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Abstract—We present an algorithm that efficiently performs
blind decoding of MIMO signals. That is, given no channel
state information (CSI) at either the transmitter or receiver, our
algorithm takes a block of samples and returns an estimate of
the underlying data symbols. In prior work, the problem of blind
decoding was formulated as a non-convex optimization problem.
In this work, we present an algorithm that efficiently solves
this non-convex problem in practical settings. This algorithm
leverages concepts of linear and mixed-integer linear program-
ming. Empirically, we show that our technique has an error
performance close to that of zero-forcing with perfect CSI at
the receiver. Initial estimates of the runtime of the algorithm
presented in this work suggest that the real-time blind decoding of
MIMO signals is possible for even modest-sized MIMO systems.

Index Terms—MIMO, Multiuser detection, Blind source separa-
tion, Optimization

I. INTRODUCTION

In this work we propose an efficient method to blindly

estimate MIMO channels and decode the underlying trans-

missions. A previous work, [2], has shown that as long as

the channel gain matrix is non-singular, the geometry of the

constellation can be exploited to recover the underlying data

up to some small amount of remaining ambiguity. In [2], the

authors formulate the problem of blind MIMO decoding as

a non-convex optimization problem and provide theoretical

guarantees as to when the interior point algorithm, with a

logarithmic barrier function, correctly solves this problem.

As the size of the MIMO system grows, interior-point based

algorithms given in [2] become ineffective due to both an

increasing proportion of spurious optima as well as numerical

instability. In this work, we propose an algorithm inspired by

techniques commonly used to solve linear and mixed-integer

programs that allow us to perform blind decoding on higher

order MIMO systems. More importantly, this approach is far

more computationally efficient than the approach in [2], such

that real-time decoding is possible for systems as large as

n = 8.

T. Dean and A. Goldsmith are with the Department of Electrical En-
gineering, Stanford, CA 94305 USA (e-mail: trdean@stanford.edu, an-
drea@ee.stanford.edu).

M. Wootters is with the Department of Computer Science and the
Department of Electrical Engineering, Stanford, CA 94305 USA (e-mail:
marykw@stanford.edu).

J. Perlstein is with the Department of Computer Science, Stanford, CA
94305 USA (email: jrperl@cs.stanford.edu).

This work was presented in part at the 2018 Asilomar Conference on
Signals, Systems, and Computers in Pacific Grove, CA [1]. T. Dean is
supported by the Fannie and John Hertz Foundation. This work was supported
in part by the NSF Center for Science of Information under Grant CCF-
0939370

A blind decoding algorithm that is realistic in terms of

both sample size requirements and computational complexity

has important applications. Current trends in wireless system

design are moving towards systems with shorter wavelengths,

higher user mobility and more antennas per user [3]–[5]. Thus,

channel state information (CSI) is increasingly rapidly varying

and difficult to acquire. Additionally, new systems being pro-

posed demand increased reliability and decreased latency [6].

These factors combined imply that reducing resource overhead

from channel estimation will become even more important in

the development of future wireless systems.

An efficient blind decoding algorithm can enable high-rate

communications in environments where the channel changes

too rapidly to be measured or where communication occurs

in short bursts. Capacity of channels with CSI unknown at

the receiver have been considered extensively in the literature

(e.g. [7]–[9] and references therein). While it is theoretically

possible to achieve reliable, high-rate communications in these

conditions, few schemes exist that do so practically.

A number of previous works have considered blind decod-

ing of MIMO systems; we briefly differentiate our work from

prior works. Many statistical approaches have been consid-

ered for blind MIMO decoding, such as [10], [11], which

are generally based on covariance matrix estimation. These

approaches require prohibitively large sample sizes especially

when channels are not well conditioned. Other techniques such

as [12] require the mixing process to be structured. A different

set of works, for example [13]–[15], consider blind decoding

of massive MIMO systems by exploiting channel sparsity; in

contrast our approach targets smaller (roughly n < 12) system

sizes and dense scattering environments. See [2] for a more

complete comparison of our approach to prior works.

In this work, we compare the performance of our new

approach only to [2]. This is because previous approaches have

prohibitively large sample size requirements, often growing

exponentially in the number of transmit antennas. To our

knowledge, [2] is the only blind MIMO decoding method that

has sample size requirements that are less than the block length

of modern wireless systems.

We now highlight several notable features of the algorithm

presented in this work:

• For an n × n MIMO system we can typically decode a

block of k channel uses in O
(

n4k
)

operations. We also

characterize the scenarios where the number of operations

for decoding exceeds this bound. For comparison, when

CSI is known perfectly at the receiver, efficient MIMO
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decoding algorithms such as zero-forcing and MMSE

require O
(

n3k
)

operations to decode k channel uses.

• In the limit of high SNR, given appropriate inputs de-

scribed in [2], our approach solves the blind decoding

problem with a success rate approaching 1 for systems

as large as n = 12. In comparison, the success rate of

the approach in [2] was bounded below 1 beyond n = 5
and negligibly small beyond n = 8.

• We implement the proposed algorithm in the Rust pro-

gramming language and show that the runtime of our

algorithm is several orders of magnitude faster than the

approach given in [2]. For n ≤ 8 our implementation

is approaching fast enough runtimes to enable real-

time blind decoding of data streams without specialized

hardware. We note that n ≤ 8 captures nearly all MIMO

systems in use today [16], [17].

• At low SNR, our approach has BER performance nearly

matching zero-forcing with perfect CSI. At high SNR, our

technique has an increased BER compared to techniques

with perfect CSI but the BER vanishes in the limit of no

noise. In all cases, we outperform maximum-likelihood

decoding when the CSI estimate at the receiver has as

little as 1% estimation error.

In Table I, we report the runtime of an implementation

of our algorithm written in the Rust programming language,

run on a single core of an Intel i7 2.2GHz processor. These

numbers are preliminary as there are many more optimizations

remaining to be implemented in our solver. For comparison,

we also report the runtime of the gradient descent algorithm

of [2], implemented using MATLAB’s fmincon solver. In

addition, we report that probability that both algorithms return

a correct solution to the blind decoding problem. For all values

of n, the approach presented in this paper is both faster and

more reliable. A more detailed discussion of both the runtime

and success probability is presented in Section IV.

The remainder of this paper is organized as follows. Section

II describes the system model and notation used throughout

this work. Section III revisits several relevant theoretical

results presented in [2]. Section IV provides a high-level

description of our new algorithm along with empirical results.

Sections V and VI describe the core components of our

algorithm. Section VII discusses our algorithm in the presence

of AWGN. Conclusions are offered in Section VIII.

