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Large-Scale Antenna-Assisted Grant-Free
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Abstract—Support massive connectivity is an important re-
quirement in 5G wireless communication system. For massive
Machine Type Communication (MTC) scenario, since the net-
work is expected to accommodate a massive number of MTC
devices with sparse short message, the multiple access scheme
like current LTE uplink would not be suitable. In order to
reduce the signaling overhead, we consider an grant-free multiple
access system, which requires the receiver facilitate activity
detection, channel estimation, and data decoding in “one shot”
and without the knowledge of active user’s pilots. However,most
of the “one shot” communication research haven’t considered
the massive MIMO scenario. In this work we propose a Multiple
Measurement Vector (MMV) model based Massive MIMO and
exploit the covariance matrix of the measurements to confirma
high activity detection rate.

Index Terms—5G, MTC, grant-free, Massive MIMO.

I. I NTRODUCTION

Machine-to-Machine (M2M) is an emerging paradigm for
future communication systems. The machine type devices
including smart grids, computers, FPGAs, etc, which transmit
small data packets occasionally. Due to the sporadic commu-
nication and low data rate, these applications put forward new
challenges for current LTE Random Access Channel (RACH),
where the limited capacity and excessive control signals are
not suitable for massive MTC. One approach for reducing
signal overhead in physical layer is to facilitate activityand
data jointly detection.

In the sporadic transmission scenario, theK sensor nodes
are inactive most of the time, as shown in Fig. (1). Based
5G communication system, [1] and [2] introduce a general
compressive multiple antenna random access and raised some
crucial challenges to physical layer for sporadic communica-
tion. Inspired by the sparse user activity, many compressive
sensing (CS)-based reliable joint detection both activityand
data have been proposed in [3]–[7]. A random channel access
facilitated by Code Division Multiple Access (CDMA) has
been showed in [3], [4], which jointly estimating activity and
data based on perfect channel information station (CIS). Pilot
sequence based channel estimation has been showed in [5]–[7],
however, the number of nonzero channel coefficients should
be known as prior due to the use of Orthogonal Matching
Pursuit (OMP) algorithm [5], [6]. Based OFDM systems, the
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base station (BS) with a grant-free transmission procedurehas
been showed in [8], [9], which also exploit CS for activity
detection. Notice that almost all of these methods formulated
the detection model as a Single Measurement Vector (SMV)
problem which has a poor performance in low SNR. However,
in this paper, we making use of the covariance matrix of
the measurments, instead of the measurements themselves to
achieve a high activity detection rate.

 node

Fig. 1. sporadic communication scenario.

On the other hand, as M2M providing ubiquitous com-
munication environment towards Internet of Things (IoT),
the number of M2M users increasing rapidly. But how to
increase system capacity? One of the most efficient equipment
is massive MIMO system. Massive MIMO is one of the most
important technology in 5G system design [2], such system
can significantly improve the channel capacity and energy
efficiency. The work in [10] represented that upgrading the
BS with Massive MIMO can serve 40 percent more M2M
devices in a single cell. Unfortunately, many of the sporadic
communication have not considered large-scale antennas at
aggregation node. In this paper, we consider a massive MIMO
wireless uplink transmission for grant-free non-orthogonal
multiple access sporadic communication. In the sporadic traffic
scenario, we consider theK sensor nodes communicate with
a central aggregation node which we assumed that it equipped
with a very large number of antennas, all sensor nodes transmit
a small data package occasionally. Our goal is to achieve “one
shot” communication [2], i.e., user detection, channel estima-
tion and data detection completed in one time slot. Without any
handshaking processing, we will use the sparsity of the active
user and non-orthogonal training sequence to avoid excessive
signaling overhead. Furthermore, the activity detection is the
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first and foremost step of “one shot” communication, a reliable
detection is crucial for system performance. According making
use of the statistically uncorrelated of Massive MIMO channel
information, we show in this paper that the accurate activity
detection rate will go to 1 as antennasM → ∞.

