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Abstract—In recent years, there has been a growing interest
in using networks of Unmanned Aerial Vehicles (UAV) that
collectively perform complex tasks for diverse applications. An
important challenge in realizing UAV networks is the need for
a communication platform that accommodates rapid network
topology changes. For instance, a timely prediction of network
topology changes can reduce communication link loss rate by
setting up links with prolonged connectivity.

In this work, we develop an optimal tracking policy for
each UAV to perceive its surrounding network configuration in
order to facilitate more efficient communication protocols. More
specifically, we develop an algorithm based on particle swarm
optimization and Kalman filtering with intermittent observations
to find a set of optimal tracking policies for each UAV under time-
varying channel qualities and constrained tracking resources
such that the overall network estimation error is minimized.

Index Terms—Framing policy, cross-layer optimization, chan-
nel adaptation, delay analysis, queuing systems.

I. INTRODUCTION:
Utilizing a swarm of autonomous UAVs to perform com-

plicated tasks in military and commercial applications has
recently gained a lot of momentum and is expected to continue
growing in the coming years [1]. For instance, the U.S.
Navy has recently launched a prototype for the LOw-Cost
Unmanned aerial vehicle Swarming Technology (LOCUST)
project that implements the required technology for UAV
swarm attacks [2].The UAV market value was estimated to
be USD 13.22 Billion in 2016 and is projected to reach USD
28.27 Billion by 2022 [3].

Swarms of fast-flying UAVs form dynamic networks with
rapidly changing topologies, where conventional communica-
tion protocols that make decisions at different layers solely
based on current network configuration and ignore topology
evolution often perform poorly [4], [5]. For instance, a con-
ventional relay selection algorithm, which selects intermediate
relay nodes merely based on the current system configuration
falls behind the abrupt topology changes and hence fails in
providing prolonged network connectivity for member UAVs
[6]. As such, developing algorithms that enable the UAVs to
effectively predict their surrounding nodes’ motion trajectories
can significantly improve the performance of topology-aware
communication and control algorithms.

An example for the utility of predicting network topology
in optimizing communication protocols is illustrated in Fig. 1.

The motion trajectory of 3 UAVs (A,B,C) are depicted
in figure 2. UAV1 has limited communications range that is
shown by three circles centered at locations (A1, A2 and A3)

Fig. 1: Motion trajectory of 3 UAVs (A,B and C).

for three time points t1, t2, t3. In order to retain connectivity
with at least one neighboring UAV, A intends to choose the
best relay node. At time t1, B and C are both within the A’s
accessible range. Under a conventional relay selection method,
A chooses B since it is closer in distance and requires less
transmission power (or yields lower delay). At time t2, B
moves out of A’s accessible range and hence A needs to
hand over to another relay node, which requires additional
signaling. Also, if node C has already been assigned with a
relaying task for another UAV, then A falls out of the network
and looses its connection to the base station. However, if A
was capable of predicting motion trajectory of neighbor UAVs
and recognizing a better alignment between C’s and its own
trajectories, it would have chosen C at time t1, which never
goes out of the accessible range. Consequently, B would have
retained the connectivity until the end of its mission [7].

In this paper, we use the popular method of Dubin’s
curves to model the motion of UAVs and use the time and
measurement update equations developed for Kalman filtering
with intermittent observations to predict the locations of UAVs,
when the tracking measurements are sporadically available.
In order to obtain the next network prediction results and
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retain maximal connectivity [8], [9], we propose an optimal
measurement policy for UAVs such that the prediction error
of the surrounding UAV locations are minimized under a con-
strained measurement resource and an interrupted observation
model. The idea is to use particle swarm optimization to
develop a resource management policy for an individual UAV
to allocate its measurement resources optimally among a set
of k neighbor UAVs such that the expected error covariance is
minimized. The proposed method provides a practical solution
for a theoretically intractable problem and has the advantage
of adapting to time-varying measurement conditions.

II. TOPOLOGY PREDICTION

Recently, several methods including data-driven methods
[10], [11], piecewise segment methods [12], hidden Markov
models [13], Levy and Levy flight process [14], manifold
learning [15], and Gaussian mixture models [16] are proposed
to model mobile user motions (e.g. vehicles and pedestrians)
in wireless networks. However, these models are not well
suited for freely flying UAVs that do not follow man-made
or natural path profiles (e.g. roads and streets). Here, we use
the Dubin’s curve method, which is general and specifies the
motion trajectory of a moving object based on the exerted
forces in 3 dimensions as follows: [17].

