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Abstract—Modern buildings encompass complex dynamics of
multiple electrical, mechanical, and control systems. One of the
biggest hurdles in applying conventional model-based optimiza-
tion and control methods to building energy management is
the huge cost and effort of capturing diverse and temporally
correlated dynamics. Here we propose an alternative approach
which is model-free and data-driven. By utilizing high volume of
data coming from advanced sensors, we train a deep Recurrent
Neural Networks (RNN) which could accurately represent the op-
eration’s temporal dynamics of building complexes. The trained
network is then directly fitted into a constrained optimization
problem with finite horizons. By reformulating the constrained
optimization as an unconstrained optimization problem, we use
iterative gradient descents method with momentum to find
optimal control inputs. Simulation results demonstrate proposed
method’s improved performances over model-based approach on
both building system modeling and control.

Index Terms—Building energy management, deep learning,
gradient algorithms, HVAC systems

I. INTRODUCTION

According to a recent United Nations Environment Pro-
gramme (UNEP) report, buildings are responsible for 40% of
the global energy consumption [1]. Consequently, managing
the energy consumption of buildings has significant econom-
ical, social, and environmental impacts, and has received
much attention from researchers. Many approaches have been
proposed to control building systems (e.g., commercial and
office buildings, data centers) for energy efficiency, such as
nonlinear adaptive control, Model Predictive Control (MPC)
and decentralized control for building heating, ventilation,
and air conditioning (HVAC) systems [2], [3], [4]. However,
most previous research on building energy management are
either based on the detailed physics model of buildings [5] or
simplified RC circuit models [2], [3], [6]. The former often
involves tedious and complex modeling processes with a huge
number of variables and parameters, whereas the latter cannot
fully capture the long term dynamics of large commercial
buildings.

With the advance of sensing, communication and com-
puting, detailed operation data are being collected for many
buildings. These data along with future weather forecasts can
be utilized for data-driven real-time optimization approaches.
In [7], the authors developed a data predictive control method
to replace the traditional MPC controller by using data to
build a regression tree that represent the dynamical model
for a building. However, regression trees still results in a
linear model that can be far away from the true dynamics

of building systems. While in [8], [9], reinforcement learning
was proposed to learn control policies without any explicit
modeling assumptions, but computational costs for searching
through large state and action spaces is hight. Ill-defined
reward functions (e.g., sparse, noisy and delayed rewards)
could also prevent reinforcement learning algorithm finding
the optimal control solutions [10]. Furthermore, large com-
mercial buildings may have quality of service constraints that
prevent the deep exploration of some states in reinforcement
learning.
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Fig. 1. Our model architecture for building energy system modeling
and optimization based on a deep Recurrent Neural Networks (RNN).

In this work, we address these challenges by proposing
a data-driven method which closes the loop for accurate
predictive model and real-time control. The method is based
on deep recurrent neural networks that leverage rich volumes
of sensor data [11]. Though neural network has previously
been adopted as an approach for designing controllers, the lack
of large datasets and computation capabilities have prevented
it from being deployed in real-time applications [12]. Firstly
in a supervised learning manner, our Recurrent Neural Net-
works (RNN) firstly learns the complex temporal dynamics
mapping from various measurements of building operation
profiles to energy consumption. Next we formulate an op-
timization problem with the objective of minimizing build-
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ing energy consumption, which is subject to RNN-modeled
building dynamics as well as physical constraints over a finite
horizon of time. To solve the constrained optimization problem
in a block-splitting approach, we take iterative gradient descent
steps on the set of controllable inputs (e.g., zone temperature
setpoints, heat rejected/added into each zone) at the current
timestep. It thus finds the control inputs for each timestep.
Fig. 1 illustrates our model framework. Our approach does
not need analysis on complex interactions within conduction,
convection or radiation processes. In addition, it can be easily
scaled up to large buildings and distributed algorithms.

The main contributions of our paper are:
• We model the building energy dynamics using recurrent

neural networks, which leverages large volumes of data
to represent the complex dynamics of buildings.

• We propose an input/output optimization algorithm which
efficiently find the optimal control inputs for the model
represented by RNN.

• The proposed modeling and optimization approaches
open door to the integration of complex system dynamics
modeling and decision-making.

The contents of the paper are as follows. The rolling horizon
control problem formulation and model-based method are
firstly presented in Section. II. In Section. III we show the
design of a deep RNN which models the dynamics of complex
building systems. We then reformulate the control problem
as an unconstrained optimization problem, and propose the
algorithm to find optimal control inputs in Section. IV. Fi-
nally, simulation results on large building HVAC system are
evaluated and compared with model-based control method in
Section. V.

