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Abstract—We propose a class of interleavers for a novel deep
neural network (DNN) architecture that uses algorithmically pre-
determined, structured sparsity to significantly lower memory
and computational requirements, and speed up training. The
interleavers guarantee clash-free memory accesses to eliminate
idle operational cycles, optimize spread and dispersion to improve
network performance, and are designed to ease the complexity of
memory address computations in hardware. We present a design
algorithm with mathematical proofs for these properties. We also
explore interleaver variations and analyze the behavior of neural
networks as a function of interleaver metrics.

I. INTRODUCTION

DNNs in machine learning systems are critical drivers of
new technologies such as speech processing and autonomous
vehicles. Modern DNNs typically have millions of parameters
[1]], which make them difficult to implement in hardware and
slow to train [2]. A suggested solution to these problems
is a sparse network, where some form of compression or
deletion is employed to reduce the number of parameters [3],
[4]. However, an issue with sparse networks is that some
neurons may get completely disconnected from neighboring
layers and have no effect on the output [5]. A second issue
arises when all the neurons in a certain layer which connect to
a certain neuron in the next layer are ‘close together’, such as
coming from nearby pixels in an image. This issue is similar
to convolutional layers, which are known to be inadequate
for classification without the presence of fully connected (FC)
classification layers [[L], [2l]. The term ‘layer’ will henceforth
to classification layer, which is what this work deals with.

We are investigating a class of hardware-optimized DNN
architectures which use pre-defined sparsity, wherein a con-
nection pattern is algorithmically defined using an interleaver,
or permutation, for every junction between 2 layers prior to
training. This has the potential to achieve higher training speed
and lower storage complexity compared to approaches which
start training the full network and then remove parameters [6],
[7]. A related paper [8] has demonstrated that our approach
can reduce the memory footprint of FC layers in CNNs by
457x without performance degradation.

This paper is a followup to our previous work [9] and
focuses on the design and analysis of interleavers suited to the
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requirements of our hardware architecture, which is reviewed
in Section [l The key contributions of this paper are:

1) Mathematical formalizations of desirable properties of a
class of interleavers usable in DNNs (Section [[I). The
interleavers should implement pseudo-random connec-
tion patterns between layers so as to achieve:

a) Flexible degrees of sparsity in the junctions, while
preventing neurons from getting disconnected.

b) Maximum operational efficiency by avoiding
pipeline stalls.

c) Ease of address computation for on-chip memories.

2) An algorithm to design such interleavers (Section [[V-A)
and mathematical proofs to show that it satisfies the
requirements (Section [[V-B].

3) Possible variations in interleaver design (Section [[V-C).

4) Relations between network performance and interleaver
metrics such as spread and dispersion (Section [[V-DJ),
explored through training on different datasets.

II. HARDWARE ARCHITECTURE

A DNN is made up of layers of neurons, and junctions
connecting adjacent layers via weights, or edges. We will use p
and n to represent the number of neurons in the preceding (left)
and succeeding (right) layers, respectively, of any junction.
Every left neuron has a fixed number of edges going from
it to the right, and every right neuron has a fixed number of
edges coming into it from the left. These numbers are defined
as fan-out (fo) and fan-in (fi), respectively. For a conventional
FC junction, fo =n and fi = p. Every neuron has associated
activation and delta values which are used in the 3 operations
— feedforward (FF), backpropagation (BP), and update (UP).

A. Our Architecture

For our sparse architecture, fo < m and fi < p, such
that p X fo = n x fi = W, the total number of edges in
the junction. They are sequentially indexed on the right side,
for example, the 1st right neuron has weights wg to wyp;_1.
Motivated by the fact that the weights feature in all 3 network
operations, we designed an edge-processing architecture where
every junction has a degree of parallelism (DoP), denoted as
z, which is the number of weights processed in parallel. (z is
chosen such that p/z is an integer). All the weights in each
junction are stored in a bank of z memories, each having
W/z cells, as shown in Fig. [1| This means that 2 weights
with indices ¢ and j (i.e. weights w; and w;) are in the same
memory if 1%z = %z, where % is the modulo operator. If
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Fig. 1. Weight memory configuration in any junction, showing natural order
accesses. The number in each cell is the index of the weight, i.e. the 7 in w;.

instead |i/z] = |j/z], where |.] is the floor function, then
the weights are in the same row of different memories.

