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Abstract—Support massive connectivity is an important re- base station (BS) with a grant-free transmission procedase
quirement in 5G wireless communication system. For massive peen showed in[[8],[9], which also exploit CS for activity
Machine Type Communication (MTC) scenario, since the net- yetaction. Notice that almost all of these methods fornedlat

work is expected to accommodate a massive number of MTC . .
devices with sparse short message, the multiple access soee '€ detection model as a Single Measurement Vector (SMV)

like current LTE uplink would not be suitable. In order to  Problem which has a poor performance in low SNR. However,
reduce the signaling overhead, we consider an grant-free nitiple  in this paper, we making use of the covariance matrix of
access system, which requires the receiver facilitate avlly the measurments, instead of the measurements themselves to
detect!on, channel estimation, ar_1d data dec_odlng in “one si achieve a high activity detection rate.

and without the knowledge of active user’s pilots. Howevemmost
of the “one shot” communication research haven’t considere

the massive MIMO scenario. In this work we propose a Multiple Q =
Measurement Vector (MMV) model based Massive MIMO and N
exploit the covariance matrix of the measurements to confirma AN
high activity detection rate. \N
Index Terms—5G, MTC, grant-free, Massive MIMO.
—_————>
O=—====== >

I. INTRODUCTION

Machine-to-Machine (M2M) is an emerging paradigm for e DN
future communication systems. The machine type devices /7 AN
including smart grids, computers, FPGAs, etc, which trahsm / AN
small data packets occasionally. Due to the sporadic commu- f—t 10

nication and low data rate, these applications put forwasd n ) o )
challenges for current LTE Random Access Channel (RACH)Y- 1+ sporadic communication scenario.
where the limited capacity and excessive control signas ar
not suitable for massive MTC. One approach for reducinr%

ignal head in physical | is to facilitat tivatgd ) . .
signa’ overnead In physical fayer i to faciiitate activey the number of M2M users increasing rapidly. But how to

data jointly detection. : ) - .
increase system capacity? One of the most efficient equipmen

In the sporadic transmission scenario, thiesensor nodes . Ve MIMO svst Massive MIMO i f th t
are inactive most of the time, as shown in Figl (1). Basdg assive system. Vlassive IS One ot tné mos

5G communication system,[1] and! [2] introduce a gener'&‘]port_am _technolpgy in 5G system design [2.]' such system
compressive multiple antenna random access and raised s&?#%.s'gmﬂ?rimly |mkprovaghe channetl gatﬁa(t:'ty ancij_enetrhgy
crucial challenges to physical layer for sporadic commanic® SICIe'rt]r?yl'vl © WOI(/III\I/InO- | represez; a l:pgra ml\g/IIZMe
tion. Inspired by the sparse user activity, many compressi@ with Massive can serve percent more .
sensing (CS)-based reliable joint detection both actiaityl devices Ina single cell. Unfortl_.lnately, many of the sparadi
data have been proposed in [3]-[7]. A random channel acc&s: munl_catlon have n_ot considered Iar_ge-scale ar_wtennas at
facilitated by Code Division Multiple Access (CDMA) hastd9regation node. In th'.s paper, we consider a massive MIMO
been showed ir [3]/]4], which jointly estimating activitypc W”T’tl.ef’s uplink trans(rj‘r_ussmn for grt:_:\nt—flre(:\h non—ortgfﬁon
data based on perfect channel information station (Cl3)t pjmultiple access sporadic communication. In the spora '

sequence based channel estimation has been showeéd i [5]- na}[rlol, we conilder tth ser?_scr)]r nodes comdnmn![c_?te W.'th d
however, the number of nonzero channel coefficients sho entral aggregation node which we assumed that It equippe

be known as prior due to the use of Orthogonal Matchin ith a very large number of antennas, all sensor nodes tiansm