II. SYSTEM MODEL

A. Transmission Setup

We consider a sporadic uplink transmission in TDD massive
MIMO system, as shown in figure 1. In order to model
the activity of the sensor node, we assume that all sensor
nodes have an identical active probabilitypa ≪ 1 which is
independent of users and data, and the number of active users
obeys discrete Binomial distributionB(K, pa) which remain
the same in the coherence time. Of course, when the nodes
numberK increase large, the number of active users is quite
small. For an active nodeka, we assume that it transmits a
symbol vectordka ∈ AN per frame, whereA denotes the
modulation alphabet. For an inactive nodeki, the symbol
vector modeled as zero. Consequently, the augmented alphabet
A0 := {A ∪ 0} denotes the modulated symbol of both active
and inactive nodes.

Different from conventional model in [4], [5], we assume
that the aggregation node equipped with a large number of
antennasM which communicates withK sensor nodes each
employs with single-antenna (assumingK ≪ M ). Notice that
sensor nodes with single-antenna is simple and inexpensive
and can be easily extended to nodes with multiple antennas.
The received signal at the aggregation node is can be written
as

Y = HX+W (1)

whereH ∈ CM×K denotes the flat-fading channel matrix,
W ∈ CM×L is the noise matrix with i.i.d entriesN (0, σ2

w)C.
X = [xT

1 ,x
T
2 , . . . ,x

T
K ]T and xk ∈ R

L×1, k = 1, . . . ,K is
the transmitted symbol vector of thekth node andL is the
length of symbols. Here, we assume that each node encodes
the transmit symbol with a random Gaussian code, owing to
the good performance over Gaussian matrices in CS and the
other transmission techniques can be seen as a specific case of
random coding [5], such as CDMA and SC-FDMA. Further
more, we assume that the transmission is synchronized.

In order to implement activity detection, channel estimation
and data decoding in “one shot” [2], we split the formulationof
(1) into two separate section. First, for known pilot dictionary,
we detect the activity and estimate CIS. Then, after channel
estimation, complete data decoding.

B. Massive MIMO Channel Model

We assume the aggregation node employs the uniform linear
array (ULA) with the antenna spacingd at the aggregation
node is half of signal wavelengthλ (i.e., d = 1

2λ), which has
been studied for MIMO channel estimation [11], [12], where
the angle spread is limited in the virtual angular domain. Then

the channel vector from thekth node to the aggregation node
can be written as

hk =
1√
P

P
∑

p=1

gkpa(θp) (2)

whereP is the i.i.d paths from nodek to the aggregation node,
which related to geometric propagation environment only.gkp
is the kth channel’s attenuation, which is independent over
path directionp and assumed to satisfygkp ∼ CN (0, 1). a(θp)
is theM × 1 steering vector which is given by

a(θp) = [1 e−j2πD
λ

cos(θp) . . . e−j2π (M−1)D
λ

cos(θp)]T (3)

whereθp ∈ [−π/2, π/2] is a random angle of arrival (AOA).
For massive MIMO system with large arrays, recent research
in channel measurement has shown that the channel character-
istics approximate the favorable propagation condition fairly
well [11], [12], which show that as long as there are enough
paths in (2), all the channel vectors can be approximated by
Gaussian model:

hk = R
1/2
k hWk, k = 1, 2, . . . ,K, (4)

wherehWk ∼ C(0, IM ) andR
1/2
k , E{HkH

H
k }. Under the

most favorable propagation, the elements of channel vector
that different users to the same antennahm can be approxi-
mated by independent random variables with zero means. In
the rest of this paper, we will hold the assumption of favorable
propagation that

E[hm(i)] = 0

E[hm(i)hn(j)] = σ2
i δ(i − j)(m− n), 1 < m,n ≤ M.