{
xi[k + 1] = Axi[k] +Bui[k] +wi[k],

yi[k] = γi[k]Cxi[k] + vi[k],
(1)

where we have:
xi[k] =

[
xi[k] yi[k] zi[k] vxi[k] vyi[k] vzi[k]

]T
, (state vector)

ui[k] =
[
axi[k] ayi[k] azi[k]

]T
, (input vector)

yi[k] =
[
yxi[k] yyi[k] yzi[k]

]T
, (observation vector)

A =

[
I3×3 dtI3×3
03×3 I3×3

]
, B =

[
03×3 I3×3

]
, C =

[
I3×3 03×3

]T
,

vi[k] ∼ N (0,Ri), wi[k] ∼ N (0,Qi). (2)

Here, dt is the time step of the discretized system, xi[k] is
the state vector of UAV i at time k, representing the location
(x, y, z) and velocities (vx, vy, vz), u[k] captures the impact of
applied forces on the accelerations, y[k] is the measurements
provided by the tracking system. We assume that w and v
are zero mean Gaussian random vectors with covariances Q
and R which respectively represent the model turbulence and
observations noise. The measurements success is modeled as
a sequence of Bernoulli distributed random variables (γ[k] ∈
{0, 1}, P r(γ[k] = 1) = λ) [18]. It is known that an optimal
estimation of the state vectors (in MMSE sense) is obtained
using Kalman filtering with the following steps:{

x̃[k] = Ax̂[k − 1] +Bu[k − 1]

P̃ [k] = AP̂ [k − 1]AT +Q
(time update eqs),

K[k] = P̃ [k]CT (CP̃ [k]CT +R)−1

x̂[k] = x̃[k] +K[k](y[k]− Cx̃[k]),
P̂ [k] = (I −K[k]C)P̃ [k]

(measurement eqs),

(3)

where the measurement update equations are performed only
for γ[k] = 1 and we set x̂[k] = x̃[k], P̂ [k] = P̃ [k] for
γ[k] = 0 [18]. Under some mild convergence conditions on the
A, B, C, Q matrices, (i.e. observability of (A,C), controllabil-
ity of (A,B), stabilizability of (A,Q1/2), and bounded system
and measurement noise covariances tr(Q) <∞, tr(R) <∞),
the sequential error covariance matrices P̂ [k] starting from
any initial value P̂ [0] converge to a unique limit, which is
the solution of the following Modified Discrete-time Algebraic
Ricatti equations (MARE) [18]:

g(P ;λ,R,Q) = APAT +Q− λAPCT (CPCT +R)−1CPAT

P = gλ,R,Q(P ) (4)

The solution of (4) for intermittent observation is not known
in general, but its statistical properties are studied under
different assumptions [19]–[25]. In particular, it is known
that the convergence of P̂ [k] is ensured if the observation
availability occurs with probability λ ≥ λc, where λc is a
critical value with known upper and lower bounds [24], [26].

Here, we assume that the input vector, u is known. Note that
the role of unknown input and the time update equations in
general is more important for intermittent observations, since
we rely more on the time-update equations. Intuitively, in a
fully observable system, the measurement update equations
enhance our estimates and partially compensate the lack of
information about the unknown inputs, as expected. Fig. 2
demonstrates the impact of unknown input for a 1D motion.
However, we can use recently proposed techniques to tackle
the case of unknown input vectors. For instance, with a simple
conversion technique, the unknown input can be absorbed
into the state vector to transform the system to an equivalent
system with known inputs [27]. If the statistics of the unknown
input is fully known, then the optimal state estimator can
be represented by the two-stage Kalman filter [28]. The
simulation results for the case of unknown input and λ = 1
and λ = 0.2 is shown in Fig.2.

III. OPTIMAL TRACKING POLICY

In this section, we assume a scenario, where a UAV intends
to track N surrounding UAVs. The parameters for target UAV
i includes the motion control noise covariance Ri, navigation
noise covariance Qi, and the packet transmission success rate
p(γi = 1) = λi. The observer UAV is assumed to be equipped
with M tracking instruments, where ρ = M/N < 1. The
objective is to design an algorithm to optimally assigns the
tracking resources among the N surrounding UAVs, during
a measurement cycle composed of T consecutive time slots,
such that a desired evaluation metric is minimized. We develop
the algorithm in two sequential steps for a measurement cycle.
We first consider a probabilistic model, where at each time
slot, UAV i is tracked with probability αi, where 0 ≤ αi ≤ 1.
The objective of this step is to find the optimal measurement
probability vector α = [α1, α2, . . . , αN ]T , such that a desired
performance criterion is met. Apparently, due to resource
constraint, we have |α|1 = α1+α2+ . . . αN ≤M = Nρ. We
consider the following two objective functions.
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(a) observation rate: λ = 1

(b) observation rate: λ = 0.02

Fig. 2: prediction result of a 1-D motion using Kalman filtering
with intermittent observation. The parameters are dt = 0.1, Q =
0.1In, R = 10Im, a[k] ∼ N (0, 100I). The resulting estimation error
is MSE: 0.048 for λ = 1 and MSE: 0.366 for λ = 0.2.