Pursuit (OMP) algorithm[[5],[[6]. Based OFDM systems, th sm”all data pqckz_;lge occgsmnally. Our gpal Is to acmeve on
shot” communication 2], i.e., user detection, channehest
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On the other hand, as M2M providing ubiquitous com-
unication environment towards Internet of Things (loT),
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first and foremost step of “one shot” communication, a rédiabthe channel vector from theth node to the aggregation node
detection is crucial for system performance. Accordingimgk can be written as

use of the statistically uncorrelated of Massive MIMO chalnn P

information, we show in this paper that the accurate agtivit hy = L ngpa(gp) 2)
detection rate will go to 1 as antennas — oc. VP 1

whereP is the i.i.d paths from node to the aggregation node,

I. SYSTEM MODEL which related to geometric propagation environment ogly.
o is the kth channel’s attenuation, which is independent over
A. Transmission Setup path directiorp and assumed to satisfy,, ~ CN(0,1). a(6,,)

We consider a sporadic uplink transmission in TDD massiV@ the M x 1 steering vector which is given by
MIMO system, as shown in figure 1. In order to model
the activity of the sensor node, we assume that all sensor”
nodes have an identical active probability < 1 which is whered, € [~n/2,7/2] is a random angle of arrival (AOA).
independent of users and data, and the number of active ugass massive MIMO system with large arrays, recent research
obeys discrete Binomial distributioB(K, p,) which remain in channel measurement has shown that the channel character
the same in the coherence time. Of course, when the no@gks approximate the favorable propagation conditidriyfa
numberK increase large, the number of active users is quiigell [11], [12], which show that as long as there are enough

small. For an active nodg,, we assume that it transmits apaths in [2), all the channel vectors can be approximated by
symbol vectord,, € A" per frame, whered denotes the Gaussian model:

modulation alphabet. For an inactive nodg the symbol 12
vector modeled as zero. Consequently, the augmented aphab hy =R, “hwy, k=1,2,..., K, 4)

= d tes th dulated bol of both acti
fr?d iniéiyeor};odee? es Ihe modulated symbol of both aClVe 1 ere hy s ~ C(0,1)) andR,/* £ E{H,H/}. Under the

. . . most favorable propagation, the elements of channel vector
Different from conventional model in_[4][[5], we assume[h?t different users to the same antertna can be approxi-
Q

that the aggreganon node .equpe_d with a large numbermated by independent random variables with zero means. In
antennas\/ which communicates with' sensor nodes each : : .
the rest of this paper, we will hold the assumption of favégab

employs with single-antenna (assumiRg< M). Notice that .

sensor nodes with single-antenna is simple and inexpensﬁ)\;gpagatlon that

and can be easily extended to nodes with multiple antennasglh,, (i)] = 0

The received signal at the aggregation node is can be Writte%[hm( Yo (j)] = 026(i — §)(m — n),

(op) — [1 e*jQﬂ’% cos(6p) e*jQﬂw cos(Gp)]T (3)

) 1<m,n< M.
as (5)
Y -—HX+W @
[1l. AcTiviTY DETECTION

whereH € C"*X denotes the flat-fading channel matrix, |n this section, we consider the activity and channel infor-
W e CM*! is the noise matrix with i.i.d entries/(0,07,)c-  mation are jointly estimated. In conventional, channehesst
X = [x{,x],...,xg]" andx; € R**', k = 1,...,K i tion employs orthogonal training sequence, Le> K where
the transmitted symbol vector of theh node andL is the [ represents the length of pilot symbols. ASincreases, the
length of symbols. Here, we assume that each node encofigfing overhead is unaffordable. Furthermore, we cansid
the transmit symbol with a random Gaussian code, owing fQe grant-free communication where the cumbersome hand-
the good performance over Gaussian matrices in CS and #aking procedure is no longer applicable for 5G. As theystud
other transmission techniques can be seen as a specificfcasg ¢5], the communications from senor nodes to aggregation
random codingl[5], such as CDMA and SC-FDMA. Furthefode are always sporadic, i.e., sensor nodes transmitlsigna
more, we assume that the transmission is Synchronized. Occasiona”y_ By the theorem of Compressed Sensing’ the spa

In order to implement activity detection, channel estimati sity of sporadic communications can be leveraged to reduce
and data decoding in “one shot’ [2], we split the formulatién the overhead of nodes accessing (le< K) and a grant-
(@) into two separate section. First, for known pilot dicoy, free communication can be achieved. Note that the training
we detect the activity and estimate CIS. Then, after chanrglquences used for sensor nodes in a slot are not allocated by
estimation, complete data decoding. the aggregation node. However, the aggregation node knows

the codebook of training symbols.