II. SYSTEM MODEL AND NOTATION

In this work we consider n × n real-valued channel gain

matrices, denoted A. Unless otherwise specified, we draw A

where each entry is i.i.d. and normally distributed with zero

mean and unit variance, N (0, 1). Our technique requires only

that A be full rank and thus A may be drawn from an arbitrary

distribution. We assume AWGN, drawn from N
(

0, σ2
)

, is

present in the channel. Finally, we consider a block fading

model where the channel gain matrix is constant over a period

of k channel uses after which it is redrawn independently. This

work focuses on the transmission of BPSK signals over such

TABLE I
RUNTIME OF THE VERTEX HOPPING ALGORITHM ON A SINGLE CORE OF A

2.2GHZ INTEL I7

Vertex Hopping Gradient Descent [2]

n k Pr. Success Time (s) Pr. Success Time (s)

2 8 1.00 1.83e-5 0.99 3.01e-2

3 13 1.00 6.46e-5 0.99 6.33e-2

4 18 1.00 1.75e-4 0.99 0.13

5 18 1.00 2.50e-4 0.97 0.30

6 22 1.00 8.03e-4 0.93 0.59

8 30 0.99 3.52e-3 0.80 3.5

10 100 0.99 1.91e-2 0 -

12 144 0.99 2.28e-1 0 -

channels.1

The vector x ∈ {−1,+1}n denotes the symbols transmitted

in a single channel use and the matrix X ∈ {−1,+1}n×k

denotes the set of symbols transmitted over a single block of

k channel uses. Likewise, single observations and blocks of

symbols at the receiver are denoted as y and Y respectively.

We assume that no CSI is available at either the transmitter

or the receiver. Without the aid of pilot symbols or any knowl-

edge of the underlying data symbols, the receiver attempts to

recover an estimate of X, denoted X̂. However, as discussed

in [2], without additional side information, the receiver is only

capable of recovering X up to an acceptable transform matrix

(ATM), meaning that within each block, X̂ is correct up to

permutation and negation of the rows. We denote the set of

ATMs as T . In the high SNR limit, we say that an algorithm

solves the blind decoding problem if, given only Y as input,

it returns a value of X̂ that is equivalent to X up to an ATM.

The ith column of the matrix A is denoted as ai and its jth

row as a(j). The vector ei represents the ith element of the

standard basis. The set cols(X) denotes the set of vectors that

comprise the columns of X and vec(X) denotes the nk × 1
vector that consists of the entries of X in row-major order.

The notation U−⊺ is shorthand for
(

U−1
)⊺

. The symbol R+

denotes the domain of non-negative real numbers, whereas

R++ denotes the positive real numbers.

III. FITTING A PARALLELEPIPED

In [2] the authors formulate the blind decoding problem as

the following non-convex optimization problem:

maximize
U

log | detU| (1)

subject to ‖Uyi‖∞ ≤ 1 + c · σ, i = 1, . . . , k, (2)

1While we only consider n × n real channels, we note that the results in
this work can be extended to n×n complex-valued channels by considering
the usual 2n × 2n equivalent real-valued channel gain matrix and can be
extended rectangular channels as discussed in [2]. The results in [2] extend to
general MPAM constellations; the performance of the algorithms presented
here under the presence of higher-order modulation is a topic of on going
research.
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where c is some margin which is chosen based on the noise

variance. Given proper input, the set of optimal U are equiva-

lent to A−1 up to an ATM. Geometrically, this problem can be

interpreted as fitting the minimum volume parallelepiped that

matches the observed samples. In [2] the authors show that

despite the fact that the problem is not convex, under certain

assumptions, gradient descent returns the correct solution with

high probability. Here, we briefly recount several important

theoretical facts proven in [2] about the problem given by

(1)–(2). We initially focus on the noiseless case (σ = 0), and

return to the case σ 6= 0 in Section VII. We also assume that

Y is full rank; if it is not then (1)–(2) is not a well-posed

problem.

In (2), each yi imposes two linear constraints on each row

u(j), that is −1 ≤
〈

u(j),yi

〉

≤ 1, for all i, j. The feasible

region is thus an n2-dimensional polytope. We say that a given

U is at a vertex of this polytope if UY ∈ {−1,+1}n×k.

Note that the objective function is not defined at all vertices

of the feasible region; if UY is not full rank, this implies U

is singular and the value of (1) is not defined. If two vertices

U1 and U2 are adjacent (share an edge of the polytope) then

this also implies that the Hamming distance between U1Y

and U2Y is 1.

A matrix X ∈ [−1,+1]n×k, and corresponding set

cols(X) ⊆ [−1,+1]n with k ≥ n, has the maximal subset

property (MSP) if there is a subset cols(V) ⊆ cols(X) of size

n so that if V ∈ R
n×n is the matrix with elements of cols(V)

as columns, then

| detV| = max
W∈[−1,+1]n×n

| detW|.

Since det(V) is linear in the columns of V, then V also max-

imizes the determinant amongst all matrices in {−1,+1}n×n.

We note the following additional facts about the program given

in (1)–(2):

• If the matrix X has the maximal subset property, then

the set of global optima of (1)–(2) contain all solutions

to the blind decoding problem. This is proven in [2].

• The gradient of the objective function is given by

∇ (log | detU|) = U−⊺. (3)

• For n < 6, all optima of (1)–(2) are global optima. In

[2] the authors give specific values of X that guarantee

all optima of (1)–(2) are solutions to the blind decoding

problem for n ≤ 4. The case n = 5 is discussed in [18].

• Solutions to the blind decoding problem lie on vertices

of the feasible region. When n is such that a Hadamard

matrix exists, all optima are strict and lie on vertices. In

all cases, optima will only lie on the boundary of the

feasible region. This is proven in [2].

While it is shown in [2] that the interior point method with

a logarithmic barrier function provably solves the non-convex

blind decoding problem for small n, this approach has several

practical limitations. First, for n > 5, local optima exist, and

this approach is no longer guaranteed to be correct. As n
grows substantially beyond 5, the proportion of optima that are

local increases and thus this approach becomes less effective.

Second, this approach is not efficient from a computational

TABLE II
PROBABILITY A ±1-VALUED MATRIX WITH n ROWS DRAWN UNIFORMLY

AT RANDOM HAS THE MSP BY NUMBER OF COLUMNS.

n 90% 99% 1− 10−6

2 5 9 22

4 10 13 26

6 14 18 29

8 16 20 34

10 28 34 40

perspective. All solutions are located on vertices of the feasible

region. In general, barrier methods are not well suited to solve

this class of problems [19]. The gradient of the objective

function varies rapidly near the boundary of the feasible

region which, along with the large number of linear constraints

imposed by (2), creates numerical instability. As a result, even

at low dimension, off-the-shelf solvers such as MATLAB’s

fmincon will require a large number of Newton steps to

converge. Further, in our numerical experiments in solving

(1)–(2), we have observed that such interior point solvers

almost never converge for n > 8.

A. Sample Size Requirements

In [2], the authors provide both empirical and analytic

results describing the probability that the matrix X has the

MSP. If X does not have the MSP, then the global optima of

(1)–(2) do not correspond to solutions of the blind decoding

problem. In this case, both the approach described in [2]

and the approach described in this work will fail to output

a correct solution to the blind decoding problem. In Table II,

we provide the probability that a matrix X drawn uniformly

over {−1,+1}n×k has the MSP for several values of n and

k. Note that the MSP alone is not sufficient to ensure that all

global optima of (1)–(2) are solutions to the blind decoding

problem — the criteria for ensuring that no spurious optima

exist varies drastically for each value of n. For most values

of n, we typically require only one or two columns that are

pair-wise independent from the maximal subset of columns

that form the MSP. Thus, the probabilities given in Table

II closely approximate the probability that (1)–(2) has no

spurious optima. See [2] for a more complete discussion of

sample size requirements.

