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Abstract—In this paper, we derive a closed-form expression
for the combiner of a multiple-input-multiple-output (MIMO)
receiver equipped with a minimum-mean-square-error (MMSE)
estimator. We propose using variable-bit-resolution analog-to-
digital converters (ADC) across radio frequency (RF) paths. The
combiner designed is a function of the quantization errors across
each RF path. Using very low bit resolution ADCs (1-2bits) is a
popular approach with massive MIMO receiver architectures to
mitigate large power demands. We show that for certain channel
conditions, adopting unequal bit resolution ADCs (e.g., between
1 and 4 bits) on different RF chains, along with the proposed
combiner, improves the performance of the MIMO receiver in the
Mean Squared Error (MSE) sense. The variable-bit-resolution
ADCs is still within the power constraint of using equal bit
resolution ADCs on all paths (e.g., 2-bits). We propose a genetic
algorithm in conjunction with the derived combiner to arrive
at an optimal ADC bit allocation framework with significant
reduction in computational complexity.

I. INTRODUCTION

In mmWave massive MIMO, a large antenna array is used
to form a beam at the receiver. In the Multi-User (MU) case,
each user equipment (UE) with its antenna array typically
forms a beam to the receiver, which is either a Base Station
(BS) or an Access Point (AP). The receiver attempts to
spatially decorrelate the signal from N such UEs. A Hybrid
precoding/combining is a common architecture used with
mmWave massive MIMO transceivers [1], [3], [4]. At the
receiver, the analog combining will combine the beams and
a digital combiner spatially demultiplexes the signals from
N users or streams. The combination of analog and digital
precoding and combining will increase the performance of the
communication system for a given channel realization [1], [3].
In another architecture of MU massive MIMO operating at
sub-6 Ghz frequencies, the BS with tens to hundreds of anten-
nas would receive signals from N UEs (which typically could
be single antenna systems) [2]. The BS will demultiplex the
signal from N UEs. In both scenarios, the spatial multiplexing
of streams increases the capacity of the system linearly with
increasing N [5].

However, this imposes hardware and particularly power
constraints with increasing number of users or independent
spatial streams (RF chains) [3]. The biggest part of the power
consumption on the receiver side is from ADCs. The power
consumed by the ADCs is exponential in the number of bits
(resolution) and directly proportional to the bandwidth of the
signal [3], [6] and [7]. Prior works analyze the performance

of the receivers with 1-bit ADCs to constraint power [1],
[2], [3]. Mixed ADCs with variable bits for each RF chains
were proposed in [6], [7], [8]. The intent has been to improve
the performance of the receiver by increasing the ADC bit
resolution by more than 1 bit at a small sacrifice of power.
However the analysis is done with equal bit ADCs on all RF
Paths. Distributing the bits unequally across RF paths with
power constraint was explored in [8]. In [8], a bit allocation
strategy was arrived in the closed form with a fixed combiner.
In our work, we derive the expression for the combiner based
on the MMSE criteria which is dependent on the channel. The
combiner designed is a function of ADC bit allocation. An
optimal bit allocation is obtained using a genetic algorithm
together with the help of the combiner designed in the first
step. The proposed combiner and bit allocation will be part
of digital combining block of the hybrid combining technique
for mmWave massive MIMO architecture or simply a linear
digital combiner in a massive MU-MIMO framework for sub-6
Ghz frequencies.

We present the simulation results with number of RF paths
equal to 8 and 12 using channel models in [5], [9]. We observe
that the combined optimal bit allocation and combiner under
a given power constraint does not always result in equal
distribution of bits to all streams (RF chains); however would
depend on the channel H.

II. SIGNAL MODEL

In this work, we consider a signal model that captures a
variety of MIMO communication systems. Two such exam-
ples are: (i) multi-user, multiple-input-multiple-output (MU-
MIMO) uplink scenario in which Base Station (BS) with M
antennas receive signal from N single-antenna User Equip-
ment (UEs) [2], [7] and (ii) a mmWave MU-MIMO communi-
cation link with hybrid combining where the receiver consists
of large number of antennas. Typically, a Uniform Linear
Array (ULA) offers combining via analog beamformers and
digital combiners [1], [3], [4].