(5)

III. A CTIVITY DETECTION

In this section, we consider the activity and channel infor-
mation are jointly estimated. In conventional, channel estima-
tion employs orthogonal training sequence, i.e.L ≥ K where
L represents the length of pilot symbols. AsK increases, the
training overhead is unaffordable. Furthermore, we consider
the grant-free communication where the cumbersome hand-
shaking procedure is no longer applicable for 5G. As the study
in [5], the communications from senor nodes to aggregation
node are always sporadic, i.e., sensor nodes transmit signals
occasionally. By the theorem of compressed sensing, the spar-
sity of sporadic communications can be leveraged to reduce
the overhead of nodes accessing (i.e.L < K) and a grant-
free communication can be achieved. Note that the training
sequences used for sensor nodes in a slot are not allocated by
the aggregation node. However, the aggregation node knows
the codebook of training symbols.

In the stage of activity detection, the received pilot signal
at aggregation node is

Yp = HSH +W (6)

taking a simply transposition of (6), we can get

YH
p = SHH +WH (7)
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whereWH ∈ CL×M is the noise matrix with i.i.d entries
N (0, σ2

w)C and S = [s1, s2, . . . , sK ] is the L × K training
dictionary withL is the length of the pilot sequences. Note
that L < K, the dictionary is underdetermined.HH =
[h1,h2, . . . ,hM ] is a K × M matrix, wherehm is a sparse
vector

hm =

{

h
(k)
m k ∈ S0

0 elsewhere

and they share a common sparsity‖hm‖0 = D, where
D denotes the sparse level of the active nodes,S0 =
{i1, i2, . . . , iD} denotes the index of nonzeros. Consequently,
YH containsM measurement vectors which share a common
sparse support, this is a MMV problem in sparse repre-
sentation, it has been well discussed and showed a good
performance in [13]–[15].

A. Activity Detection Model

In the section of activity detection, our goal is to recovery
the sparse support ofH without estimate the underlying data,
after detecting the active nodes correctly, channel estimation
can be done with the least squares (LS) approach.

The activity detection is the first step of ”one shot” com-
munication and it is crucial for system performance. To avoid
data losing caused by fallacious classification, we consider the
detection based on covariance matrix of the measurement to
reduce the interference of noise, and the statistic characteristics
of noise variance usually can be seen as a prior. Based
on MMV model in (7), let yH

m ∈ C
L×1,m = 1, . . . ,M

denote a set ofM antennas’ measurement vectors, andhH
m ∈

CK×1,m = 1, . . . ,M areM unknown channel vectors with
the uniform sparsityD, we have

yH
m = ShH

m +wH
m, 1 ≤ m ≤ M. (8)

We are interested in the correlation matrix of received
signal, which is given by

E(yH
mym) = E(ShH

mhmSH) + E(wH
mwm) (9)

Denote the sample covariance matrix asΦyy, we can get a
simplified formulation as

Φyy ,
1

M

M
∑

m=1

yH
mym = SRhhS

H +Φww (10)

whereRhh = 1
M

∑M
m=1 h

H
mhm. With M → ∞, exploiting

(5), we can get thatRhh goes to a diagonal matrix with
rkk 6= 0 corresponding an active node andrkk = 0 if the
kth node is inactive, so the activity detection fully deter-
mined by the nonzero position of the matrixRhh. Φww =
1
M

∑M
m=1 w

H
mwm is a matrix obeys the Wishart distribution

and can be written asΦww = σ2
wIL+N, whereσ2

wIL denotes
the mean of the noise covariance matrix andN is a random
variable with zeros mean and varianceσ4

w/M , soN converge
to zero withM → ∞.

Using the property of Khatri-Rao product, upon vectoriza-
tion of (10), we have

z , vec(Φyy) = (S⊙ S)rhh + n+ e (11)

x , z− n = (S⊙ S)rhh + e (12)

wheren = vec(Φww) is aL2×1 vector. With the assumption
that the noise variance is known, then the activity detection can
be reformulated as (12) by finding the support ofrhh ∈ CK×1.
rhh is aD sparse vector with non-zero elements comprised in
the vectordiag(Rhh), whose non-zero elements are given by

σ
2[M ]
i ,

1

M

M
∑

m=1

[hH
m]2i , i ∈ S0 (13)

Owing to the finite number of antennasM , an additive
noise-like terme ∈ CL2×1 arising which can be divided into
two partse = e1 + e2 , the elements ofe1 ande2 are given
respectively

1

M

∑

i6=j

M
∑

m=1

Sp,iSq,j [h
H
m]i[h

H
m]j , 1 ≤ p, q ≤ L, 1 ≤ i, j ≤ K.