IV. ALGORITHM OVERVIEW AND PERFORMANCE

The program (1)–(2) is not linear, nor is it even convex. One

should not necessarily expect tools from convex optimization,

let alone linear programming, to work well. However, we adapt

such techniques by leveraging two facts about the problem

geometry: the fact that the objective function is multilinear

in the rows of U, and that solutions to the blind decoding

problem lie on vertices of the feasible region. Informally,

our algorithm attempts to find an appropriate solution to the

blind decoding problem by hopping between vertices of the
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feasible region in a similar manner to the simplex algorithm.

For this reason, we refer to our algorithm as the vertex hopping

algorithm. In this section, we give a high-level overview of

our approach to blind decoding as well as empirical results

demonstrating its BER performance.

The first step of the vertex hopping algorithm is finding

a value of U that is at a non-singular vertex of the feasible

region. We refer to this process as Vertex Finding. It turns out

that finding such a vertex is a non-trivial task and is often the

majority of the work in solving the problem. This procedure

is described in Section V.

Once we have found an initial non-singular vertex of the

feasible region, we efficiently explore neighboring vertices of

the feasible region in search of a global optimum. This is

accomplished in a similar manner as the simplex algorithm.

We form a tableau from the linear constraints that define

the feasible region and hop between vertices by performing

Gauss-Jordan pivots on this data structure. This procedure is

described in greater depth in Section VI.

At each step, we hop to the neighboring vertex that has the

largest increase in objective function and backtrack if we find

a local optimum. We discuss how to identify when we are at a

local versus a global optimum in Section VI-D. Local optima

are rare and do not exist for n ≤ 5. In nearly every case the

algorithm terminates after at most a few hops; we elaborate

on when this is not the case in Section VI.

A. Numerical Results

In Figure 1, we show empirical results regarding the re-

sulting BER of our scheme in the presence of AWGN both

with a 2.5% outage probability and a zero-outage probability

for the Gaussian model described in Section II. In Figure 2,

we present the same results for a Rayleigh fading scenario,

where each entry of the channel gain matrix is drawn i.i.d.

from a Rayleigh distribution with unit variance. We compare

our algorithm to zero-forcing with perfect CSI as well as to

the gradient-descent based approach given as Algorithm 1 in

[2], which we henceforth refer to as simply ‘gradient descent’.

We also compare our algorithm to maximum-likelihood de-

coding with imperfect CSI. As described in Section VII, our

algorithm may fail when attempting to recover the channel

gain in the presence of AWGN. In this set of simulations,

an outage is determined by the failure rate of our algorithm.

We observe that both the failure rate and BER performance

of our algorithm is highly related to the condition number of

the channel. Removing the cases where our algorithm fails is

nearly equivalent to removing the channels that are the most

poorly conditioned. Additionally, we note that for n = 4,

the average Rayleigh channel has a higher condition number

than the average Gaussian channel, which explains why the

performance of our algorithm in Figure 2 is superior to the

performance in Figure 1 For all SNR values tested, we

outperform ML decoding with an estimation error modeled as

AWGN with variance as low 1% of the channel noise variance.

We see that at low SNR, our algorithm nearly matches zero-

forcing. At high SNR, our approach yields an increased BER

over schemes like zero-forcing. This is caused by the rounding

procedure used in our vertex finding algorithm presented in

Section VII. We discuss why performance degradation arises

in more detail in Section VII-B. It is an open problem to

develop alternative approaches for high SNR that mitigate this

noise enhancement. Obtaining analytic results regarding the

performance of our algorithm in the presence of noise appears

extremely difficult as one must account for randomness in the

algorithm, the channel gain matrix, the transmitted symbols,

and the AWGN.

In Figure 3 we give the success probability of the vertex

hopping algorithm for various values of n in the limit of

high SNR, where success is defined as properly recovering

X correctly up to an ATM. Here X is generated uniformly at

random, and the success probability of our algorithm almost

exactly matches the empirical probability that a random X

has the correct theoretical guarantees provided in [2]. We

outperform the gradient descent algorithm in [2] beyond

n = 5.

B. Performance Analysis

A rigorous theoretical analysis of the time complexity of

our algorithm is beyond the scope of this paper. However, we

informally comment on the typical performance observed by

our algorithm. Our algorithm treats the blind decoding problem

as a mixed-integer linear program; optimizing such programs

is classic example of an NP-complete problem [20]. Thus, it

is likely that exactly solving (1) – (2) becomes hard for large

n.

We note, however, that in case that occurs with non-

negligible probability for n ≤ 4, the initialization step given

in Section V will directly return a global optima. The time

complexity of this step of our algorithm is considered in more

depth in Section V, where it is shown to be O
(

n4k
)

. Further,

we have observed that for n ≤ 8, if the problem is not solved

by the initialization step, we typically require only one or two

vertex hops. As described in Section VI-C, a single iteration

of the pivoting process requires only O
(

n3
)

operations. Thus

in practice, our algorithm typically performs near the limit of

O
(

n4k
)

. Empirically, we find that for n ≤ 5, the runtime of

our algorithm indeed scales roughly linearly with k. For larger

values of n, we discuss the dependence of the runtime on k
in Section VI-E.

For n ≥ 6, where local optima exist, we occasionally

encounter a ‘trap’ case as described in Section VI-B. In these

cases the solver often enumerates a large subspace before

exiting, thus inflating the average runtime. Beginning at n = 8,

the runtime of our algorithm begins to noticeably increase with

n. We note that the spectrum of possible determinants of ±1-

valued matrices grows rapidly as n grows (see [21]) and we

conjecture that this rapid growth of possible determinants leads

to the increased runtime of our algorithm with n.

V. INITIALIZATION

Linear programs are often solved by the simplex technique

which hops between vertices of the feasible region in order to

find a global optimum. Typically the simplex technique begins

at the origin of the feasible region. When the origin of a linear
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Fig. 1. The BER using various MIMO decoding schemes to estimate X in the presence of AWGN. Here n = 4, k = 30, where A is drawn with i.i.d.
Gaussian entries. For large values of n, both gradient descent and ML decoding become prohibitively computationally expensive.
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Fig. 2. The BER using various MIMO decoding schemes to estimate X in the presence of AWGN where the channel gain matrix is Rayleigh distributed,
with n = 4 and k = 30.

program is not feasible, techniques exist to find a suitable

feasible solution, often termed a basic feasible solution or BFS

[22]. Unfortunately, it is not clear how to leverage standard

techniques to solve our problem. In our case, the origin is

singular, as are a majority of the vertices of the feasible region,

and so in particular the gradient is not defined and we cannot

start our vertex-hopping technique at these points.

We now present our algorithm for finding a suitable BFS,

which is summarized in Algorithm 1 and is referred to as

the ‘vertex finding’ process. The ℓ∞ constraints in (2) can

be expressed as 2kn × n2 linear inequality constraints: let

u = vec(U), then (2) can be expressed as Ȳu ≤ 1 for some

appropriate Ȳ. Suppose U satisfies l constraints with equality.

Then we form the l × n2 matrix B by taking the appropriate

rows of Ȳ. The matrix B now describes the active constraints.