. In the stage of activity detection, the received pilot signa
B. Massive MIMO Channel Model at aggregation node is

We assume the aggregation node employs the uniform linear _ H
array (ULA) with the antenna spacing at the aggregation Y, =HS" +W ©
node is half of signal wavelength (i.e.,d = %/\), which has taking a simply transposition of](6), we can get
been studied for MIMO channel estimation [11], [12], where I " H
the angle spread is limited in the virtual angular domairerh Y, =SH" +W @)



where WH ¢ CLXM s the noise matrix with i.i.d entries XxX2z-n=(SOS)ry, +e (12)
N(0,02)c and S = [s1,s2,...,sk] is the L x K training

B o . .
dictionary with L is the length of the pilot sequences. Notd/heren = vec(®u,,) is a L* x 1 vector. With the assumption

that L < K, the dictionary is underdetermined” = that the noise variance is knpwn,then the activity deteatin
[hi, ho,...,hy] is a K x M matrix, whereh,, is a sparse be reformulated ag(12) by finding the supportpf € (CKX_l. _
vector rn IS @D sparse vector with non-zero elements comprised in
W { R Les, the vectordiag(Ryr), whose non-zero elements are given by
" 0  elsewhere LM
and they share a common sparsith,,|[c = D, where oM & M Z[hffl]?, i € So (13)
D denotes the sparse level of the active nodfg, = m=1
{i1,12,...,ip} denotes the index of nonzeros. Consequently, Owing to the finite number of antenndd, an additive

Y containsM measurement vectors which share a commarise-like terme € CL*x1 arising which can be divided into
sparse support, this is a MMV problem in sparse reprewo partse = e; + e3 , the elements o&; andes are given
sentation, it has been well discussed and showed a gaedpectively

performance in[[13]+[15].

M
1 .
A. Activity Detection Model i > 8,8y i, 1<pg<L, 1<ij<K.
In the section of activity detection, our goal is to recovery 7y m=1

the sparse support & without estimate the underlying data, (14)
after detecting the active nodes correctly, channel estima
can be done with the least squares (LS) approach. 1 M

The activity detection is the first step of "one shot” com- KV Z Z WinlpWinle 1 <p,g< L. (15)

munication and it is crucial for system performance. To dvoi p7gm=1

data losing caused by fallacious classification, we comsitee They reflect the cross-correlation gf,, for finite number of
detection based on covariance matrix of the measurementifiennas. This noise-like term will goes to arbitrarily #ma
reduce the interference of noise, and the statistic cheniatits when the number of antenndag — oo.

of noise variance usually can be seen as a prior. Basedio approach the activity detection, we have convert the
on MMV model in [7), lety/l € C**',m = 1,...,M MMV model in (@) to SMV model in[IR) by recovering the
denote a set ofi/ antennas’ measurement vectors, &rfic  sparse vector,,,, whereS ® S is the efficient measurement

CH*%,m = 1,..., M are M unknown channel vectors with matrix with dimensionZ? x K, as we show shortly, the di-
the uniform sparsityD, we have mension gain in measurement matrix could efficiently imgrov
vH = ShH +wH, 1<m< M. ®) the system capacity of active nodes.

We focus on recover the support of sparse veetar, note
We are interested in the correlation matrix of receivethat there is a constraint for vectoy,;, to be non-negative,
signal, which is given by we consider the constrain; norm regularized quadratic

E(yHyn) = BE(Sh7h,,S") + BE(wHw,,) (9 Programming:

1
Denote the sample covariance matrix &g,, we can get a min <§|I(S ®8S)r —xM)2 4 )\|r||1>
simplified formulation as
y st. r>0 (16)
1
o, = i > ylym =SRuS" +®,,  (10) where) a regularization parameter. This problem, known as
m=1 LASSO [16], whose performance has been studied_in [17],

[18] including the sufficient conditions for exact sparsity
recovery and examined a variety of approaches proposed for
parameter estimation in LASSO.