(14)

1

M

∑

p6=q

M
∑

m=1

[wH
m]p[w

H
m]q, 1 ≤ p, q ≤ L. (15)

They reflect the cross-correlation ofym for finite number of
antennas. This noise-like term will goes to arbitrarily small
when the number of antennasM → ∞.

To approach the activity detection, we have convert the
MMV model in (7) to SMV model in (12) by recovering the
sparse vectorrhh, whereS ⊙ S is the efficient measurement
matrix with dimensionL2 × K, as we show shortly, the di-
mension gain in measurement matrix could efficiently improve
the system capacity of active nodes.

We focus on recover the support of sparse vectorrhh, note
that there is a constraint for vectorrhh to be non-negative,
we consider the constraintl1 norm regularized quadratic
programming:

min
r

(

1

2
‖(S⊙ S)r− x[M ]‖22 + λ‖r‖1

)

s.t. r ≥ 0 (16)

whereλ a regularization parameter. This problem, known as
LASSO [16], whose performance has been studied in [17],
[18] including the sufficient conditions for exact sparsity
recovery and examined a variety of approaches proposed for
parameter estimation in LASSO.

B. Theoretical Results

In this section, we will give some theoretical results of
training code design and activity detection. For ease of nota-
tion, we assume the columns of training dictionaryS to have
‖si‖2 = 1. Notice that this assumption has no impact on the
recovering performance. The mutual coherence of matrixS is
µS, which is defined as:

µS , max
i6=j

|sHi sj | (17)
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Let µSKR
indicates the mutual coherence ofS⊙S, combine

the property of Kronecker products that(ai⊗bi)
H(aj⊗bj) =

(

aHi aj
)(

bH
i bj

)

, we can obtain
∣

∣[sKR]
H
i [sKR]j

∣

∣ =
∣

∣(si ⊗ si)
H(sj ⊗ sj)

∣

∣ =
(

|sHi sj |
)2

(18)

Hence the connection betweenµSKR
andµS can be written

as:

µSKR
= µ2

S (19)

Based on mutual coherence of a matrix, many recovery
performance in different situations have been studied [19]–
[21]. Follows from the study of [22], solving the sparse support
problem via minx,Sx=y ‖x‖1 yields a sufficient condition
based on mutual coherence that

|S0| <
1

2

(

1 +
1

µS

)

(20)

Consequently, through the mutual covariance matrix and
Khatri-Rao product, the coherence of measurement matrix
from µS becomesµ2

S, owing to the fact thatµS < 1, the
capacity of system active nodes|S0| has been raised.

Further more, the support recovery condition in (20) suffers
from the Welch bound [23], which is defined as:

µS ≥
√

K − L

(K − 1)L
. (21)

If the maximum number of active node|S0| has determinant,
we can easily calculate the lower bound for the needed length
of pilot sequence from (19), (20), and (21), which is given by

L >
2K|S0| −K

K + 2|S0| − 2
(22)

Note that there are many construction matrix nearly meeting
the Welch bound (21), such as the Gold/Gold-like codes, FZC
codes, Kasami codes, etc. In sporadic communication system,
via choosing a proper codec we can obtain the shortest length
of pilot to ensure active nodes communication and meanwhile
improve the efficiency of data transmission in a coherence
time.

In the following analysis, we will show that the probability
of active node detection will great than1 − αβ−M , which
increase overwhelming with the number of antennasM .