If we consider Ũ = U+∆ and ∆ ∈ null(B), then Ũ will still,

at a minimum, satisfy the same l constraints with equality.

We refer to the process of setting Ũ = U + ∆ for some

∆ ∈ null(B) as “moving within the nullspace of the active

constraints”.

We begin by choosing a random feasible point using

the technique described in [2], which involves drawing U

uniformly from the set of orthogonal matrices of order n
and then scaling U until UY is feasible. Our technique

successively solves one-dimensional optimization problems.

At each step, U is perturbed so that at least one additional

constraint becomes active. This is accomplished by projecting

the gradient onto the nullspace of the active constraints. The
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until we reach the boundary of the feasible region. The next step is taken by
projecting the gradient at U1 onto the nullspace of the basis formed by the
set of active constraints.

solver then moves in this direction, leaving the already active

constraints unchanged, until an additional constraint becomes

active. As a result, when Algorithm 1 terminates, we are

guaranteed that at least n2 constraints are active. A graphic

depiction of this process is shown in Figure 4.

Algorithm 1 will return a value of U such that at least n2

entries of UY will be equal to ±1, with at least n of these

entries per row. Because the remaining entries of X̂ = UY

are not independent, we often find that most, if not all, entries

equal ±1. In Section VI-E we discuss how often Algorithm

1 returns a suitable X̂, and more complete empirical results

regarding the distribution of the elements of UY at the output

of Algorithm 1 are given in Section VII.

After running Algorithm 1, the resulting columns of X̂

must be separated into ‘good’ versus ‘bad’ columns. Good

columns are those that lie in {−1,+1}n. We let Yg and Yb

denote the matrices composed of corresponding good and bad

Algorithm 1 Vertex Finding

Input: An n×k matrix of received samples Y. Any feasible,

full rank starting point U.

Output: A matrix U that satisfies at least n2 linearly inde-

pendent constraints of (2) with equality.

1: while B is not full rank do

2: ∆ = U−⊺.

3: Find N, a basis for null(B).
4: Compute ∆ = proj

N
∆.

5: Find max t ∈ R+ such that

‖(U+ t∆)Y‖∞ = ±1.

6: Update B.

7: end while

8: return U

Algorithm 2 Efficient Projection

Input: The l× n2 matrix B, the n× n matrix ∆.

Output: The component of ∆ that lies in null(B).
1: Compute C = BB⊺. Save indices of non-zero off-

diagonal entries of C.

2: for each i < j such that cij 6= 0 do

3: u = b(i), v = b(j)

4: v = v − (uv⊺/uu⊺)u
5: if ‖v‖ > 0 then

6: b(j) = v/‖v‖
7: else

8: Store j as redundant.

9: end if

10: end for

11: Remove redundant rows of B.

12: δ = vec(∆)
13: for each row b(i) in B do

14: δ = δ −
(

δ ·
(

b(i)
)⊺
)

b(i)

15: end for

16: return mat(δ)

columns of Y respectively. If Yg is not full rank, then we

must rerun Algorithm 1 again until a suitable X̂ is obtained.

For sufficiently large k, it is very rare in the noiseless case

that Algorithm 1 fails to produce a suitable output; we further

quantify when this happens in Section VI-E.

We now briefly comment on the time complexity of Algo-

rithm 1. Algorithm 1 will require n2 iterations to ensure that

at least n2 constraints become active. Computing the inverse

of U requires O
(

n3
)

operations. The process of projecting

the gradient onto the nullspace of the active constraints is

considered in Section V-A where it is shown that this requires

at most O
(

n3
)

operations per call. Finally, updating B re-

quires computing the product ∆Y which requires O
(

n2k
)

operations. Since k > n, this means that Algorithm 1 requires

O
(

n4k
)

operations.

A. Efficient Projection

At each iteration of Algorithm 1, we must project the

gradient onto the nullspace of the active constraints. Since

the matrix B has n2 rows, a naı̈ve approach to finding
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the nullspace of B would require O(n5) operations. In this

subsection, we describe how to efficiently exploit the sparse

structure of the matrix B to efficiently project a vector away

from B.

We begin by considering the structure of the matrix B. At

each iteration of the inner loop of Algorithm 1, at least one

more constraint becomes active. Suppose that there are l active

constraints at the beginning of an iteration of Algorithm 1, and

that at the completion of this iteration, x̂ij (where X̂ = UY)

becomes ±1. In this case, we append the following row to B:

b(l) =
[

0i∗n y(j)
⊺

0(n−i−1)∗n

]

.

That is, the lth row of B will consist of i ∗ n zeros, followed

by the jth column of y, with zeros in the remaining entries.

If multiple constraints become active in a single iteration, we

simply add additional rows to B in the same manner. From

this discussion, it is clear that the rows of B can be ordered to

obtain a block diagonal structure. At most, B will consist of

n blocks that are l×n large. In each iteration of Algorithm 1,

we can easily insert each row of B appropriately to maintain

this block structure.

Given this block matrix, an efficient procedure to find the

component of ∆ that lies in null(B) is described in Algorithm

2. The algorithm first finds an orthonomoral basis for the

subspace span(B). The block structure of B means that many

of its rows are already orthogonal, this means the matrix

C = BB⊺ is nearly diagonal. Given a basis for span(B),
we obtain the desired output by projecting vec (∆) away from

each basis vector.

We now consider the runtime of this procedure. The matrix

C need not be updated from scratch at each step and can be

computed block-wise. We also note that computing C gives

all inner products needed in line 4 of Algorithm 2, and each

inner product requires O(n) operations. At most we will need

to compute n2 of these inner products per call to Algorithm

2. Similarly, for the loop in lines 13-15, the matrix B will

have at most n2 rows and each vector rejection operation will

require O(n) operations. At worst, this process will require

O(n3) operations. However, in practice, we find that for most

calls to Algorithm 2, each block in C has fewer than n rows

and C will only have one or two non-zero entries. Thus we

typically perform much better than this bound.

VI. VERTEX HOPPING

A. Graph of Vertices

We know that solutions of the blind decoding problem will

only occur on vertices and thus we attempt solve the blind

decoding problem by searching these vertices. We note that

there are at most 2n
2

possible vertices UY where U ∈ R
n×n

and Y ∈ R
n×k. Note that if k > n strictly, then a vertex is

determined entirely by any n linearly independent columns of

Y. Additionally, if k > n, then some of the 2n
2

vertices may

become infeasible.

Our search process, summarized in Algorithm 3, begins with

a vertex determined by Algorithm 1. Given such a point we

can restrict ourselves to performing optimization on a graph

that represents the vertices of the feasible region. In this graph,

there are at most 2n
2

nodes corresponding to vertices of the

feasible region as described above. An edge exists between two

nodes if their corresponding values of UY differ by Hamming

distance 1. Thus, our graph contains up to 2n
2

nodes and

n2 · 2n
2

edges.

Specifically, given a value of U obtained by the output of

Algorithm 1, we attempt to solve the blind decoding problem

by solving the following program

maximize log | detU| (4)

s.t. UYg = ±1 (5)

‖UYb‖∞ ≤ 1.