Similar to the weights, all the activation and delta values
of each layer are numbered and stored in separate banks of
z memories each. For example, the left layer activations are
numbered from ag for the first neuron to a,_; for the last, and
each activation memory would have p/z elements. The edges
coming into a junction from the left pass through a weight
interleaver (7yy) before getting connected to the right. For
example, say 4 edges come out of the 1st neuron of a certain
layer of a network which has a 100-neuron layer following
it. These edges might connect to the 9th, 30th, 67th and 84th
neurons of the following layer.

A single cycle of processing (say the kth) comprises ac-
cessing the kth cell in each of the z weight memories. This
implies reading all z values from the kth row of the bank,
which we refer to as natural order access, as shown in Fig.
[[} The interleaver determines which neurons in the left layer
are connected to those z edges. In general, these could be
any z neurons in the left layer. So the activation memories
are accessed in permuted order. Fig. [2] shows this through an
example where z is 6 and fi is 3. Note that all the entries
in the left activation memory bank are read fo times, since
that many weights belong to the same neuron and share the
same activation value. Each stage of processing where all the
activations are read once is referred to as a sweep, which
consists of p/z cycles. One complete operation such as FF
consists of fo sweeps, i.e. p X fo/z = W/z cycles, which are
collectively referred to as 1 block cycle.

B. Merits of our Architecture

Since there is significant data reuse between FF, BP and
UP, we use operational parallelization to make all of them
occur concurrently. Since every operation in a junction uses
data generated by an adjacent junction or layer, we designed a
Jjunction pipelining architecture where all the junctions execute
all 3 operations concurrently on different inputs from the
training set. This enables our architecture to achieve a 3(L—1)
times speedup for L layers. See [9] for a complete description.

Note that z can be set to any value as per the overall area-
speed tradeoff desired. The number of clock cycles to process
each junction can be made equal by adjusting z for each
individually. This ensures an always full pipeline and no stalls.
Thus, the size and complexity of the network is decoupled
from the hardware resources available. Our architecture can be
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Fig. 2. Reading z = 6 weights corresponding to 2 right neurons in each
cycle. When traced back through 7y, this requires reading 6 left activation
memories in permuted order.

reconfigured to varying amounts of fan-out and sparsity, which
makes it adaptable to a large class of DNNs. This speedup and
flexibility gives us the potential to achieve online training, as
compared to inference-only works such as [4].

III. INTERLEAVER REQUIREMENTS

An interleaver 7 operates on elements ¢ from a list  with
cardinality N and produces rearranged list elements 7(%).
We will follow the convention that x = {0,1,..., N — 1}.
As an example, let z = {0,1,2,3}, i.e. N = 4. Then
7w(z) = {m(0),n(1),n(2),7(3)}, such as {1,3,2,0}. Inter-
leaver patterns can be visualized by plotting 7(z) vs. z.

A. Clash Freedom

As mentioned before, the activation memories are accessed
in permuted order. For any weight index ¢, the corresponding
left activation index is |7w (i)/fo]. The z activations read
in a cycle should come from z different left neurons in
order to achieve optimum spatial spread. Moreover, these z
values should be stored in z different activation memories.
Violating this condition leads to the same memory needing to
be accessed more than once in the same cycle, i.e. a clash,
which stalls processing. Notice that Fig. [2]is free from clashes
since all the columns in permuted order accesses have exactly
1 shaded cell. Clash-freedom is mathematically expressed as:

It [i/z] = /7] (1a)
Then we need |mw (2)/ fo]l %oz # |mw (4)/ fol%z (1b)

where ¢ # j is implicitly assumed here, and in the future.
Equation (II[) implies that for 2 weights w; and w; read in the
same cycle, their left activations must be in different memories.