whereRy,;, = ﬁz%zlhfihm. With M — oo, exploiting
(5), we can get thaR,; goes to a diagonal matrix with
ree 7 0 corresponding an active node ang, = 0 if the
kth node is inactive, so the activity detection fully deter-

n;ine(?wby the nonzero position of the matd,. ®,., = B. Theoretical Results
37 2um=1WmWm IS @ matrix obeys the Wishart distribution In this section, we will give some theoretical results of

and can be written a&,,,, = 021, + N, whereo2 1, denotes

the mean of the noise covariance matrix @3ds a random

;’:rzlzl:cl)ev\\'/\ilt':]hjéefs mean and variangh/M, soN converge |s:]]2 = 1. Notice that this assumption has no impact on the
o0 recovering performance. The mutual coherence of mé&trix

tio;)s(;?ijltqh)e &;Oﬁgcg of Khatri-Rao product, upon vectonzaﬂsy which is defined as:

N H.
z = vee(®y,) = (SO S)rp, +n+e (11) Hs = I?;ELJX 5785 (7)

training code design and activity detection. For ease od-not
tion, we assume the columns of training diction&yo have



Let us,  indicates the mutual coherence®H S, combine  Theorem 1: The probability of successful recovery of sparse
the property of Kronecker products that ©b;) (a;®@b;) = support by solving the LASSO, denotesRys satisfies:
(afa;) (bHb;), we can obtain
P, > P(E1NE2)

H ~ e, NH (. A — (1eH . )2
|[sxcrli’ sl = [(si ®s:)" (s; @))| = (Is"s;])” (18) _ 73(||e||2 ol — 28D oy el +A )
. . 2 2 2 min 2 2
Hence the connection betweer, ,, and g can be written L+ pg — psD L+ pg —pgD
as: > 7)(”9”2 < Cl,O'zq[i]r:ﬂ > Cg)
2 2
HSxr = Ms (19) D L
> I[P > ) = > P(llelil = ) (25)
1=1

Based on mutual coherence of a matrix, many recovery ;5
performance in different situations have been studied-{19]
[21]. Follows from the study 0f[22], solving the sparse soggp Where

problem via miny sx—y ||x||1 yields a sufficient condition o1+ p = 22D o 2014 pu2) — 32D -
based on mutual coherence that QEAT e @ = > (26)
+ps — By (1+p3 — u2D)
1 1 20)

Sol < = (1+ — . . . o S S

[l 2( Ms) ( There is an important inequality in our derivation which is
Consequently, through the mutual covariance matrix aﬁgown n [2'5’]: ,
Khatri-Rao product, the coherence of measurement matrix-€Mma 1: Let each ofz; andy;,i = 1,...,k be uncorre-
from ps becomesy2, owing to the fact thaps < 1, the lated zero mean Gaussian random variables with variafice

) - . ' 2 i
capacity of system active nodéS,| has been raised. ando, respectively. Then
Further more, the support recovery condition[in] (20) susffer ) )
from the Welch bound [23], which is defined as: > t
= ! il >t < 2exp| —
P ( ;x Y P 200420504k +t)

Q (21)
1e = (K—-1)L° Notice from [I3), we know that |[e,];] <

, if Hel]i’ > (Y, then

1126 .00 M
If the maximum number of active nod&, | has determinant, — a7 Zi;ﬁj > m=1 ‘[hfi]i[hfi]j
we can easily calculate the lower bound for the needed length
of pilot sequence fron{ (19)_(20), and {21), which is given by

M
CiM
S |mEmk]] > W =

2K|So| - K
L> 2[5l K (22) i#j m=1
K +2|Sp| — 2
- - - h7); ) GiM 27
Note that there are many construction matrix nearly meeting Z | (i (B | > ISIZ .D([D—1) (27)
the Welch bound{21), such as the Gold/Gold-like codes, FZC io7#jo ’

codes, Kasami codes, etc. In sporadic communication systen‘\,\,herei0
via choosing a proper codec we can obtain the shortest len i
of pilot to ensure active nodes communication and meanwhile
improve the efficiency of data transmission in a coherencep(|[el]i| > Cl)

Jjo € 1,...,D,ig # jo,D = |So|. According to
), we can get that

time.
M
In the following analysis, we will show that the probability <P i1 ] | > M 28
of active node detection will great than— a3~ , which - (Z [t Ji (o | [S1I2, o D(D — 1)) (28)

m=1

increase overwhelming with the number of antenias
According to the study of [24]Theorem 7), if |S,| < %(1+ Under the assumption thdh/’];, and [h/]];, are uncor-