This is a non-linear mixed-integer program and we will

attempt to optimize it as such. We do so by flipping the signs

of individual entries of UYg in an attempt to hillclimb towards

an optimal value of U while allowing for backtracking when

we reach a local optimum. Before we discuss our approach

to solving it, we give state several important facts about the

program.

Claim 1. All global optima of (4)–(5) are also global optima

of (1)–(2) .

Proof. We know that (1)–(2) contains global maxima such that

UY ∈ {−1,+1}n×k [2, Lemma 3]. Any U such that UY ∈
{−1,+1}n×k will clearly be feasible in both (1)–(2) and (4)–

(5). So there must be a U that maximizes (1)–(2) that also

maximizes (4)–(5). Further, any U that is feasible in (4)–(5)

is clearly also feasible in (1)–(2) . So all U that maximize

(4)–(5) will also maximize (1)–(2) .

We note that the converse of this statement is not true: when

n is such that no Hadamard matrices exist, (1)–(2) may contain

(non-strict) optima that are not feasible in (4)–(5), see [2].

We also note that we have not ruled out the possibility that

the additional constraints imposed in (4)–(5) introduce local

optima that are not present in (1)–(2) . Empirically, we have

not observed such optima for n < 6. Further, for n ≥ 6, the

fraction of local optima that are encountered while optimizing

(4)–(5) is consistent with the fraction of optima that are local

in (1)–(2) . This suggests that either such spurious optima do

not exist or are insignificant in number. However, we defer on

obtaining analytic results supporting this claim.

B. Tableau Formation

We use the tableau data structure, commonly used to im-

plement the simplex algorithm, to efficiently allow us to ‘hop’

between feasible values of U and flip a single entry of UYg.

In this subsection, we describe how to formulate this tableau

in a process that closely follows [22].

Given an output of Algorithm 1, U, we construct a linear

program (LP) that is the first-order approximation of (4)–(5).

To do this, we simply replace the objective function with the

gradient of the objective function, which in this case is U−⊺.

We do not fully solve this LP as the objective function must be

updated after each simplex hop. In order to form a traditional

simplex tableau, the problem must be expressed in standard

form. An LP in standard form optimizes a linear functional
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over non-negative vector x subject to a series of equality

constraints, explicitly, for some b, c ∈ R
n and A ∈ R

n×n,

we aim to find x ∈ R
n according to

max
x

c⊺x

s.t. Ax = b

x ≥ 0.

In order to express the constraints in (5) in standard form,

we must replace each entry ui,j with a pair of variables

constrained such that ui,j = xi′ − xi′′ and xi ∈ R+ for

all i. The ℓ∞ constraints in (5) can be replaced by a series

of inequality constraints as described in Section V. Each

of these inequality constraints can further be replaced by a

single equality constraint with the addition of a slack variable;

that is, a constraint in the form
∑

i a
(i)xi ≤ bi becomes

∑

i aixi+xj = bi for some xj ≥ 0. If Yg has l columns, then

we are left with a set of 2nk linear equations with 2n(n+ l)
variables.

The final step in forming a tableau is to solve for all x
variables to obtain a suitable BFS. First, for each xi′ and

xi′′ such that ui,j = xi′ − xi′′ , we must set exactly one x
variable to zero such that the remaining x variable is positive

(that is, if ui,j is positive, then xi′ = ui,j and xi′′ = 0). We

then perform Gauss-Jordan elimination on the remaining linear

equations in order to solve for the remaining x variables. We

note that the sparse structure of the tableau can be exploited

to efficiently perform this elimination, see [22] for a more

complete description of this process.

C. Searching the Feasible Region

Hopping to an adjacent vertex of the feasible region involves

flipping exactly one entry of UYg between its two possible

extrema, namely {−1,+1}. The simplex tableau allows us

to perform the necessary calculations efficiently; changing an

entry of UY affects only a single row of U, implying that each

pivot involves manipulating only a small subset of the linear

equations and variables that make up the full tableau. Indeed,

computing the corresponding change in U for each neighbor

can be done in only O(n) operations. We defer to existing

literature on the simplex algorithm (for example [22]) for a

description of the pivoting process. Instead, in this subsection

we focus on the process of efficiently selecting an appropriate

vertex to pivot to at each step of the depth-first search.

Unlike ordinary simplex, the process of selecting a pivot

is slightly more involved in our algorithm. Each vertex has at

most n2 feasible neighbors. The structure of the tableau allows

us to easily determine the change that hopping to each of these

vertices will induce on U. Suppose we update the ith row of

U such that u(i) = u(i) + ∆ for some ∆ ∈ R
1×n, meaning

U = U + ei∆. We can use the matrix determinant lemma

( [23]) to compute the corresponding change in the objective

function as

log | det (U+ ei∆) | = log |
(

1 + ∆U−1ei
)

det (U) |

= log |
(

1 + ∆U−1ei
)

|+ log | det (U) |

(6)

Because the logarithm function is monotonic, we can easily

predict the change this hop will impose on the objective

function by simply considering the value of
∣

∣1 + ∆U−1ei
∣

∣.

This requires only O(n) operations. The process of inspecting

all n2 neighbors and subsequently pivoting to an optimal

choice can be accomplished in only O(n3) operations. More-

over, because each pivot imposes a rank-one change in U,

U−1 can be efficiently updated via the Sherman-Morrison

inverse formula [24] after each hop, meaning U−1 need not

be computed from scratch each step.

During the vertex hopping process, we select the vertex in

the direction of the maximal positive gradient that has not

already been visited, continuing in a depth-first-search manner

until a global optimum has been located or a preset hop limit

has been exhausted. For many values of n, there may exist

local optima; for this reason, we allow the solver to hop to

neighboring vertices where the objective function is equal or

lesser in value. For most values of n, we can detect when

we have reached a global optimum, allowing the solver to

terminate without enumerating all non-singular vertices of the

feasible region. Our early termination criteria are discussed in

Section VI-D.

In order to efficiently backtrack when we reach a local

optimum, we keep a complete snapshot of the tableau at each

of the previously visited vertices. While we do allow the solver

to visit previously unvisited vertices that decrease the objective

function, we do not allow the solver to traverse vertices where

detU = 0. This is because the gradient of the objective

function is undefined at these vertices. While this may restrict

the search space of the solver, this is not frequently an issue.

We discuss cases where this becomes an issue in Section VI-E.

Finally, we note that considering other criteria to select the

next vertex in our search is a topic of future research. For

example, it may be possible to further optimize the vertex

hopping process by simply hopping to the first neighbor

encountered that increases the objective function rather than

exhaustively checking all n2 neighbors. Additionally, when the

fraction of ‘bad’ columns is large, one may consider positively

weighting vertices which cause more columns to be ‘good’.

For n ≤ 5, our current vertex hopping strategy rarely requires

more than one or two hops to reach a global optima. However,

as n grows, for certain values of k the majority of the time to

obtain the solution is consumed by the vertex hopping process.

Thus, improved vertex selection criteria may be necessary to

further reduce the runtime of our algorithm for n > 5.