II. PROBLEM FORMULATION & PRELIMINARIES

A. Problem Formulation
We consider a building energy system which includes sev-

eral subsystems and zones with potentially complex interac-
tions between them. No information about the exact system
dynamics is known. At time t, we are provided with the
building’s running profile Xt := [Xuc

t ,X
c
t ,X

phy
t ]T , where

Xuc
t denotes a collection of uncontrollable measurements such

as zone temperature measurements, system node temperature
measurements, lighting schedule, in-room appliances schedule,
room occupancies and etc; and Xc

t denotes a collection of
controllable measurements such as zone temperature setpoints,
appliances working schedule and etc; Xphy

t denotes the set of
physical measurements or forecasts values, such as dry bulb
temperature, humidity and radiation volume. There are some
physical constraints on some of Xc

t and Xuc
t , for example

the temperature setpoints as well as real measurements should
not fall out of users’ comfort regions. Without loss of gen-
erality, we denote the constraints as Xc

t ≤ Xc
t ≤ X

c

t and
Xuc
t ≤ Xuc

t ≤ X
uc

t . Building System operators have a group
of past running profile X = {Xt} along with the collection
of energy consumption metering at each time step P = {Pt}.

We are interested in firstly learning a model
f(Xt−T , ...,Xt) = Pt, where f(·) denotes the predictive

model with known parameters representing building’s physical
dynamics. f(·) maps past T timestep’s running profile to
energy consumption at timestep t.

With a model f(·) representing the building dynamics, we
formulate an optimal finite-horizon predictive control prob-
lem, and propose an efficient algorithm to find the group of
optimal control inputs Xc∗

t . At timestep t, the control input
Xc
t minimizes the energy consumption of the building for

future T steps. Meanwhile, previous T steps’ control inputs
would affect current energy consumption. The objective of
the controller is to minimize the energy consumption with a
rolling horizon T , while maintaining some variables within
comfortable intervals. Mathematically, we formulate the gen-
eral control problem as

minimize
Xc
t ,...,X

c
t+T

T∑
τ=0

P 2
t+τ (1a)

subject to Pt+τ = f(Xt−T+τ , ...,Xt+τ ),∀τ (1b)

Xc
t+τ ≤ Xc

t+τ ≤ X
c

t+τ ,∀τ (1c)

Xuc
t+τ ≤ Xuc

t+τ ≤ X
uc

t+τ ,∀τ (1d)

Xuc
t+τ = h(Xt−T+τ , ...,Xt−1+τ ,X

c
t+τ ,X

phy
t+τ ),

∀τ
(1e)

where (1b) h(·) denotes the rolling horizon predictive model;
(1c) and (1d) are the constraints on controllable and uncontrol-
lable variables respectively; the h(·) in (1e) denotes a rolling
horizon predictive function for uncontrollable variables based
on past T steps’ observations as well as current step control
inputs and physical forecasts.

B. First-Order Thermal Dynamic Model

For building HVAC system, one popular method used in
finite-horizon MPC to model the thermal dynamics is the
reduced Resistance-Capacitance (RC) model [2], [3], [6]. Here
we use a rolling horizon MPC controller as a benchmark for
comparison.

Denote N (i) as the neighboring zones for zone i, the first-
order RC model modeling HVAC dynamics is formulated as

CiṪi,t =
To,t − Ti,t

Ri
+

∑
j∈N (i)

Tj,t − Ti,t
Rij

+ Pi,t (2)

where Ci, Ti are the thermal capacitance and room temperature
for each zone i, while To is the outside dry bulb temperature,
and Ri, Rij are the thermal resistance for zone i against the
outside and the neighboring zone j. The schematic of RC
network for modeling HVAC system is shown in Fig. 2.

Once we find Ci, Ri, Rij for all the zones, we have a 1st-
order system to model the thermal dynamics. Since Ti ∈
Xuc, To ∈ Xphy , by reformulating (2) and taking a sum of
Pi for all zones, we reformulate and write the building overall
thermal dynamics

Pt = fRC(Xt−T , ...,Xt) (3)
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Fig. 2. RC network with thermal exchange between different comp.

which is further used in the optimal control problem defined
in (1a)-(1e). MPC for building HVAC system under different
model settings has been implemented in [2], [3]. We focus
on the performance comparison of RC model to our proposed
method in both model fitting and optimization tasks.