1 i fane* i i
M—z), the optimal solutionr* to the constrained LASSO is Lemma 1 to obtain

urslique and it satisfieSupp(r*) = Sy when the following

two conditions hold: M CiM
O AR )
el < \A-——5—"55=" (EventEl)  (23)
L4 pg — pgD < 2exp( M3 >
i 1+”e|2|2—+)\2D, (EventE2)  (24) a 20,0, (2%3\202 +1)

s — My < 2exp( - 0D ) (29)

Whereo—ﬁw] = min{crf[M],i € So}. 20maxTmax( 20 maxomax + £1)
We first state the probability of successful recovery of spar CiM (k)

by solving the LASSOL[24], which can be directly used in oulf"€€ {1 = [z Dro-1y+ max denotes thekth largest
derivation: element in the set o{crl-}ﬁ"ll.

related zero mean Gaussian random variables, we can use



Similarly, from {I3) and Lemma 1, we can say that of freedom. Observe

P(lleail = Co) Plp:>0)=1-P ( )
M
CoM CM
- 2exp< B Mt3 > >1- exp( CQM (1+ 2t)_M/2) (33)
2[ow]plowlq(2[owlplowlq +t2) min
Mt2 wheret > 0. This equation is based on Chernoff Bound
< 2exp ) ©) [©) @) and Moment-generating function of a Chi-Squared that ran-
[Uw]max[Uw]max(2[Uw]max[Uw]max'i‘ t2) : : ; i
(30) dom variable withM degrees of freedom is given byt —
2t)~M/2 ¢ < 1/2. Now define the functiors(t) £ exp( —
2‘EC)(l + 2t) we can write from[(33) that
wherety, = % [ow] (%), denotes thekth largest element 7mn

in the set of{[o,]i 12 ;. Plp.>C)>1~ (ﬁ(t))_M/2 (34)

Now, we assume that; + C> = ¢, notice that|fe:]; + we want to ensure thait > 0, such that3(t) > 1. Notice
[92)]i| < |[e(1|][i| ]+| |[92]|zt| ?”|d we ce;n gepgi[el]i EFH[QT]T‘ > thatif 3 £ exp( 2tc)(l +2t) > 1, we will get C' < 7(t),
a)y < P(ller]s] + |le2]s] > <). Besides, P(|[e1];] <
él)P(|[el]i| <01 < P(|[el]i|+|l[92]i| < C1 +Cs), then we wherey(t )_: %Iog(l +2t). We can easily find that(t) is
can obtain a decreasing function infor ¢ > 0. Using the limit theorem

of equivalent infinitesimal we can get that0) = o2;,. Given
that C < o2, then indeeddt, > 0 such thatC' < ~(to)
which in turn impliesB(ty) > 1. Hence, we conclude that

~—

P(leil > 7) =P(lleds + lealil > 7

S a ZZ 22> C) >1-p8"Mfor g =/B(ty) > 1.
<P(lleiil + lle2lil > L) hen frolm 3%), 2ve can say that

=P (|le1]s| + [fe2]i| > C1 + C2) 1o 1S0]
_1—P(|e1 i| + l[e2]i| < C1 + Cy) H7> o2M S ) >H (35)
<1 —'P(| e]i] < Cy) 'P(Hez]z| < C3)

=1—(1="P(llew)s| = C1)) (1 = P(l[e2]s| > C2))wheres?™ is defined in[(IB) and; > 1.

=P(|le1ls] = C1) + P(|[e2]i| > C2)— Theorem 2: The probability of successful recovery of sparse
P(l[els] = CP(|leali] = Ca) (31) Support by solving the LASSQ(1L6) is greater tHan oy~
B B with v > 1.