According to the study of [24] (Theorem 7), if |S0| < 1
2

(

1+

1
µ2
S

)

, the optimal solutionr∗ to the constrained LASSO is

unique and it satisfiesSupp(r∗) = S0 when the following
two conditions hold:

‖e‖2 < λ
1 + µ2

S − 2µ2
SD

1 + µ2
S − µ2

SD
, (EventE1) (23)

σ
2[M ]
min >

‖e‖2 + λ

1 + µ2
S − µ2

SD
, (EventE2) (24)

whereσ2[M ]
min = min{σ2[M ]

i , i ∈ S0}.
We first state the probability of successful recovery of sparse

by solving the LASSO [24], which can be directly used in our
derivation:

Theorem 1: The probability of successful recovery of sparse
support by solving the LASSO, denotes asPs, satisfies:

Ps ≥ P (E1 ∩ E2)

= P
(

‖e‖2 < λ
1 + µ2

S − 2µ2
SD

1 + µ2
S − µ2

SD
, σ

2[M ]
min >

‖e‖2 + λ

1 + µ2
S − µ2

SD

)

≥ P
(

‖e‖2 < c1, σ
2[M ]
min > c2

)

≥
D
∏

i=1

P(σ
2[M ]
i > c2)−

L2
∑

i=1

P
(

|[e]i| ≥
c1
L

)

(25)

where

c1 , λ
1 + µ2

S − 2µ2
SD

1 + µ2
S − µ2

SD
, c2 , λ

2(1 + µ2
S)− 3µ2

SD
(

1 + µ2
S − µ2

SD
)2 (26)

There is an important inequality in our derivation which is
shown in [25]:

Lemma 1: Let each ofxi and yi, i = 1, . . . , k be uncorre-
lated zero mean Gaussian random variables with varianceσ2

x

andσ2
y respectively. Then

P
(

∣

∣

∣

∣

k
∑

i=1

xiyi

∣

∣

∣

∣

≥ t

)

≤ 2exp

(

− t2

2σxσy(2σxσyk + t)

)

Notice from (14), we know that
∣

∣[e1]i
∣

∣ ≤
‖S‖2

∞,∞

M

∑

i6=j

∑M
m=1

∣

∣

∣
[hH

m]i[h
H
m]j

∣

∣

∣
, if
∣

∣[e1]i
∣

∣ ≥ C1, then

∑

i6=j

M
∑

m=1

∣

∣[hH
m]i[h

H
m]j
∣

∣ ≥ C1M

‖S‖2∞,∞

=⇒

∑

i0 6=j0

∣

∣[hH
m]i0 [h

H
m]j0

∣

∣ >
C1M

‖S‖2∞,∞D(D − 1)
(27)

where i0, j0 ∈ 1, . . . , D, i0 6= j0, D = |S0|. According to
(27), we can get that

P
(

|[e1]i| ≥ C1

)

≤ P
(

M
∑

m=1

∣

∣[hH
m]i0 [h

H
m]j0

∣

∣ >
C1M

‖S‖2∞,∞D(D − 1)

)

(28)

Under the assumption that[hH
m]i0 and [hH

m]j0 are uncor-
related zero mean Gaussian random variables, we can use
Lemma 1 to obtain

P
(

M
∑

m=1

∣

∣

∣
[hH

m]i0 [h
H
m]j0

∣

∣

∣
>

C1M

‖S‖2∞,∞D(D − 1)

)

≤ 2exp

(

− Mt21
2σi0σj0 (2σi0σj0 + t)

)

≤ 2exp

(

− Mt21

2σ
(1)
maxσ

(2)
max(2σ

(1)
maxσ

(2)
max+ t1)

)

(29)

where t1 = C1M
‖S‖2

∞,∞D(D−1) , σ
(k)
max denotes thekth largest

element in the set of{σi}|S0|
i=1 .
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Similarly, from (15) and Lemma 1, we can say that

P
(

|[e2]i| ≥ C2

)

≤ P
(

M
∑

m=1

∣

∣[wH
m]p[w

H
m]q
∣

∣ >
C2M

L(L− 1)

)

≤ 2exp

(

− Mt22
2[σw]p[σw]q(2[σw]p[σw]q + t2)

)

≤ 2exp

(

− Mt22

2[σw]
(1)
max[σw]

(2)
max(2[σw]

(1)
max[σw]

(2)
max+ t2)

)

(30)

wheret2 = C2M
L(L−1) , [σw]

(k)
max denotes thekth largest element

in the set of{[σw]i}Li=1.