III. RECURRENT NEURAL NETWORKS

Since the 1st-order thermal dynamic model defined in (2)
does not either capture complicated nonlinear dynamics, nor
model the long-term temporal dependencies of building HVAC
system, the deep RNN model becomes a good replacement.

RNN is a class of artificial neural networks specially de-
signed for sequential data modeling. Unlike fully-connected
neural networks where inputs are fed into the neural networks
as a full vector, RNN feeds input sequentially into a neural
network with directed connections. It uses its internal memory
to process time-series inputs. In Fig. 3 we show the structure
of an RNN model.

We specifically design the RNN model to solve a time-
dependent regression problem. That is to say, we want RNN
automatically learn the relationship between sequential input
xt, t = 0, , ..., T and output oT . At timestep t, RNN is
provided with hidden state vector ht and input vector xt,
and outputs its computation vector ôt. The t-step RNN cell
is composed of three group of neurons, θx,t, θh,t, θo,t. They
are associated with input, hidden state and output respectively,
and are organized in function fθx,t, θo,t , fθh,t,θx,t to complete
the following computations:

ôt = fθx,t,θo,t(xt, ht), (4a)
ht+1 = fθh,t,θx,t(xt, ht) (4b)

where ôt is the RNN’s prediction output, while ht+1 is
passed into next neuron group and takes part in t + 1 step’s
computation.

After concatenating all the neurons cells from 0 to T , we
get the chain function to compute ht. Thus the RNN compute
the final prediction value ôT :

ôT = fθx,T , θo,T (xT , hT ) (5)

Since ht captures information from past inputs xt−1, we
trace hidden states back into functions of previous steps’
hidden states and inputs. Thus final output ôT is eventually
a function of the sequential inputs xt, t = 0, ..., T . For
simplicity, let’s denote θ = {θh,t, θo,t, θx,t}, t = 0, ..., T

Fig. 3. A graphical model illustrating the RNN which is used for
modeling T -length input-output sequential data. θh,t, θo,t, θx,t are
the neural weights associated with hidden states ht+1, output ôt, and
input xt respectively.

to be the set of neurons used in modeling the T -length
temporal data, and wrap up all neural-composed functions of
{fθx,t,θo,t , fθh,t,θx,t} to get the overall function fRNN , which
utilizes θ to find the output predictions with length T time-
series input:

ôT = fRNN (x0, ..., xT ) (6)

We set up the RNN model and initialize neuron weights θ
by sampling from a normal distribution. During batch-training
process, with a group of sequential input xt, t = 0, ..., T ,
ôT is firstly computed, and by doing back-propagation using
stochastic gradient descent (SGD) with respect to all neu-
rons [13], θ is optimized to minimize the regression loss
defined in mean-square-error (MSE) form:

Ltraining(θ) = ||ôT − oT ||22, (7a)
θ∗ = argminLtraining(θ) (7b)

We then set up a length-T RNN accordingly for our
building dynamics modeling problem. With the training sets
of input vectors of historical building operating profiles
{Xt−T , ...,Xt} and an output energy consumption Pt, our
RNN model fRNN is trained to represent the system dynamics

P̂t = fRNN (Xt−T , ...,Xt) (8)

Our RNN is totally data-driven, and can process and repre-
sent temporal dependencies. With a rich volume of historical
building operating data X and P provided as the training
datasets, we train a deep RNN, which accurately models the
nonlinear, complex temporal dynamics of building system. We
will show in Section V that our deep RNN model outperforms
RC model in fitting the dynamics of a large-scale building
HVAC system.



IV. INPUTS OPTIMIZATION FOR BUILDING CONTROL

In this section we describe our control algorithm which is
based on our pre-trained deep learning model. We demonstrate
how it is able to incorporate (8) into the optimization problem
(1). We also illustrate how to solve such optimization problem
to find a collection of optimal control sequential inputs.

By substituting f(·) in (1) with fRNN , and denote Xvar
t =

[Xc
t ,X

uc
t ],the finite horizon control problem for building en-

ergy management is written as

minimize
Xc
t ,...,X

c
t+T

T∑
τ=0

P 2
t+τ (9a)

subject to Pt+τ = fRNN (Xt−T+τ , ...,Xt+τ ),∀τ (9b)

Xvar
t+τ ≤ Xvar

t+τ ≤ X
var

t+τ ,∀τ (9c)

Xuc
t+τ = h(Xt−T+τ , ...,Xt−1+τ ,X

c
t+τ ,X

phy
t+τ ),

∀τ
(9d)

Since Xuc
t+τ , τ = 1, ..., T is directly controlled by control in-

puts of previous time. For all the uncontrollable variables with
constraints we model, they also possess pairing controllable
variables, e.g., the temperature measurements-temperature set-
points. We then choose Xuc

t+τ = Xc
t−1+τ , τ = 1, ..., T , since

such uncontrollable values are the control outputs correspond-
ing to the previous step’s control inputs. Thus we diminish
constraint (9d).