In (i), the channel H = [hij ] is a M × N rich scattering
matrix with hij ∼ N (0, 1). The received signal is given by

r =
√
puHx+ n, (1)

where pu is the average power transmitted per symbol,
M >> N , r is an M × 1 receive symbol vector; x is an
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N × 1 transmitted signal vector, and n is an M × 1 noise
vector with entries independent and identically distributed
(i.i.d) random variables having complex Gaussian distribution
with n ∼ CN (0, σ2

nIM ):

In (ii), a mmWave which is either Single-User MIMO (SU-
MIMO) or MU-MIMO communication link is considered with
hybrid combining. In SU-MIMO case, the communication link
is between a single UE and either an AP or BS. In this case,
there are N parallel streams of data transmitted and received
on N RF paths. In case of MU-MIMO, N UEs talk to an
AP/BS receiver. The hybrid combining is divided between the
analog and digital domains. The signal model for this system
can be represented as

r =
√
puW

H
rf Gx+WH

rf n, (2)

where r is an N × 1 receive symbol vector after analog beam
combining from N UEs or parallel data streams, Wrf is an
M × N analog combiner, G is an M × N channel matrix
where M is the number of receive antennas at the receiver
(usually BS or AP). Let’s define H′ , WH

rf G and n′ ,
WH

rf n. Channel H′ can be treated as a matrix whose entries
are complex Gaussian random variables CN (0, σ2

n) and n′ is
an N × 1 noise vector with entries as i.i.d random variables
having complex Gaussian distribution such that CN (0, σ2

nIN ).
Then, (2) can be written as

r =
√
puH

′x+ n′. (3)

It is easy to see that equations (1) and (3) are analogous to
H and H′ being M × N and N × N matrices, respectively.
We shall consider equation (1) with M = N for our analysis.
The extension of the analysis to M > N is straightforward.
The received symbol vector r is digitized using a variable bit
quantizer. The quantizer is modeled as an Additive Quantiza-
tion Noise Model (AQNM) [6], [7]. However, when we extend
this model for allocating unequal ADC bits (1-4 bits) across N
RF paths, the AQNM model Qb(r) can be succinctly written
as [8]

z = Qb(r) = Wα(b)r+ nq, (4)

where nq is the additive quantization noise vector that is
uncorrelated with r and has Gaussian distribution [6], [7],
[8], Wα (b) = diag {α1, α2, α3, ...αN}, and αi = 1 − βi.
βi is defined as βi = π

√
3

2 2−2bi for a non-uniform MMSE
quantizer. Here, b = [b1b2b3....bN ]T is a vector whose entries
bi indicate the number of bits bi (on both I and Q channels) that
are allocated to the ith ADC RF path. Based on our proposed
bit allocation framework, the number of bits bi would vary
between 1 to 4 depending upon the signal and the channel
characteristics.

In the expanded form Wα (b) can be written as in (5). This
approximation holds for bi > 5 and for bi ≤ 5, the values are

bi 1 2 3 4 5
βi 0.3634 0.1175 0.03454 0.009497 0.002499

TABLE I
βi FOR DIFFERENT ADC QUANTIZATION BITS bi

indicated in Table I [7].

Wα (b) = IN −
π
√
3

2


2−b1 0 0 0
0 2−b2 0 0

0 0
. . . 0

0 0 0 2−bN

 (5)

The quantized signal vector z is then combined using a
linear combiner C(b) as shown in Fig 1.

CH(b)
- - - --
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Combiner
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l

Fig. 1. Signal Model

A. Combiner Design

We design a combiner C(b) such that the mean square
error between the transmitted signal vector x and the combined
output signal vector y is minimized.

C(b)MMSE = argmin︸ ︷︷ ︸
C(b)∈CN×N

E{‖CH(b)z− x‖2} (6)

The solution to (6) can be written in the compact form [5],
[10] as

C(b)MMSE = R−1zz (b)Rzx(b), (7)

where Rzz(b) is the covariance matrix of the received and
quantized signal vector z, and Rzx(b) is the cross-covariance
of the transmitted signal vector x and z. The covariance of
quantization noise vector nq is given by

Rnqnq
= Wα(b)W1−α(b)diag

(
puHHH + IN

)
(8)

By substituting (3) into (4) and by using the expression
for covariance of quantization noise vector, we can compute
Rzx(b), Rzz(b), and C(b)MMSE.

Rzx(b) = puWα(b)H

Rzz(b) = puWα(b)HHHWα(b)

+ σn
2INWα(b)Wα

T (b)

+Wα(b)W1−α(b)diag
(
puHHH + IN

)
,

(9)



C(b)MSE =

[
puWα(b)HHHWα(b)

+ σn
2INWα(b)Wα

T (b)

+Wα(b)W1−α(b)diag
(
puHHH + IN

)]−1
puWα(b)H.