Now, we assume thatC1 + C2 = c1
L , notice that|[e1]i +

[e2]i| ≤ |[e1]i| + |[e2]i| and we can getP(
∣

∣[e1]i + [e2]i
∣

∣ ≥
c1
L ) ≤ P(|[e1]i| + |[e2]i| ≥ c1

L ). Besides,P(|[e1]i| ≤
C1)P(|[e1]i| ≤ C1) ≤ P(|[e1]i|+ |[e2]i| ≤ C1+C2), then we
can obtain

P
(

|ei| ≥
c1
L

)

=P
(

|[e1]i + [e2]i| ≥
c1
L

)

≤P
(

|[e1]i|+ |[e2]i| ≥
c1
L

)

=P
(

|[e1]i|+ |[e2]i| ≥ C1 + C2)

=1− P
(

|[e1]i|+ |[e2]i| < C1 + C2)

≤1− P
(

|[e1]i| < C1)P
(

|[e2]i| < C2)

=1−
(

1− P(|[e1]i| ≥ C1)
)(

1− P(|[e2]i| ≥ C2)
)

=P(|[e1]i| ≥ C1) + P(|[e2]i| ≥ C2)−
P(|[e1]i| ≥ C1)P(|[e2]i| ≥ C2) (31)

Define that δ1 ,

(

t21
2σ

(1)
maxσ

(2)
max(2σ

(1)
maxσ

(2)
max+t1)

)

and δ2 ,
(

t22
2[σw]

(1)
max[σw]

(2)
max(2[σw]

(1)
max[σw]

(2)
max+t2)

)

, combing with (29) and (30),
we get

L2
∑

i=1

P
(

|ei| ≥
c1
L

)

≤L2
[

P(|[e1]i| ≥ C1) + P(|[e2]i| ≥ C2)−

P(|[e1]i| ≥ C1)P(|[e2]i| ≥ C2)
]

≤2L2
(

e−δ1M + e−δ2M − e−(δ1+δ2)M
)

(32)

Lemma 2: Let xi, i = 1, . . . ,M denote independent zero
mean Gaussian random variables with varianceσ2

i . Assume
0 < C < σ2

min, then, there existβ > 1 such that
P
(

1
M

∑M
i=1 x

2
i > C

)

≥ 1− β−M .

Proof 2: Denotepx , 1
M

∑M
i=1 x

2
i . ThenP

(

px > C
)

=

P
(

∑M
i=1 x

2
i > CM

)

= P
(

∑M
i=1 z

2
i > CM

σ2
i

)

where zi
denote i.i.d zero mean standard normal variables. Therefore
∑M

i=1 z
2
i is a Chi-Squared random variable withM degrees

of freedom. Observe

P(px > C) = 1− P
(

M
∑

i=1

z2i ≤ CM

σ2
i

)

≥ 1− exp
( tCM

σ2
i

(1 + 2t)−M/2
)

≥ 1− exp
( tCM

σ2
min

(1 + 2t)−M/2
)

(33)

where t > 0. This equation is based on Chernoff Bound
and Moment-generating function of a Chi-Squared that ran-
dom variable withM degrees of freedom is given by(1 −
2t)−M/2, t < 1/2. Now define the functionβ(t) , exp

(

−
2tC
σ2

min

)

(1 + 2t) we can write from (33) that

P(px > C) ≥ 1−
(

β(t)
)−M/2

(34)

We want to ensure that∃t > 0, such thatβ(t) > 1. Notice
that if β , exp

(

− 2tC
σ2

min

)

(1 + 2t) > 1, we will get C < γ(t),

whereγ(t) , σ2
min
2t log(1 + 2t). We can easily find thatγ(t) is

a decreasing function int for t > 0. Using the limit theorem
of equivalent infinitesimal we can get thatγ(0) = σ2

min. Given
that C < σ2

min, then indeed∃t0 > 0 such thatC < γ(t0)
which in turn impliesβ(t0) > 1. Hence, we conclude that

P
(

1
M

∑M
i=1 x

2
i > C

)

≥ 1− β−M for β =
√

β(t0) > 1.
Then from (34), we can say that

|S0|
∏

i=1

P(σ
2[M ]
i > c2) ≥

|S0|
∏

i=1

(1 − β−M
i ) (35)

whereσ2[M ]
i is defined in (13) andβi > 1.