One may choose to minimize the worst-case squared error by
solving the following optimization problem:

(α∗1, α
∗
2, . . . , α

∗
N ) = minimize

(α1,α2,...,αN )
max

i∈{1,2,...,N}
E[tr(P̂i[k])]

subject to: αi ≥ 0, for i = 1, 2, . . . , N

αiλi ≥ λ(c)i
α1 + α2 + . . . αN ≤ ρN, (5)

where λ(c)i is the critical value for the channel success proba-
bility to have bounded expected error covariance, characterized
in [18]. The feasible set of this problem is defined by its
constraint functions and the solution for this problem exists
only if we have sufficient tracking resources (i.e. M ≥∑N
i=1 αi ≥

∑N
i=1

λ
(c)
i

λi
). In particular, we use a water filling

approach to assign sufficient tracking attempt probability αi
for each UAV such that its effective measurement rate αiλi
exceeds the corresponding critical value until all constraints
are satisfied. However, finding the optimal way to associate
the remaining tracking resources to optimize the objective
function is not tractable. An alternative objective function
is to minimize the overall aggregated estimation error. More
formally, one may intend to solve the following optimization
problem:

(α∗1, α
∗
2, . . . , α

∗
N ) = argmin

N∑
i=1

T∑
k=1

tr(P̂i[k])

subject to: αi ≥ 0, for i = 1, 2, . . . , N

αiλi ≥ λ(c)i ,

α1 + α2 + . . . αN ≤ ρN. (6)

This is a stochastic optimization problem. It is practically
hard to solve due to the randomness of P̂i[k], therefore
we solve the following deterministic by almost equivalent
problem:

(α∗1, α
∗
2, . . . , α

∗
N ) = argmin

N∑
i=1

lim
k→∞

E[tr(P̂i[k])]

subject to: 0 ≤ αi ≤ 1,

αiλi ≥ λ(c)i
α1 + α2 + . . . αN ≤ ρN (7)

Note that this problem is deterministic due to the expectation
operator. However, λc and P̂ [k] do not admit closed-from
equations. Furthermore, estimating R[k] and Q[k] in practice
requires a large number of consecutive measurement samples,
which is not feasible in time-varying conditions. Therefore,
finding an analytical solution for this optimization problem
is not practically feasible. Therefore, we propose to use
the following approximate optimization algorithm based on
Particle Swarm Optimization (PSO) to solve this problem.

The main idea here is that we generate a set of P particles,
each representing the system with a set of hypothetical pa-
rameters λ(p)i [0],R

(p)
i [0],Q

(p)
i [0], P̂

(p)
i [0], which are randomly

generated. Also, we assume a random measurement policy
vector α(p) = [α

(p)
1 , . . . , α

(p)
N ] to each particle p. Then, for

each UAV i, we update the Kalman filtering equations and
estimate the state vector x̂i[k] and the estimation covari-
ance matrix P̂i[k]. Then, for each particle, we use MARE
to generate the current hypothetical error covariance matrix
P̂

(p)
i [k], 1 = 1, 2, . . . , N based on the previous error covari-

ance matrix P̂
(p)
i [k − 1]. Over time, the hypothetical error

covariance matrix of a particle which has more accurate pre-
sumed parameters is expected to be closer to the estimate error
covariance matrix P̂i[k]. As such, we move each particle in a
direction which is the linear combination of three directions
including: i) their motion direction in the previous iteration,
ii) their motion towards a point in their local history that
yields the best match (i.e. local best), and iii) towards the
particle with the best match (global best). At each iteration, the
parameters of each particle are updated based on the obtained
particle velocity. After a number of iterations, the particles
are expected to converge to a particle with the best value for
observation probability vector α(p), which in turn yields the
best prediction results. A formal algorithmic description of the
proposed algorithm is included in Algorithm 1.

Here, βL and βG are tuning parameters to balance between
the motion velocities of each particle towards its local min-
imum and the global minimum. Also, bp and bt(p), respec-
tively, store the best particle ID (global optimum) and the time
index of the local optimum for particle p.