D. Stopping Criteria

Since we do not know A, nor the value of | detA|, the value

of detU alone does not tell us whether (1)–(2) has obtained

a global optimum. However, the determinant of any square

matrix with values ±1 can only take on a discrete set of values

(see [21] or [25]). As a result, the only values that | detU| can

take is simply this spectrum scaled by some unknown constant,

namely detA−1. In other words, (1)–(2) is maximized when

the following quantity obtains the maximum determinant for
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Algorithm 3 Simplex with Backtracking

Input: U such that UYg is full rank.

Output: X̂ or error.

1: form simplex tableau

2: repeat

3: compute objective function at all neighboring vertices

using the matrix determinant lemma

4: if optimum reached then

5: if global optimum then

6: return X̂ = UY

7: else

8: backtrack to first vertex with unvisited neighbor

9: end if

10: end if

11: pivot to the largest feasible unvisited neighbor

12: update U−1 using the Sherman-Morrison inverse for-

mula

13: until state space exhausted

14: return error

any ±1-valued matrix of dimension n:

max
Ỹ∈Rn×n

| detUỸ| (7)

s.t. cols(Ỹ) ⊆ cols(Y). (8)

Solving this problem seems like a difficult combinatorial

optimization task so we do not rely on solving it directly.

However, when we are at an optimum, we can often determine

the value of (7) by inspecting the value of the objective

function at neighboring vertices. Indeed, for certain values

of n, we may uniquely determine when we have reached a

global optimum by considering the relative change between

the value of the objective function at the optimum and at its

n2 neighbors.

In this subsection, we provide necessary and sufficient

conditions to determine when Algorithm 3 has reached a

global optima, for n ∈ {2, . . . , 6, 8, 10, 12}. In Appendix A,

we prove that these conditions are sufficient up to n = 6; the

conditions given for n = 8, 10, and 12 are conjectured to be

sufficient based on empirical results.

As stated in Section VI-A, each vertex may have up to n2

neighbors, although not all these neighbors may be feasible.

Regardless of whether or not these vertices are feasible, we

may still compute the objective function at these neighboring

values using the process outlined in Section VI-C. The follow-

ing criteria, describing the value of the objective function at all

n2 neighboring vertices, may be applied to uniquely determine

when Algorithm 3 has reached a global optimum.

• For n ≤ 5, there are no local optima. In these cases, if all

n2 neighbors of UY decrease the value of the objective

function, then UY must be a global optimum.

• For n = 6, at any global optimum, the value of the

objective function at all 36 neighbors will take on ex-

actly 3 distinct values. Further, only global optima have

neighbors such that the value of the objective function

decreases to a fraction of 4/5 of the optimal value.

• For n = 8, if all 64 neighbors of UY decrease the value

TABLE III
RUNTIME AND AVERAGE CALLS REQUIRED PER SOLUTION FOR

ALGORITHMS 1 (VERTEX FINDING) AND 3 (SIMPLEX WITH

BACKTRACKING)

Vertex Finding Simplex with Backtracking

n k Avg. Calls Time/Call (s) Avg. Calls Time/Call (s)

2 8 1.01 5.33e-6 1.00 1.29e-5

3 13 1.01 1.89e-5 1.00 4.57e-5

4 18 1.03 5.68e-5 1.00 1.15e-4

5 18 1.28 9.78e-5 1.06 1.63e-4

6 22 1.75 2.31e-4 1.20 3.69e-4

8 30 4.47 6.11e-4 1.41 1.18e-3

of the objective function to a fraction of 3/4 of the optimal

value, then UY must be a global optimum.

• For n = 10, 20 neighbors of UY must decrease the value

of the objective function by a fraction of 1/3 the optimal

value while the remaining 80 neighbors must decrease

the value by 1/6.

• For n = 12, all 144 neighbors of UY must decrease the

objective function by 1/6 of the optimal value.

E. Causes of Failure

In this subsection, we consider when Algorithms 1 (Vertex

Finding) and 3 (Simplex with Backtracking) fail to properly

terminate. Provided that these algorithms are given proper

inputs, the probability that they succeed, for typical values

of n and k, is high. In cases where we do encounter a failure,

we find that rerunning the algorithm with a new starting point

(U0) is often sufficient to recover from this failure. For both

Algorithms 1 and 3, we provide the average number of calls

required to obtain a solution to the blind decoding problem

for various values of n and k in Table III, along with the

average runtime of each algorithm. We outline the reasons both

Algorithms 1 and 3 fail in the remainder of this subsection.

Although not depicted in Table III, we note that the number

of calls to each subroutine is highly dependent the value of k.

This is evidenced in Figure 5, which plots the average runtime

of our solver, normalized by k, for n = 6, 8, 10, and 12. As

previously discussed, an optimistic estimate of the runtime

of our algorithm is O(n4k). If our algorithm performed near

this estimated runtime, we would expect these lines would

be constant, i.e. that the runtime would scale linearly with

k. For n ≥ 6 and small values of k, our algorithm does

not appear to perform near the best-case complexity. This is

because, for large n and small k, the output of Algorithm

1 is often insufficient to produce a Yg that is full rank and

thus we require many calls to this subroutine to produce a

suitable Yg . We further note that in Figure 5, at large k,

the runtime appears to grow approximately quadratically by k
rather than linearly as predicted by our best-case analysis. This

is because our current implementation does not fully exploit

the sparsity of the tableau matrix; doing so would in fact

imposes a performance penalty for small k. We now discuss

the cases in which our subroutines fail in greater detail.
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Fig. 5. The average time to solution of our algorithm normalized by k, the
number of samples. For small values of k, the runtime is dominated by failures
of Algorithm 1. For large k, the runtime is dominated by the vertex hopping
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{±1}, {0}, or (−1,+1)\{0}, at the output of Algorithm 1 with no noise for
n = 4 and various values of k. We can see that as k grows, the fraction of
zero-valued entries decreases, while the fraction of entries in (−1,+1)\{0}
remains roughly constant. Data averaged over 100 000 trials and over all
(i, j) ∈ [1, . . . , n]× [1, . . . , k].

1) Insufficient ‘Good’ Columns: In order to form a simplex

tableau, we must find at least n linearly independent columns

that are contained in {−1,+1}n. When n = k and X is

maximal, we are guaranteed to find such a result. However,

for k > n, this is no longer guaranteed. We find that for small

n, as well as for all n when k is large, we obtain such a result

with high probability. However, we find that for large n and

small k, the probability that Algorithm 1 fails to produce a

suitable output becomes non-negligible.

Our empirical results suggest that for n ≤ 5, Algorithm

1 is certainly sufficient to initialize Algorithm 3. It is an

active area of research to determine whether or not alternative

initialization methods may help improve the average runtime

of our approach for larger n.

2) Trap Cases: For n = 6 and n = 8, it is possible to obtain

a BFS that lies in a component of the graph of vertices that

does not contain a global optimum. We refer to such cases

as trap cases. In these cases the solver will enumerate the

entire component and then exit without returning a solution

to the blind decoding problem. For both n = 6 and n = 8,

empirically, we see that the odds of finding such trap cases

decreases as k increases. Roughly, this occurs because either

portions of these components, or the entire component, be-

comes infeasible.