B. Ease of Memory Address Computation

The interleaver should be designed so that the addresses of
the activation memories (accessed in permuted order) can be
easily computed in any cycle. This can be done by defining a
starting cell index — to be used in the first cycle of every sweep
— for each activation memory. Cell indices for the following
cycles are obtained by adding 1 each time to the starting index,
and cycling back to the first cell after reaching the last.
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Fig. 3. Activation memory bank configuration for a left layer with p = 32
neurons when the junction following it has z = 8.

As a concrete example, assume p = 32, fo =2, and z = 8.
This leads to the activation memory mapping shown in Fig.
[ Let us define the starting cell indices for the 8 activation
memories as s = {2,0,3,1,2,0,3,1}. Then the cells read in
the next cycle will be (s +1)%4 = {3,1,0,2,3,1,0,2}, and
so on until all 4 cycles in the sweep are completed. This can
be mathematically expressed as:

It /2] # 1i/2]
and 7w (3)/ fo]%z = |mw (4)/ fol %z

(2a)
(2b)

Then we need

(Li/ZJ—LZ/[LJ)%((P)//Zf)J:J w (.)/HJ)
mw(i)/fo] | Wwﬂz %) %(p/2) 20)

z

Equations (Zp) and (Zb) consider 2 weights with indices 4
and 7 such that they are in different cycles and the left neurons
to which they connect are in the same activation memory.
Then, @) states that the difference in cycle numbers should
be equal to the difference in activation memory row numbers.
This leads to ease of address computation.

C. Optional Requirements — Spread and Dispersion

Spread is a standard interleaver metric which, when max-
imized, ensures that for 2 weights that are close together on
the right (such as going to the same neuron), the neurons from
which they come on the left are spaced well apart. Spread is
classically defined [10] as:

Spread = min ([i — j| %N + |7 (i) — 7(4)| AN)  (3)

Normalized dispersion, which we will simply refer to as dis-
persion is another standard metric measuring the randomness
in the connection pattern. For example, if the 1st left neuron
connects to the 10th, 20th and 30th right neurons, and the 2nd
left neuron connects to the 11th, 21st and 31st right neurons,
the pattern is quite regular and not well dispersed. Dispersion
is classically defined [[11] as the cardinality of the set

D={(—im () —m(@)

divided by N (N —1). The effects of spread and dispersion on
network performance are discussed in Section

| 0<i<j<N} @)

IV. INTERLEAVER DESIGN
A. Algorithm

Given the requirements of the DNN, we developed the
following algorithm to design a suitable class of interleavers:

1) Let r be a random permutation of [0, p/z — 1]
2) Create list s with z elements according to:

a) If z > p/z: Replicate r as many times as nec-
essary to get z elements in s. If z is not an
integral multiple of p/z, then fill the final few
elements of s with the initial few elements of r.
For example, if r = {2,0,3,1} and z = 10, then
s={2,0,3,1,2,0,3,1,2,0}.

b) If z < p/z: Take the 1st z elements of r

3) Create list ¢ with p elements by concatenating s, (s +
1)%(p/2), .. (s4+2—=1)%(p/z). t acts as an activation
interleaver (m,4), from which 7y, can be obtained.

4) Let t[z] denote the xth element of ¢. Then:

rw (i) = (tli%p] x = +%z)  fo+ |i/p] ()

Vi e [0,W —1]
Consider the prior example from Section
I-Bl Say » = {2,0,3,1}. Since z > p/z,
s = {2,0,3,1,2,0,3,1}. Since p/z = 4, t =

{2,0,3,1,2,0,3,1,3,1,0,2,3,1,0,2,0,2,1,3,0,2,1,3,1,3,2,0,1,3,2,0}.
There are 64 weights. Say we are in cycle 5, where one of the
weights read is wys. Using (), t[45%32] = t[13] = 1. This
gives the row number in the left activation memory bank. The
term %z is the bank column, which is 45%8 = 5. Now the
key purpose of the interleaver equation, which is to compute
the addresses of the activation memory bank used in a cycle,
is served. Since our architecture uses powers of 2 for all the
key variables, operations such as multiplication, modulo and
flooring reduce to simple bit shifts and bit selects.