(10)

B. Bit Allocation Formulation
It is noted that C(b)MSE is a non-linear function of Wα(b).

We intend to find an optimal b∗ such that C(b∗)MMSE
minimizes the MSE as given in (6), under the power budget
constraint PADC for ADC. We formulate the cost function J (b)
as

E{‖e2‖} = J (b) = E{‖RH
zx(b)R

−H
zz (b)z− x‖2}. (11)

The power consumed [7] by a single b-bit ADC is given as

p (b) = cfs2
b, (12)

where c is the power consumed per conversion step and fs is
the sampling rate in Hz. Given that we have a power budget
PADC, we optimize the function J (b) under the constraint that
the total power consumed by the ADCs with b bits is less
than or equal to PADC. Let the total power consumed by ADCs
using b be denoted as

PTOT =

N∑
i=1

cfs2
bi . (13)

We formulate the following optimization problem.

b∗ = argmin︸ ︷︷ ︸
b∈IN×1

E{‖CH(b)z− x‖2}

subject to the constraint PTOT ≤ PADC

(14)

C. Genetic Algorithm for Bit Allocation
Since the cost function J (b) is non-linear, we make no

assumption about the cost function and solve the optimization
problem in (14) using Genetic Algorithm (GA). Given that we
need to find an N -tuple integer vector as our solution, GA is
an attractive choice. We modify the basic framework of the
GA described in [11] to our problem formulation.

Genetic Algorithms are a class of metaheuristic algorithms
that are commonly used to find solutions to optimizations
involving non-linear, non-convex cost functions with multiple
local minima/maxima or convoluted search spaces that have
no closed form representations. GA uses biological principles
like mutation and cross-overs to mimic natural selection. When
applied to optimization problems, the algorithm selects a
set of chromosomes at random into a population set. The
chromosomes are the possible solutions to the optimization
problem in question. The selected chromosomes are always
the ones that adhere to the constraints (for constrained op-
timization). The fitness test on the chromosomes (evaluation

of the cost function) is done on all the chromosomes in the
population set. If at any time, a chromosome is found to be fit
(passes a minimum or maximum threshold test), the algorithm
halts and declare this particular chromosome as the solution.
Otherwise, the GA gets into an iteration loop of generating
more chromosomes in the population set by performing cross-
over between two or multiple chromosomes in that same set
based on a metric called cross-over probability.

The newly formed chromosomes could undergo a mutation
based on a mutation probability metric. The new chromosomes
thus added into the population set are again evaluated for
fitness and the loop continues either till a fit chromosome
is found or a decided number of iterations is exhausted. In
the scenario where the maximum number of iterations are
exhausted without any chromosome passing the test criterion,
the most fit chromosome within the population is declared
as the solution even though the fitness threshold is not met.
The threshold for fitness and the maximum iteration allowed
decide the computational complexity of GA [11].

In our proposed GA, as part of initialization we select a
set of vectors b (possible solutions called chromosomes) that
adhere to the power constraint and bit allocations as given by

Bset = {bj = [bj1, bj2, . . . , bjN ]
T for 0 ≤ j < 4N |

1 ≤ bji ≤ 4 and
N∑
i=1

cfs2
bji ≤ PADC}

(15)

The initial number of chosen chromosomes is K. We call
the selected chromosomes set as Chset. We also maintain a
complimentary set of possible solution vectors Cset, that are
not part of Chset such that anytime during the GA we have
Bset = Chset ∪ Cset and Chset ∩ Cset = φ. The fitness J (b)
is evaluated for each of the b chromosomes in Chset using
(11). We then test if any of the chromosomes have a fitness
better than threshold T . If so, we exit the GA and declare that
chromosome as the solution b∗. If none of the chromosomes
in Chset meets the threshold criteria, we move to the next
step in GA wherein we grow the Chset by performing cross-
over. Based on a random measure out of a Bernoulli trial, we
pick a new possible solution that gets added to the population.
We pick one chromosome from Cset in this fashion for every
two distinct chromosomes in Chset. This is analogous to
performing a cross-over of 2 fit chromosomes to create a new
chromosome and mutating the same to update the chromosome
population Chset. The cross-over and mutation probabilities
are factored in this Bernoulli-trial experiment. The fitness of
the chromosomes are evaluated at each iteration when Chset
is updated . The process is repeated until either a threshold
criterion T is reached for fitness or maximum number of
iterations L is exhausted, in which case, we pick the most
fit chromosome b as the solution b∗.