We find that when the solver is presented a BFS that lies

on a graph component with a global optimum, for n ≤ 8, the

solver typically only requires a very small number of hops

(rarely more than 4) in order to find this solution. However,

we note that as n increases, the number of vertices of the

feasible region grows exponentially fast; and we find that, for

n = 8, a trapped subspace may contain tens of thousands of

non-singular vertices. The default behavior of the algorithm is

to enumerate this entire subspace in attempt to find a global

optimum. As a simple heuristic to detect a trap cases, we

simply limit the maximum number of vertices that the solver

may visit in a single attempt. If the solver exceeds this limit,

we assume that the solver has encountered a trap case, and we

proceed by returning to Algorithm 1 and finding a new BFS.

Empirically, we find that setting this limit to 2nk is sufficiently

large to almost always avoid falsely detecting a trap case. It is

an open question to determine if there exist more intelligent

methods to recover from a trap case rather than restarting the

solver from scratch.

3) False Trap Cases: For all values of n, we find that there

is a small probability that Algorithm 3 will incorrectly termi-

nate after enumerating the entire state space, thus presenting

what appears to be a trap case. These ‘false traps’ are caused

by numerical instability; the solver may deem a neighboring

vertex to be infeasible because the values of one or more

entries of UY exceeds ±1 by more than a predefined floating

point threshold.

For n < 5, the odds of encountering a false trap is less

that one per one thousand with this probability increasing

slightly as n grows further. When such an error occurs, we typ-

ically find that the channel gain matrix is poorly conditioned

(κ > 105). Surprisingly, even with such poorly conditioned

channels, we can often recover from this type of error by

simply obtaining a new BFS and trying again. This behavior

indeed seems difficult to avoid for extremely ill-conditioned

channels. Because this behavior occurs so infrequently and

only in poorly conditioned channels, we believe that simply

restarting is a sufficient solution and we do not need to

consider further optimizations.

VII. ROBUST DECODING

A. Algorithm

So far, we have only considered solving the blind decoding

problem in the limit of high SNR. We now turn our attention
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to how to robustly solve the blind decoding problem in the

presence of AWGN. We make no claims that the technique

provided here is optimal in terms of BER performance; it

almost certainly is not. However, our technique works well

empirically and is computationally efficient. Our treatment of

this algorithm is entirely empirical; an analytic treatment of

the performance of our algorithm in the presence of noise is

a topic of ongoing research.

In order to understand how to adapt to noise, we consider

the output of Algorithm 1 in the noiseless case in more detail.

Empirically, for any (n, k), when Algorithm 1 terminates,

the vast majority of entries of UY are contained in the set

{−1,+1}. A small proportion, on the order of 1%, of entries

are 0-valued and an even smaller proportion (roughly two out

of 10 000) appear uniformly distributed within (−1,+1)\0.

Empirical results describing the distribution of the entries of

UY for n = 4 and various values of k is shown in Figure 6.

When AWGN is present, the behavior of Algorithm 1

changes drastically because the columns of Y no longer have

such strong linear dependence. With near certainty, the output

of Algorithm 1 will have only n2 entries that are exactly

{−1,+1}, and, as k grows, this means that Yg will almost

never be full rank and we will be unable to proceed with

Algorithm 3.

To address this issue, we add an additional rounding step

to Algorithm 1. If entries of UY are within some tolerance,

ǫ, of {−1, 0, 1}, we simply adjust Y to effectively round off

the corresponding entry of UY. Explicitly, we compute each

a matrix Σ where the ijth entry is given by

Σij =



















(UY)ij + 1 |(UY)ij + 1| < ǫ

(UY)ij − 1 |(UY)ij − 1| < ǫ

(UY) |(UY)ij | < ǫ

0 otherwise.

(9)

Y is then updated by computing Y = Y−U−1Σ. Performing

this rounding step only once is typically not sufficient to

find a value of Yg that is sufficient to construct a tableau.

Indeed, rounding only once is often insufficient when X has

columns that are identical up to a sign. In these cases, Yg

will be deficient in rank by the number of identical columns

of X. More independent columns of Yg may be found at this

point by returning to the main procedure of Algorithm 1 after

rounding.

The full rounding process is presented in Algorithm 4. In

practice, we find that the for loop contained in this algorithm

will often terminate after only one or two iterations. Repeating

the rounding process beyond n times will have no effect; after

completing n iterations of the process we are guaranteed that

the set of active constraints will be full rank.

B. Choosing ǫ and BER Performance

We now turn our attention to discussing the BER perfor-

mance of the vertex hopping algorithm using Algorithm 4. We

first consider the behavior of this algorithm in the high SNR

limit. From Figure 6, we see that roughly 2 out of 10 000 of the

entries are distributed in the interval (−1, 1)\0. When these

entries are within ǫ of ±1 then Algorithm 4 will incorrectly

Algorithm 4 Vertex Finding in the presence of AWGN

Input: Y

Output: Ŷ, U which is a BFS.

1: Draw U0 at random as usual

2: Y0 = Y

3: for i = 0, i < n, i++ do

4: Ui+1 = Algorithm 1 (Ui,Yi)
5: if ‖Ui+1 −Ui‖∞ < ǫ then

6: break

7: end if

8: Compute Σ as in eq. (9).

9: Yi+1 = Yi −U−1
i+1Σ

10: end for

11: return Ui, Yi.

force these entries to ±1. This may result in recovering an

estimate of A−1 that is not equivalent up to an ATM. This

behavior explains the noise enhancement observed at high

SNR in Figure 1. We note that one impractical solution to

avoid this effect would be to run the gradient descent algorithm

of [2] using the output of the vertex hopping algorithm as

a starting point. However, this would greatly increase the

runtime of the algorithm. It is an open problem whether or not

this phenomena can be avoided without drastically increasing

the runtime of the algorithm.

In the presence of AWGN, we observed that the BER is

effectively constant for a given value of ǫ. Instead, with a

fixed value of ǫ, as SNR decreases, the odds that the solver

will complete decays. This is because, if ǫ is small compared

to the noise variance, the rounding procedure described above

is unlikely to have any effect. As a result, it is unlikely that

Algorithm 4 will yield a value of Y with a full rank Yg . The

odds that Algorithm 4 produces a suitable output as a function

of SNR for various values of ǫ is presented on the left-hand

side of Figure 7.

Unlike the trap cases discussed in Section VI-E, the odds

of Algorithm 4 succeeding is largely dependent on the input

Y and not the initial choice of U0. In other words, if the

solver fails at low SNR, it is unlikely to succeed if it is run

again with a different choice of U0. In practice, in the low

SNR regime, we run several iterations with different choices

of U0 to account for failures due to trap cases, but if these

attempts fail we must either declare an erasure or raise the

value of ǫ. This behavior allows us to choose the value of ǫ
based requisite bit- and block-error rates. The right-hand side

of Figure 7 shows the average BER as a function of ǫ. These

results are averaged over all SNR values ranging from 10dB

to 30dB.