The remainder of (3)) serves the purely mathematical pur-
pose of completely characterizing 7y as a permutation of 64
weights. Multiplying the bank row by z = 8 and adding the
bank column gives the left neuron number from where the
weight comes into the junction, i.e. 1 X845 = 13. Multiplying
this by fo = 2 takes us from the activation space to the weight
space, while the final addition of |45/32] = 1 adds an offset
to indicate that it’s the 2nd weight from neuron 13. The final
index of the weight on the left side is 27. Thus, 7y (45) = 27.

B. Meeting Requirements

Now we will prove that given the interleaver design equation
(3), the requirements in (I)) and (2)) are satisfied.

1) Clash Freedom: Proof:
Since W = p x fo, the [i/p| term in is in the range
[0, fo — 1]. Then we get:

L (i) fo] = {(t[i%p] X z—|—i°?(,)z) x fo+ Lz/pJJ

= t[i%p] X z + 1%z (6)




So |mw(i)/fol%z =1i%z (7)

It is given from (Th) that |i/z| = |j/z], but i # j as usual.
So it must be that i%z # j%z. This implies that:

Lmw (i) / fo] %oz # |mw (§)/ fo] %oz (®)
which satisfies (Ip). ]

2) Ease of Memory Address Computation: Proof:
Firstly, note that using (6) and (7), Zb) can be written as
i%z = j%z. Secondly, using (6):

{Lﬂw(i)/fon B V[i%p] X z+ i%zJ
z z

= t[i%p] 9)

So the right hand side of (2f) can be written as (¢[i%p] —
t[j%p])%(p/z). t is constructed by concatenating s repeatedly
with some changing offset added to it every time. Using this,
and the fact that s has z elements, we get:

ti%p] = (s[i%z] + [(i%p)/2)| %(p/2)
So the modified right hand side of (Zk) now becomes:
(t[i%p] = t[j%p]) %o(p/ z) = {(s[i%z] + [(i%p)/2]) %(p/2)
— (s[5%2] + [(1%p) /2]) %o(p/2)} % (p/2) (1)

We will use 2 mathematical theorems in this proof. Given
any 3 positive integers a, b and c, firstly:

(10)

(a £ b)%c = (a%c £ b%c)%c (12)
Secondly, if b is an integral multiple of c:
[(a%b)/c]| = la/c]%(b/c) (13)

Using and the fact that %z = j%z2, becomes:

(1) = (s[i%=] + [(i%p)/ 2] — s[i%z] — [(3%p)/2])%(p/2)
= (LG%p) /=] = [(1%p)/2])%(p/2) (14)

Using (12), (13) and the fact that p is an integral multiple
of z, the left hand side of (Zk) becomes:

(Li/z] = Li/=])%(p/2)
= {(li/2)%(p/2)) — (Li/z]%(p/2))}%(p/2)
= (LG%p)/z] = [(G%p)/2])%(p/2) (15)

which equals the right hand side of (Zk), as obtained in (T4).
Thus, the requirement in ) is satisfied. [ |

C. Variations

The basic myy described so far has excellent spread, but poor
dispersion. We experimented with the following variations, all
of which still satisfy the properties of clash-freedom and ease
of memory address computation:

1) Start Vector Shuffle (SV): This only applies when
z > p/z. Instead of simply replicating r in step 2a of
the interleaver design algorithm, random permutations of
[0,p/z — 1] could be concatenated together to form s. In
other words, there are several different r vectors. For example,
s=1{2,0,3,1,3,0,1,2,1,0}.

2) Sweep Starter Shuffle (SS): This only applies when fo >
1. No algorithm change is required. Every time a new sweep is
started, a new 7, s and ¢ are generated. For example, for the 1st
sweep, s = {2,0,3,1,2,0,3,1,2,0}, for the 2nd sweep, s =
{0,3,2,1,0,3,2,1,0,3}, and so on. This leads to a revised
interleaver equation:

mw (1) = (te[i%p] X z +i%z) x fo+ |i/p]
Vi e [0,W —1],Vk € [0, fo—1]

(16)

i.e. every sweep has a new ¢.