III. TEST SETUP AND SIMULATION RESULTS

With our Test setup, we simulate N= 8 and 12 RF paths
at the receiver having ADCs that operate with flexibility to



Number of
RF paths N

Initial
Number of
Chromo-

somes
K

Maximum
Iterations to
update chro-

mosomes
L

Threshold
Test Criteria
for Chromo-
some fitness

T
8 64 4 0.001
12 400 4 0.001

TABLE II
PARAMETERS OF GA SEARCH

choose bit resolutions between 1 and 4 bits on each RF path.
The Channel H in this setup is assumed ill-conditioned with
condition number greater than 500. We use N = 8 and 12
parallel data streams having 400 symbols each of which is
modulated using 64-QAM. The channel is assumed to be
stationary over these 400 symbols. The AQNM described in
(4) is used to simulate additive ADC quantization noise. The
AWGN model is used to simulate different Signal-to-Noise
(SNR) conditions. This setup is illustrated in Fig-2. The GA
parameters selected for our tests are given in Table II.
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N: Number of RF paths (8 and 12) in our Tests
xi: N × 1 Symbol vector for 0 ≤ i < 400 Symbols
H: N ×N Channel Matrix
bO: Optimal Bit allocation output of GA

Qb(.): AQNM as defined by bit allocation bO

CH(bO): Optimal Combiner with bit allocation bO.

Bset: Set of all possible solutions which adhere to the power constraint
PADC = cNB2−2 (2 bits on all RF paths)

ei: J(bO) = E{‖CH(bO)zi − xi‖2} MMSE for symbol i
e: MMSE averaged over 400 symbols and 100 iterations

Fig. 2. Simulation test setup

Using this test setup, we run the Full Search (FS) technique
and Proposed GA search to find an optimal bit allocation
vector for a given channel H. We set the ADC power budget
PADC = cNfs2

2, that is, the power consumed for having
2-Bit ADCs on all RF paths. Under this constraint, we allow
the FS or GA to select ADC bit resolutions between 1 and 4
bits across the RF chains.

In FS technique, the cost function J (bj) is computed
for every vector bj in the constrained solution set Bset.
We then select the bj that yields the minimum J (bj) for a
given SNR as the FS solution bFS(SNR). We use this vector
to compute the AQNM. Thus, bFS(SNR) is computed for
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Fig. 3. MSE vs. SNR for N = 8
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Fig. 4. MSE vs. SNR for N = 12

different SNRs in the range -5 to 30dB in steps of 5dB. The
MSEFS(SNR) is computed using bFS(SNR) for each SNR
in the above range using (11). The plot MSEFS(SNR) vs.
SNR thus obtained is shown in pink in the simulation results
Fig-3 and Fig-4. Similarly, with the proposed GA, we find
the optimal solution b∗(SNR) at different SNR. Using this
solution b∗(SNR), MSEGA(SNR) is computed for SNR in
the above range. The plot of MSEGA(SNR) vs. SNR is shown
in black in the simulation results of Fig-3 and Fig-4.

The MSE performance of the MIMO receiver using 2-Bit
ADCs on all RF paths is shown as a plot of MSE2Bits(SNR)
vs. SNR in red in Figures 3 and 4. Similarly, the plots in Blue
and Green are obtained by having 1-Bit ADCs and infinite bit
ADCs (that is, without quantization errors), respectively.

Table III describes the computational performance results
with the proposed GA and FS Algorithms. Here the compu-
tational complexity is measured by the number of evaluations



Number of RF
paths

Number of
Evaluations of

the Cost Function
J(b) with Full

Search

Number of
Evaluations of

the Cost Function
J(b) with Genetic

Algorithm
8 1878 324
12 133253 2025

TABLE III
COST FUNCTION EVALUATIONS FOR FULL SEARCH VS. GA

of J(b) required to arrive at the optimal solutions b∗ and bFS.

IV. CONCLUSION

In this paper, we derive an optimal linear digital combiner
C for a given channel realization H with the MMSE criterion.
The MMSE factors in the channel and AQN for optimal
ADC bit allocation. We see that the derived combiner C is a
function of the variable ADC bit allocation vector b across
the RF paths of the MIMO receiver. We then devise a scheme
to search for an optimal bit allocation solution b∗ using a
computationally efficient GA such that C(b∗) minimizes the
mean-squared error between the transmitted signal vector x
and the received, quantized and combined vector y under a
power constraint. From the simulation results, we see that
the optimal bit allocation solution for a given channel H and
given power budget need not always be uniform and depends
on the channel H. By using variable-bit allocations for
ADCs across RF paths, we have more options to choose the
power budget for different channel conditions. This becomes
significant as the number of users (streams) increases. Also,
we observe from the simulation results that for some channel
realizations H, there exists a different optimal solution b∗ in
MSE sense within the solution space, which does not coincide
with the all-one or all-two allocations. This optimal b∗ would
not meet the power budget of all-one bit allocation, however
we observe substantial MSE improvements over the all-one
case at the expense of extra power spending. The proposed
technique can be used for various MIMO architectures.
Examples include [i] uplink MU-Massive MIMO systems
at sub-6 Ghz frequencies, [ii] mmWave based SU-MIMO
with N spatial streams or MU-MIMO with N users within
the framework of hybrid precoder/combiner by appropriately
taking care of the constraints on the analog precoders and
combiners [3].
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