Proof: From [32) and[(35), we can rewrite the recovery
i L f 4 probability P, as
Define thatd, = T O and 9, = P Y Fs

20 maxTmax (2 maxTmax 11

t% combin an 0
ol 1512 (2750 1D 16 g with Qg) dZB )l I I 2[M] j :
\glé[ gW]emf\X[ W]maX(2[ W] [ W]max tz)) Ps > P(UZ > Co P( | > _)

1=1
[Sol
L2 > 2L2( -0 M +8752M _ 87(51+52)M)
S Pol > 2 He-
=1 |So|
<L2[P(llerhl = C1) + P(|lesli] > C2)— SRR D L e
73(|[e1]z| > 01)7)(|[82]Z| > CQ):| >1- Dﬁm|£1\{ _ 2L2( -0 M + 6—52M _ e—(61+52)]\4)
<212 (ef‘slM + e %M _ 67(51+62)M) (32) (36)
notice thats; > 0, o > 0. Definel < v < min(Bmin, €, %2),
then
Lemma 2: Let z;,7 = 1,..., M denote independent zero " o o s
mean Gaussian random variables with variange Assume Pe>1—Dy M 4Ly M 42126 0110)
0 < C < o2, then, there exist3 > 1 such that >1— (D +4L*)y M (37)

1 M -M
P(W Dima > C) =1- ﬁ Note that when the aggregation node with large antenna
Proof 2: Denotep, £ 7 1.2, o7, ThenP(pm >C) = arrays (i.e.,M — o), the recover probability goes to 1

7’(21 (x> CM) P(ZZ L 22 %‘1) where z;  with sparsity level restricted upt§(1+ ) this will greatly
denote i.i.d zero mean standard normal variables. Therefanproves the performance of present sporadlc communitatio
ZM z? is a Chi-Squared random variable wifii degrees which have not been considered in massive MIMO system.

zlz



IV. CHANNEL ESTIMATION AND DATA DECODING VIALS H, the|Sy| non-zero columns were randomly selected in each

After estimating the activity correctly, aggregation nodé ~ trial- For training matrixS, we use a length-20 random code
get a newl x K, matrix S, which containsk, active nodes for each pilot symbol. Since that the length of pilot seqeenc
training sequences occupation in current slot. Dedfitas a IS 1€ss to the number of usefs, the training matrix is non-

new M x K, matrix which contains the support vectors 0n|y(.)rthogonal. The probability estimates are computed by 1000
Then we can rewrite tha/ x L received signal as Monte Carlo Runs and a successful detection is defined as

n recovering the entire true support.
Y,=HS +W (38)

To simplify system design, we implement channel estima-

o ==t by L 4 T
tion H combining with received pilot signa¥,, and known ] ﬁ\e\“\e\‘
training matrixS according to Least Squares(LS) approach So.8}[--BOMP ]
N ~ A © MSBL 3
A-v,58 =v,§(8"8)™" (39) £ |-<tasso |'v
5106 MFOCUSS| '3 7
After channel estimation, the transmit data can be decoded > AN
through received signal at aggregation node. The received K04r §
signal matrix can be written as 2 N
. Ro.2f LN -
Y, =HD+W (40) S
n s
whereD = [d;,ds,...,dy] is a K, x N matrix comprises 00—y 6 8 % 5
N modulation symbols of<, active sensor nodes. Also, the Number of Active User

symbol vector for an inactive node; is modeled as zeros

. Fig. 2. Percentage of successful active user detection,fasction of |So|.
rather than modulation symbols over one slot. _ Here L=20, M=128, SNR=0.
For known channeH, a LS approach for data decoding can

be obtained from[(40)

D =AY, = 87 (#AY) 'Y, (41) 1
V. SIMULATION RESULTS Sos8l[-+-BomP ]
In the simulations we considet = 64 users, all the users 8 || Mest
are synchronized to the aggregation synchronization kigna Sosf MFOCUSS 3
Here we suppose the coefficients of each row in mdtiare ‘§ e
independent random variables with zero means as described  Zoaf ]
in SectionII-B. We consider a random Gaussian code which 2 ’/'
is normalized for pilot symbols. go2r ¢ T
& el

A. Performance of Activity Detection T A 5 10

As described in Sectidnlll, firstly, we should complete ac- SNR (d8)

tivity detection according td_(16) using training dictiopaWe Fig. 3. Percentage of successful active user detection fasction of SNR.
compare the activity detection performance of our covaganHere L=20, M=128 |5, |=10.
matrix method with three traditional MMV algorithms:

1) MSBL [14]: An extension of Sparse Bayesian Learning
(SBL) for the SMV model to the MMV model. For a
fairly comparison, we set the true noise variance as the
noise variance parameter value and freeze it.