3) Memory Dither (MD): Equation (5) reveals that for
any cycle, the weight read from the ith weight memory
(t € [0,z — 1]) will always trace back to a left activation
value stored in the ith activation memory. This trait can be
removed and dispersion increased by replacing the ‘activation
memory number generating’ term %z in with vg[i%z],
where vy is a random permutation of [0,z — 1] for the kth
cycle. In other words, the weight read from the ith weight
memory will, in general, trace back to a different activation
memory every cycle. However, the total z weights read in
the kth cycle will always trace back to z different activation
memories since vy is a permutation, i.e. it has no repeated
elements. This means that clash freedom is preserved as no
activation memory needs to be accessed more than once in the
same cycle. The revised interleaver equation is:

mw (i) = (¢[i%p] x 2 +v[i%z]) x fo+ [i/p] (17)
Vie[0,W —1],Vk € [0,W/z — 1]

4) Meeting Requirements: Note that the proofs in Section
IV-B| were for a general ¢ vector, which only has to satisfy the
property that it is formed by concatenating s + o, where the
offset o starts from 0 and goes up to p/z — 1.

e For SV, s is not constructed by repeating r, but this
doesn’t change the generality of ¢. In particular, ¢ is still
a p-element vector which specifies the complete order of
accessing the activation memory bank during a sweep.
So the proofs hold.

« For SS, t is different every sweep, but it’s still constructed
in the same way every sweep — by adding offsets of some
vector s. So we can do our analysis within a sweep by
keeping ¢ fixed, which meets the requirements. Since 1
sweep is 1 complete access of the activation memory
bank, this means that every individual sweep meets the
requirements, so the interleaver meets the requirements
as a whole.

o For MD, note that vj(-) for every cycle is a bijective
function mapping domain = [0, z—1] to range = [0, z—1],
which means that provided weights ¢ and j are both read
in the kth cycle:

(i%z = j%z) & (v [i%2] = v [1%2])  (18)
For MD, eq. becomes:
7w (2)/ fo] %oz = vy, [1%2] (19)



TABLE I
PROPERTIES OF VARIOUS INTERLEAVERS (p = 64, fo = 4, z = 16)

Basic

MD

SS+MD

Interleaver W TA W TA
Variant Spread | Spread | Disp. | Disp.

Basic 18.28 8 0.04 0.1

MD 7.48 4.1 0.22 0.5

SS 9.7 8 0.07 0.1

SS+MD 6.5 4 0.37 0.5
SV 6.6 2.64 0.08 0.19
SV+MD 7.31 3.74 0.23 0.52
SV+SS 5.05 2.54 0.09 0.19
SV+SS+MD 5.7 347 0.39 0.52

Basic

Fig. 4. Various 7y patterns using parameters p = 64, fo = 4 and z = 16.
Interleaver size = p X fo = 256.

for the kth cycle. When proving clash-freedom, we con-
sider weights ¢ and j read in the same cycle. Given ¢ # j,
eq. leads to v [i%z] # v [j%z]. Thus, eq. (8) holds
and clash-freedom is satisfied.

However, ease of memory address computation does not
hold. This is because the v permutation changes across
cycles. As an example, assume vo = {0,1,2,3,4,5,6,7},
v ={2,7,3,0,6,5,1,4}, and s = {2,0,3,1,2,0,3,1}.
So in cycle 0, the weight read from the Oth weight
memory will lead to activation memory 0 row 2, however,
the weight read from the Oth weight memory in cycle
1 will not lead to activation memory O row 3, instead
it will lead to activation memory 2 row 0. So, while
memory dither leads to clash freedom and increases
the randomness and the number of possible clash-free
patterns, it does not lead to ease of memory address
computation.