Since the constrained optimization problem (9) includes a
non-convex deep neural network in the constraints, we use log
barriers functions to rewrite the problem in an unconstrained
form:

min
Xc
t ,...,X

c
t+T

Lopti(X
c
t , ...,X

c
t+T ) =

T∑
τ=0

f2RNN (Xt−T+τ , ...,Xt+τ )

− λ
T∑
τ=0

log(Xvar
t+τ −Xvar

t+τ )

− λ
T∑
τ=0

log(X
var

t+τ −Xvar
t+τ )

(10)

where λ is a tuning parameter, and Lopti(X
c
t , ...,X

c
t+T )

defines a loss function with inputs Xc
t , ...,X

c
t+T . We solve

this loss minimization problem by iteratively taking gradient
descents of (10). Note that during RNN model training, we
are taking gradients ∇θLtraining(θ) with respect to all the
neurons. Once training is done, Ltraining(θ) is converged.
The RNN model serves as the temporal physical model, and
is always modeling the building system dynamics accurately.
Here we are taking gradients with this fixed, pre-trained RNN
model, and find gradients ∇Xc

t+τ
Lopti(X

c
t , ...,X

c
t+T ), τ =

0, ..., T with respect to the group of controllable variables.
Once Lopti(X

c
t , ...,X

c
t+T ) is converged, and we find Xc∗

t

that is a local optimal solution. Xc∗

t is also the solution

of controllable inputs for the finite horizon optimal control
problem at timestep t.

The k-step gradient descent method is working as follows:

gt+τ,k = η∇Xct+τ,kLopti(X
c
t,k−1, ...,X

c
t+T,k−1) (11a)

Xc
t+τ,k = Xc

t+τ,k−1 − gt+τ,k, τ = 0, ..., T (11b)

where η is the learning rate, and Xc
t+τ,k denotes the value for

Xc
t+τ after k step’s update.
Throughout our modeling and optimization approach, we do

not make any physical model assumptions, and directly utilize
a deep RNN to extract the model dynamics as well as finding
the optimal actions to take at each time step to cut down energy
consumption. We summarize the proposed method in Algo-
rithm 1, which closes the loop for building dynamics modeling
and control inputs optimization. In our implementation, we
improve the algorithm performance by adding momentum to
gradient descents (MomentumGD), which is shown to get
over some local minima during optimization iterations as well
as accelerating the convergence [14]. The MomentumGD is
realized as follows:

gt+τ,k = γgt,k−1 + η∇Xct+τ,kLopti(X
c
t,k−1, ...,X

c
t+T,k−1)

(12a)
Xc
t+τ,k = Xc

t+τ,k−1 − gt+τ,k, τ = 0, ..., T (12b)

where γ is a momentum term determining how much previous
gradients are incorporated into current step’s update.

Algorithm 1 Input Optimization for Building Control
Input: Pre-trained RNN fRNN , learning rate η, momentum
γ, input optimization iterations Niter

Input: Control window-size T
Input: Sensor measurements Xuc

t , weather forecasts Xphy
t

Initialize: Xt, ...,Xt+T

Initialize: Optimal control inputs X∗t ← ∅
for iteration= 0, ..., Niter do

Update Xc
t using gradient descent:

for τ = 0, ..., T do
gt+τ ← ∇Xc

t+τ
Lopti(X

c
t , ...,X

c
t+T )

Xc
t+τ ← Xc

t+τ − η ·MomentumGD(Xc
t+τ , gt+τ , γ)

end for
Update Xuc

t using gradient descent:
for τ = 0, ..., T do
Xuc
t+τ = Xc

t+τ−1
end for

end for
X∗t .insert(Xc

t )

V. CASE STUDY

In this section, we set up a realistic model in standard
building simulation software EnergyPlus [15]. We demonstrate
the effectiveness of our data-driven approach for both system
dynamics modeling and building energy management. In order



to compare with the model-based approach, we focus on the
HVAC system for a large building complex. But our method
is a general regression and optimization approach, which
could be easily applied to overall building energy management
problem.