2) BOMP [26]: As mentioned at_[15], the MMV model
can be transformed to a block SMV model. By letting
y = vec(Y,) € CIM*1 T =S ® 1), h = vec(H) €
CEMX1 w = vec(W), we can transform the MMV
model to block SMV modely = Th + w, which can
be solved by block-OMP (BOMP).

3) MFOCUSS [[27]: The regularized M-FOCUSS is de-
veloped for noisy data. We set the p-norm to 0.8 as . : . , ; |
Suggested by the authors. 100 200 300 400 500 600 700

. .. . Number of Antennas
In comparison to the activity detection error rates of these

different approaches, we investigate a system with the ®umipig. 4. Percentage of successful active user detection, fancion of M.
of antennaM = 128 at aggregation node. For channel matrixiere L=20,|50/=10, SNR=0.

1/ A4 —0— A4 A4

0.8} [- e -BOMP .

MSBL
—e—LASSO
06 MFOCUSS 7

0.2 -

»——"‘"—--.-----'-.'__.'---‘--_-

Successful Activity Detection Rate




In Fig.[d, We plot the activity detection performance as a
function of active users$Sy|. The results show that for less
than 4 active users, all the algorithms mentioned above have
an almost perfect detection rate, but as the number of active
users increase over 6, only the LASSO based on covariance
matrix method remain a high detection rate. Consider theesam
experimental setup as before and fixéd| = 10, assume an
active user transmits with an average energy per symbol of
Es = 1, then the signal to noise ratio (SNR) igo2,, Fig.[3
shows the activity detection rate as a function of SNR frofh -1
dB to 10 dB. It can be seen that there is a distinct advantage of
LASSO at low SNR, at almost 0dB, LASSO based covariance 2 4 6 8 10 12
matrix has reached a very high detection rate. In Eig. 4, we Number of Active user
plot the detection rate as a function of the antennas nUMBEY 7 channel estimation error, as a function|§§|. Here L=20, M=500,
M with |Sp| = 10. The observation is that given this level ofsNR=10.
sparsity and the particular noise, the detection rate of MSB
and LASSO increase asd/ becomes large, but MFOCUSS
and BOMP are almost incapable of recovering the entire true
active users at all values af/. Owing to this LASSO method
based on covariance matrix, there are a perfect detectten ra
as the number of antennas equipped at BS becomes large. It
demonstrates that this method is very satisfied with the irass
MIMO system.

MSE

102 LS_PAI .
0 i LASSO LS|3 10 i i i i
e meBL LS | ~10 5 0 5 10
: SNR (dB)

Fig. 8. Channel estimation error, as a function of SNR. Her2Q, M=500,
|So|=6.

of N = 40 transmit-symbols, the symbols are also encoded
by random coding. Due to the data decoding is the second
stage of “one shot” communication, the performance of SER
is the result of missed detection and channel estimatiam.err
In order to study the contribution of the channel and agtivit
estimation error, we measured the SER for perfect activity a
channel information (PACI) through LS and perfect activity
information (PAI) through LS for channel estimation andadat
decoding, which are compared with the activity detection
based LASSO and MSBL. The simulation results indicate
that the performance of SER with and without PAI doesn’t
has significant differences in low activity and high SNR,hwit
the increase of noise and active users, LASSO based activity
detection shows certain advantages. We can also obseive tha
there is a large gap between PACI and other cases in SER.
This is mainly due to the LS based channel estimation with
non-orthogonal training matrix suffers significantly, doet
10*72”” : :1 : é é 1'o : ”12 performance of SER is mainly limited by channel estimation.
Nunmber of Active User In Figs.[T and Figsl]8, we plot the Mean Squared Error to
explore the performance of channel estimation based LS:

Fig. 6. Symbol error as a function dfSo|. Here L=20, T=40,M=500,
SNR=10.

-10 -5 0 5 10 15

A2
i i i Mmse=Y" e = B 42
In Fig. [ and Fig[b, we simulated the average Symbol = (42)

2
Error Rate (SER) over the augmented alphalbdor a length kag|[Sol Hh’“’”2



VI. CONCLUSION

[20]

In this paper, we have proposed a massive MIMO wireless
uplink transmission based grant-free non-orthogonalipialt [21]
access for 5G. Numerical results show that our proposed mode
achieves a significant performance improvement through gx
ploiting statistical information about the unknown massiv
MIMO channel information.
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