Finally, we note that finding the optimal observation prob-
ability vector α does not complete the problem. It only
determines the rate under which each UAV should be subject to
tracking. However, actual observation policy comprises fully
determining a binary matrix B = [βit]N×T , where βit = 1
represents a measurement attempt to track UAV i at time t. In
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Algorithm 1 Optimized measurement policy design for UAV
swarms using PSO

1: Initialization:
2: for swarm particles p=1 to P do
3: Initialize measurement parameters for all UAVs

(λ(p)i [0],R
(p)
i [0],Q

(p)
i [0], P̂

(p)
i [0], αi[k]) with random val-

ues.
4: set k ← 1
5: top:
6: for UAV i=1 to N do
7: Estimate x̂i[k] and P̂i[k] using (3)
8: for swarm particles p=1 to P do
9: for UAV i=1 to N do

10: P̂
(p)
i [k]← g(P̂

(p)
i [k− 1];λ

(p)
i [k], R

(p)
i [k], Q

(p)
i [k])

11: f(p) =

√∑N
i=1

(
trace(P̂ (p)

i [k])− trace(P̂i[k])
)2

12: if f(p) < fmin(p) then fmin(p)← f(p), bt(p)← k

13: if fmin(p) < fmin then fmin ← fmin(p), bp← p

14: if fmin(p) < Threshold then Exit
15: update swarm measurement probabilities:
16: α

(p)
i [k]← α

(p)
i [k−1]+βL(α(p)

i [k−1]−α(p)
i [bt(k)])+

βG(α
(p)
i [k − 1]− α(bp)

i [bt(k)])

17: Apply the same updates for λ(p)i ,R
(p)
i [k] and Q

(p)
i [k]

18: k + 1← k
19: goto top.

order to determine the actual measurement attempt matrix B,
in this case, we recall the following constraints:{∑N

i=1 βit < ρN for all time slots t = 1, 2, . . . , T
1
T

∑T
t=1 βit = α∗i for all UAVs i = 1, 2, . . . , N.

(8)

We conjecture that one guideline to minimize the ac-
cumulated estimation error (

∑T
t=1 Pi[t]) for each UAV, is

to use the most alternating measurement pattern such that
measurement resources are evenly distributed over time. For
instance, if α∗i = 1/3, the optimal measurement pattern is
[βi1, βi2, . . . , βiT ] = [1001001 . . . 100]. This fact is confirmed
by simulation results and we are working to provide an
analytical proof.

IV. SIMULATION RESULTS

In this section, simulation results are provided to verify
the performance of the proposed PSO-based algorithm. Fig. 3
presents the average estimation error in terms of Mean Squared
Error (MSE(k) =

∑N
i=1 |xi[k]−x̂i[k]|22

N ) for N = 5,M = 1
using three methods. The uniform distribution is corresponding
to the case of evenly assigning M tracking resources among
N UAVs at each time slot (i.e. with Prob. αi = M/N for
i = 1, 2, . . . , N ). PSO denotes the average MSE obtained by
probabilities determined by the proposed PSO-based algorithm
(see Algorithm 1). The MSE for 3 random particles are also
shown for the sake of comparison completeness. It can be seen
that the proposed PSO algorithm outperforms the uniform and
randomly selected measurement policies. The fluctuations of
MSE are corresponding to alternating measurement success

Fig. 3: Average tracking estimation error using uniform distribution,
random probabilities for randomly selected particles, and optimized
probabilities using PSO.

Fig. 4: Tracking Policies (α(p)
i ) corresponding to the best particle

obtained using the proposed algorithm.

and fail events (αi[k]γi[k]). Fig. 4 also represents the measure-
ment probability evolution by the PSO algorithm confirming
that after about 40 iterations the probabilities converge to their
optimal values.

Finally, different measurement patterns are compared in
Fig. 5, which verifies our conjecture about the optimality
of the most evenly distributed patterns. In other words, it is
desired that the “1”s of each row of the actual measurement
attempt matrix B = [βit] are evenly distributed. The intuitive
justification behind this fact is that consecutive time slots
without measurements cause dramatic uncontrolled rises in
estimation error, whereas as a series of consecutive measure-
ments does not provide the same amount of improvement.
As such, the most alternating pattern provides the lowest
accumulated estimation error on average.

V. CONCLUSIONS

The proposed methodology provides a numerical solution
for an otherwise intractable optimization problem of assigning
limited measurement resources among a large number of
targets. Our approach suggests a low-complexity algorithm to
optimally assign tracking resources by a UAV to discover and
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Fig. 5: Comparison of measurement patterns for α = 1/2 for 100
scenarios with different initial error covariance matrix Pi[0]. (a) All
αT = T/2 measurement resources are assigned in the beginning
time slots. (b) All measurement resources are assigned in the last
T/2 time slots.(a) Measurement resources are assigned evenly over
time.

predict its surrounding UAVs. The proposed method is general
and applicable to similar problems that use Kalman filtering
as their optimization methods.
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