A. Experimental Setup

We set up our EnergyPlus simulations using a 12-storey
large office building (in Fig. 4) listed in the commercial
reference buildings from U.S. Department of Energy (DoE
CRB) [16]. The building has a total floor area of 498, 584
square feet which is divided into 16 separate zones. We
simulate the building running through the year of 2004 in
Seattle, WA, and record (Xt, Pt) with a resolution of 10
minutes. We shuffle and separate 2 months’ data as our
stand-alone testing dataset for both regression and control
performance evaluation, while the remaining 10 months’ data
is used to for RNN training. The processed datasets have 55
input features, which include controllable variables such as
zone temperature setpoints, and uncontrollable variables such
as zone occupancies and temperature measurements. Output
is a single feature for energy consumption at each timestep.
We directly use historical weather data records into both RC
model and RNN model. For future work, the forecasts model
should also be considered into the pipeline. A finite horizon
of 4 hours is set for both MPC method and proposed method.

We set up our deep learning model using Tensorflow, a
Python open-source package. Our RNN model is composed of
1 recurrent layer with 3 subsequent fully-connected layers. We
adopt rectified linear unit (ReLU) activation functions, dropout
layers and Stochastic Gradient Descent (SGD) optimizer to
improve our neural network training.

Fig. 4. Schematic diagram of simulated large commercial building.

B. Simulation Results

We first compare the model fitting performance for 1st order
model and RNN model, and the fitting result for two weeks’
energy consumption is shown in Fig. 5. To quantitatively
compare the model fitting error, we calculate the Root-Mean-
Square-Error (RMSE) value for normalized energy consump-
tion on test dataset. RMSE for the first-order RC model
is 0.240. The RNN model improves RC model by 68.33%
with an RMSE of 0.076. It is also interesting to notice that
this large office building actually has an energy consumption
dropdown on weekdays’ noon due to the occupancy schedule.
RC model fails to capture this dynamic characteristics, while

RNN model is able to fit noon values given past 4 hours’
input measurements. Moreover, RC model performs poorly on
weekend regression task, which hardly represents the HVAC
dynamics. This inaccurate model would make subsequent
MPC algorithm fail to operate on correct model space.

0

1

2

3

4

5

6

7

8

9 × 108

0 1471 2 3 4 5 6 8 9 10 11 12 13
Days

En
er

gy
 C

on
su

m
pt

io
n 

[J
]

Measurements RC RNN

Fig. 5. Comparison of building’s real energy consumption measure-
ments(real), Recurrent Neural Networks’ predicted energy consump-
tion (blue) and RC model prediction (green) on a week of testing
data.

Next we show the constrained optimization problem for-
mulated in (10) is efficient in finding optimal inputs Xc

t for
the HVAC system. In Fig. 6 we show a group of 3 plots cor-
responding to different zone temperature setpoint constraints.
We keep setpoint constraints the same for all the 16 zones.
Compare the results of Xc

t ∈[18°C,26°C] and the results of
Xc
t ∈[19°C,24°C], we observe that our approach is able to

find sharper control inputs with less energy consumption when
constraint intervals are bigger. When there is no constraint
on temperature, our approach simply finds extreme control
inputs such that the energy consumption is nearly same as the
midnight consumption.

We then compare the optimization performance for RC
model and RNN model. Fig. 7 illustrates a Monday-Friday
energy consumption profile with temperature setpoint con-
straints Xc

t ∈[18°C,26°C]. By using RNN model and taking
the gradient steps, we find a sequence of control inputs that
could reduce 30.74% of energy consumption. On the other
hand, the solution found by RC model only gives us a 4.07%
reduction of energy consumption. This furthur illustrates that
RC model is not good at modeling large-scale building system
dynamics.

Fig. 8 demonstrates how our proposed approach is able to
find a group of control inputs for the building system globally.
All of four zones’ setpoint schedule exhibit daily patterns.
Yet they are set to different values and evolution patterns.
These setpoint schedule can provide to building operators, and
it remains to be examined in real buildings if such optimized
schedules could benefit the complex system as a whole.
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VI. CONCLUSION

In this work, we are exploiting Recurrent Neural Networks’
ability of learning complex temporal interactions among high-
dimensional building dynamics. Our proposed method consists
Recurrent Neural Networks regression and sequence opti-
mization steps, which could both be solved efficiently. Our
proposed approach is easily to be deployed for any building
unit provided with rich historical running data. Simulation
results show that our method outperforms existing ones both
in capturing the thermal dynamics of the building as well as
providing effective control solutions.
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