D. Analysis and Results

Table [[] lists average spread and dispersion (disp.) over 100
iterations of all possible variations of 7y and corresponding
ma. Some of the patterns are shown in Figs. [] and [5} Note
that the basic 7y, is the most linear, which leads to maximum
spread and minimum dispersion. SS offers lesser spread and
more dispersion for 7y, but no effect is observed on 7 4. This
is because SS affects different sweeps which have different
weights, but same activations. SV offers slight increase in
dispersion, but severe reduction in spread. This is because the
SV pattern has lines with slope identical to basic, but each
line is permuted, leading to left neurons getting bunched up.
Introducing MD leads to big increases in dispersion, which
are further increased for 7y, when combined with SS. This is
observed in the figures, where the MD patterns are irregular.

Fig. 5. Corresponding 74 patterns for Fig. El Interleaver size = p = 64.
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Fig. 6. Classification accuracy obtained using different interleavers by training
sparse networks on MNIST, CIFAR10 and Morse datasets for 10 epochs.

Fig. [6] shows results of all the possible interleaver variations
implemented on networks trained for 10 epochs, with classi-
fication accuracy on validation data used as the performance
metric. We used 3 datasets of different dimensionalities:

e MNIST handwritten digit classification — A 2D dataset
where each input has width and height. The network
has 1024 input, 64 hidden and 16 output neurons. Both
junctions have fo = 8. This means that there are 8704
total weights, which is 13% of FC. z for the input-hidden
junction is 512, and 32 for the hidden-output junction.

o CIFARI10 image classification — A 3D dataset where each
input also has a number of features. We used standard
convolutional and pooling layers for feature extraction,
and then 2 sparse junctions in between layers of size
4096, 512 and 16. Fan-outs are 8 and 4, and z values are
2048 and 128. Overall density of the sparse junctions is
1.654%, and that of the entire network is 36.3%.

« Morse code symbol classification — A 1D dataset
where each input has 64 values representing dots, dashes
and spaces in Morse code, and there are 64 output classes
representing different characters. We created this dataset
to rigorously test the limits of sparsity. The network
used has 64 input and output neurons, and 1024 hidden
neurons. Fan-outs are 384 and 24, and z values are both
64, leading to an overall density of 37.5%.

We observed that interleaver variations have negligible
effect on classification accuracy of MNIST and CIFARI10
datasets. Note that for these datasets, the distinction between
output classes is well pronounced. In MNIST for example, an
image of a handwritten 7 is very different from a handwritten
0. Moreover, since the inputs in CIFAR10 are pre-processed
by convolutional and pooling layers, the relative importance
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Fig. 7. Classification accuracy vs. epochs obtained using different interleavers
by training a 37.5% dense network on the Morse dataset.

of the final classification layers is reduced.

For the Morse dataset, however, a clear trend of high
dispersion hurting performance is observed. The 4 variations
with MD have dispersion > 0.5 and barely reach 80%
accuracy, while the ones without MD have dispersions <
0.2 and achieve > 90% accuracy. This dichotomy is further
highlighted in Fig. [71 We hypothesize that this is due to the
Morse dataset having lower redundancy compared to the other
2 since it has less input neurons and more output classes with
little distinction between them. We are currently working on
theories to better explain the link between dataset redundancy
and high dispersion of junction connection patterns degrading
performance.

V. CONCLUSION

This work presents a new way to design DNNs in hardware
by interleaving edges between neurons and processing a pro-
grammable number of edges in parallel. The interleaver needs
to be designed so as to achieve optimum network runtime
efficiency on hardware. At the same time, performance needs
to be maximized by selecting an interleaver with desirable
metrics. We present an algorithm to satisfy interleaver require-
ments and investigate possible variations to it and their effects.

One limitation of these interleavers is that they characterize
a single junction. To completely characterize a sparse network,
it is desirable to have formulations which describe connection
patterns in the whole network, such as which outputs connect
to which inputs. We are currently working on the theory
of adjacency matrices, which have elements corresponding
to connections between any 2 neurons in any 2 layers, and
exploring metrics which act as better proxies for performance.
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