP Uplink Flows in mmWave Networks,”
in 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-
Net’17), June 2017.

[34] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling bufferbloat in
3G/4G networks,” Proceedings of the 2012 ACM conference on Internet
measurement, pp. 329–342, 2012.

[35] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, vol. 14, no. 5, p. 50,
2016.

[36] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” ACM SIGCOMM demon-
stration, vol. 14, no. 14, p. 527, 2008.

[37] M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan,
and M. Zorzi, “End-to-End Simulation of 5G mmWave Networks,”
submitted to IEEE Communication Surveys & Tutorials, 2017. [Online].
Available: https://arxiv.org/abs/1705.02882

[38] R. Ford, M. Zhang, S. Dutta, M. Mezzavilla, S. Rangan, and M. Zorzi, “A
Framework for End-to-End Evaluation of 5G mmWave Cellular Networks
in ns-3,” in Proceedings of the Workshop on Ns-3. ACM, June 2016,
pp. 85–92.

[39] S. Dutta, M. Mezzavilla, R. Ford, M. Zhang, S. Rangan, and M. Zorzi,
“Frame Structure Design and Analysis for Millimeter Wave Cellular
Systems,” IEEE Transactions on Wireless Communications, vol. 16, no. 3,
pp. 1508–1522, Mar 2017.

[40] 3GPP, “Study on channel model for frequency spectrum above 6 GHz -
Release 14.2.0,” TR 38.900, 2017.

https://arxiv.org/abs/1611.02117
https://arxiv.org/abs/1705.02882

	I Introduction
	II Related Work
	II-A 5G mmWave networks and challenges for TCP
	II-B TCP Performance Enhancing Proxies

	III End-to-end Proxy Architecture for mmWave
	III-A Proxy Architecture
	III-B RTT estimation
	III-C Integration with the 5G protocol stack
	III-D Window Management

	IV Performance Evaluation
	IV-A ns-3 mmWave module
	IV-B Scenario and parameters
	IV-C Results

	V Conclusions
	References