Theorem 2: The probability of successful recovery of sparse
support by solving the LASSO (16) is greater than1−αγ−M

with γ > 1.
Proof : From (32) and (35), we can rewrite the recovery

probabilityPs as

Ps ≥
D
∏

i=1

P
(

σ
2[M ]
i > c2

)

−
L2
∑

i=1

P
(

|[e]i| ≥
c1
M

)

≥
|S0|
∏

i=1

(1− β−M
i )− 2L2(e−δ1M + e−δ2M − e−(δ1+δ2)M )

≥ 1−
|S0|
∑

i=1

β−M
i − 2L2(e−δ1M + e−δ2M − e−(δ1+δ2)M )

≥ 1−Dβ−M
min − 2L2(e−δ1M + e−δ2M − e−(δ1+δ2)M )

(36)

notice thatδ1 > 0, δ2 > 0. Define1 < γ < min(βmin, e
δ1 , eδ2),

then

Ps ≥ 1−Dγ−M − 4L2γ−M + 2L2e−(δ1+δ2)M

≥ 1− (D + 4L2)γ−M (37)

Note that when the aggregation node with large antenna
arrays (i.e.,M → ∞), the recover probability goes to 1
with sparsity level restricted upto12

(

1+ 1
µ2
S

)

, this will greatly
improves the performance of present sporadic communication
which have not been considered in massive MIMO system.
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IV. CHANNEL ESTIMATION AND DATA DECODING VIA LS

After estimating the activity correctly, aggregation nodewill
get a newL×Ka matrix Ŝ, which containsKa active nodes
training sequences occupation in current slot. DenoteĤ as a
newM ×Ka matrix which contains the support vectors only.
Then we can rewrite theM × L received signal as

Yp = ĤŜ
H
+W (38)

To simplify system design, we implement channel estima-
tion Ĥ combining with received pilot signalYp and known
training matrixŜ according to Least Squares(LS) approach

Ĥ = YpŜ
† = YpŜ

(

ŜH Ŝ
)−1

(39)

After channel estimation, the transmit data can be decoded
through received signal at aggregation node. The received
signal matrix can be written as

Yd = ĤD+W (40)

whereD = [d1,d2, . . . ,dN ] is a Ka ×N matrix comprises
N modulation symbols ofKa active sensor nodes. Also, the
symbol vector for an inactive nodeki is modeled as zeros
rather than modulation symbols over one slot.

For known channel̂H, a LS approach for data decoding can
be obtained from (40)

D̂ = Ĥ†Yd = ĤH
(

ĤĤH
)−1

Yd. (41)

V. SIMULATION RESULTS

In the simulations we considerK = 64 users, all the users
are synchronized to the aggregation synchronization signal.
Here we suppose the coefficients of each row in matrixH are
independent random variables with zero means as described
in Section II-B. We consider a random Gaussian code which
is normalized for pilot symbols.

A. Performance of Activity Detection

As described in Section II, firstly, we should complete ac-
tivity detection according to (16) using training dictionary. We
compare the activity detection performance of our covariance
matrix method with three traditional MMV algorithms:

1) MSBL [14]: An extension of Sparse Bayesian Learning
(SBL) for the SMV model to the MMV model. For a
fairly comparison, we set the true noise variance as the
noise variance parameter value and freeze it.

2) BOMP [26]: As mentioned at [15], the MMV model
can be transformed to a block SMV model. By letting
y = vec(Yp) ∈ CLM×1, T = S⊗ IM , h = vec(H) ∈
CKM×1, w = vec(W), we can transform the MMV
model to block SMV model:y = Th+w, which can
be solved by block-OMP (BOMP).

3) MFOCUSS [27]: The regularized M-FOCUSS is de-
veloped for noisy data. We set the p-norm to 0.8 as
suggested by the authors.

In comparison to the activity detection error rates of these
different approaches, we investigate a system with the number
of antennasM = 128 at aggregation node. For channel matrix

H, the |S0| non-zero columns were randomly selected in each
trial. For training matrixS, we use a length-20 random code
for each pilot symbol. Since that the length of pilot sequence
is less to the number of usersK, the training matrix is non-
orthogonal. The probability estimates are computed by 1000
Monte Carlo Runs and a successful detection is defined as
recovering the entire true support.

Fig. 2. Percentage of successful active user detection, as afunction of |S0|.
Here L=20, M=128, SNR=0.

Fig. 3. Percentage of successful active user detection, as afunction of SNR.
Here L=20, M=128,|S0|=10.

Fig. 4. Percentage of successful active user detection, as afunction of M.
Here L=20,|S0|=10, SNR=0.
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In Fig. 2, We plot the activity detection performance as a
function of active users|S0|. The results show that for less
than 4 active users, all the algorithms mentioned above have
an almost perfect detection rate, but as the number of active
users increase over 6, only the LASSO based on covariance
matrix method remain a high detection rate. Consider the same
experimental setup as before and fixed|S0| = 10, assume an
active user transmits with an average energy per symbol of
ES = 1, then the signal to noise ratio (SNR) is1/σ2

w, Fig. 3
shows the activity detection rate as a function of SNR from -10
dB to 10 dB. It can be seen that there is a distinct advantage of
LASSO at low SNR, at almost 0dB, LASSO based covariance
matrix has reached a very high detection rate. In Fig. 4, we
plot the detection rate as a function of the antennas number
M with |S0| = 10. The observation is that given this level of
sparsity and the particular noise, the detection rate of MSBL
and LASSO increase asM becomes large, but MFOCUSS
and BOMP are almost incapable of recovering the entire true
active users at all values ofM . Owing to this LASSO method
based on covariance matrix, there are a perfect detection rate
as the number of antennas equipped at BS becomes large. It
demonstrates that this method is very satisfied with the massive
MIMO system.
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Fig. 5. Symbol error as a function of SNR. Here L=20, T=40,M=500, |S0|=6.
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Fig. 6. Symbol error as a function of|S0|. Here L=20, T=40,M=500,
SNR=10.

In Fig. 5 and Fig. 6, we simulated the average Symbol
Error Rate (SER) over the augmented alphabetA for a length

2 4 6 8 10 12

10
−1

10
0

Number of Active user

M
S

E

Fig. 7. Channel estimation error, as a function of|S0|. Here L=20, M=500,
SNR=10.
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10
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1

SNR (dB)

M
S

E

Fig. 8. Channel estimation error, as a function of SNR. Here L=20, M=500,
|S0|=6.

of N = 40 transmit-symbols, the symbols are also encoded
by random coding. Due to the data decoding is the second
stage of “one shot” communication, the performance of SER
is the result of missed detection and channel estimation error.
In order to study the contribution of the channel and activity
estimation error, we measured the SER for perfect activity and
channel information (PACI) through LS and perfect activity
information (PAI) through LS for channel estimation and data
decoding, which are compared with the activity detection
based LASSO and MSBL. The simulation results indicate
that the performance of SER with and without PAI doesn’t
has significant differences in low activity and high SNR, with
the increase of noise and active users, LASSO based activity
detection shows certain advantages. We can also observe that
there is a large gap between PACI and other cases in SER.
This is mainly due to the LS based channel estimation with
non-orthogonal training matrix suffers significantly, so the
performance of SER is mainly limited by channel estimation.
In Figs. 7 and Figs. 8, we plot the Mean Squared Error to
explore the performance of channel estimation based LS:

MSE =
∑

ka∈|S0|

∥

∥hka − ĥka

∥

∥

2

2
∥

∥hka

∥

∥

2

2

(42)
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VI. CONCLUSION

In this paper, we have proposed a massive MIMO wireless
uplink transmission based grant-free non-orthogonal multiple
access for 5G. Numerical results show that our proposed model
achieves a significant performance improvement through ex-
ploiting statistical information about the unknown massive
MIMO channel information.
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