Finally, we note that, in addition to the noise variance, the

condition number of the channel gain matrix also plays a large

role in both the success probability depicted in Figure 7 and

the BER performance. Indeed we find a very high correlation

between the failure rate of our algorithm and the condition

number of the channel. A more optimal strategy would likely

entail choosing ǫ, for example, based in part on the singular

values of Y, rather than exclusively on the SNR. We did not

explore how to exploit this relationship as computing the SVD
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Fig. 7. On the left, the probability of the vertex hopping method completing (that is, returning a value of X̂ that may or may not be correct up to an ATM)
for different values of ǫ. On the right, the BER of the solver is averaged across SNR values ranging from 10dB to 30dB and plotted against ǫ. The BER of
our approach is almost entirely a function of the value of ǫ and not SNR.

of Y adds significant complexity at the receiver. Further, if the

distribution of the channel gain matrix is such that the variance

of its condition number is small over each block then such an

approach would be of little benefit.

VIII. CONCLUSION

In this work, we have presented a ‘vertex hopping’ algo-

rithm that can efficiently and reliably perform blind decoding

of BPSK MIMO symbols in the presence of AWGN. We

present the problem of decoding as a non-linear mixed-integer

program and leverage techniques from solving linear program-

ming to solve it. Our vertex hopping algorithm consists of a

two-step process; we must first find a suitable vertex of the

feasible region that describes the integer program. Once this

vertex is found we hop between vertices of the feasible region

in an attempt to search for a global optimum.

Empirically, we show that this technique is both efficient

and reliable for MIMO systems as large as n = 8. Our

technique still works beyond n = 8, but the underlying non-

convex optimization problem appears to become computation-

ally difficult as n grows. For small n, the vertex hopping

algorithm is both efficient and practical in terms of sample

and computational complexity. At low SNR, our technique

performs comparably to zero-forcing decoding and at all SNRs

outperforms ML decoding with as little as 1% CSI error.

The algorithm presented in this work motivates a suite of

future research topics. Many of these topics are related to

understanding and improving the performance of our algo-

rithm in a variety of operating conditions. Examples include:

developing optimizations to exploit the structure present in

complex channel gain matrices, studying the performance of

our algorithm under higher modulation orders, and considering

rectangular channels. Further, more research is warranted at

the wireless-systems level to understand how to best use

our algorithm to build high-rate, reliable MIMO systems that

operate in environments with rapidly changing CSI.

APPENDIX A

STOPPING CRITERIA

In this appendix, we prove that the criterion given in Section

VI-D are indeed necessary and sufficient to determine whether

a value of U is at a global optimum. For simplicity of

exposition, we simply consider the case k = n; the arguments

contained in this section indeed still hold when k > n as we

can still compute the objective function of all n2 neighboring

vertices regardless of whether or not they are feasible.

Theorem 1. For n ≤ 6, a global optimum can be detected

based on the value of the objective function obtained on each

of its n2 neighbors.

This theorem follows trivially for n ≤ 5 due to the fact

that the only optima contained on the vertices of the feasible

region are in fact global in these cases. This is proven in [2]

and [18]. Before proving this theorem for n = 6, we formalize

the discussion in Section VI-D regarding the optima of (7)–(8).

Define the set D = {| detX| : X ∈ {−1,+1}n×n}, which in

[21] is referred to as the spectrum of possible determinants.

Since, in the noiseless case, detUY = detUAX, and

| detX| ∈ D, this implies the following claim:

Claim 2. The value of | detU| = D| detA−1| for some D ∈
D.

We say that a ±1-valued matrix is maximal if it obtains

the maximum determinant amongst all matrices constrained to

{−1,+1}n×n. Suppose there are N distinct maximal matrices,

then we denote these matrices as X1, . . . ,XN .

Definition 1. Equivalence of matrices. Two matrices X1,

X2 are weakly equivalent if, for some T1,T2 ∈ T , X1 =
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T1X2T2. If X1 = T1X2, then X1,X2 are strongly equiva-

lent.

Strong equivalence is the same as being equivalent up to an

ATM, which only allows permutation and negation of columns.

All solutions to the blind decoding problem are strongly

equivalent. However, matrices that are weakly equivalent to

X may have both permuted rows and columns. Such matrices

are not necessarily solutions to the blind decoding problem

and may correspond to spurious optima.

We now consider the poset formed by taking a single

vertex and its n2 neighbors and imposing an ordering on the

graph. Specifically, the poset (X ,≤) formed by taking the

set, X , containing UY and its n2 neighbors, and imposing

the ordering where A ≤ B implies | detA| ≤ | detB|.

Lemma 1. Suppose n is such that all maximal ±1-valued

matrices are weakly equivalent and that there are N maximal

matrices. Then all posets (X1,≤), . . . , (XN ,≤) are isomor-

phic.

Proof. Consider the mapping φk,l : R
n×n → R

n×n given

by Xi 7→ TkXiTl, for some Tk,Tl ∈ T . This mapping is

one-to-one since all elements of T are square and full rank.

This mapping also preserves the ordering of the poset (Xi,≤).
This is because permuting rows or columns of a matrix can

only change the sign of its determinant, and likewise for

negating its rows or columns; hence, for any X,Tk,Tl, we

have | detX| = | detTkXTl|. If Xj = φk,l(Xi), then this

implies that the poset (Xi,≤) is isomorphic to (Xj ,≤). Since

n is such that there is only one weak equivalence class of

maximal determinant matrices, this implies that for any Xi

and Xj , there exists a k, l such that Xj = φk,l(Xi). Thus, the

posets (Xi,≤), (Xj ,≤) are isomorphic for all i, j.

Up to n = 10, and for several values beyond n > 10, all

maximal matrices are weakly equivalent (see [26]); Lemma

1 holds for these cases. Beginning at n = 6, local optima

exist in (1)–(2) . However, the following lemma shows that the

poset obtained at any global optima in this case is uniquely

identifiable.

Lemma 2. For n = 6, the poset (X ,≤) obtained at a global

optimum is uniquely identifiable.

Proof. For n = 6, we have D = {0, 32, 64, 128, 160}. By

Lemma 1, and the fact that all maximal matrices at n = 6 are

weakly equivalent, we can consider the neighbor pattern of

any one maximal vertex. We now require the following claim,

which may be verified by inspecting all 36 neighbors of any

maximal n = 6 matrix.

Claim 3. Any maximal matrix at n = 6 has only neighbors

with determinants ±128,±96, and ±64.

Given any particular UY, we can determine the value of the

objective function obtained by using the procedure outlined in

Section VI-C. By Claim 3, if a matrix is maximal the objective

functions at its neighbors must take on three distinct non-

zero values. Thus, if the neighbors of UY have three distinct

possible non-zero values, this immediately implies that the

value of (7) obtained at UY must be either 160 or 128.

We can distinguish between these two cases by simply

considering the relative change between the value of the

objective function at UY and one of its neighbors that is

closest in value. Call such a candidate vertex U′Y. If UY is

maximal, by Claim 2, we must have | detU′/ detU| = 4/5.

This is because 160 the only element of D that is divisible by

5. This process uniquely determines that UY is maximal; if

UY is not maximal than | detU′/ detU| < 4/5.

This completes the proof of Theorem 1. Proving similar

results for larger values of n appears difficult as n grows. Not

only does the number of ±1 matrices grow exponentially in

n, but also size of the set D grows rapidly. However, we do

conjecture that the following criteria is sufficient for detecting

global optima at n = 8.

Conjecture 1. For n = 8, maximal vertices are the only

vertices such that for all 64 neighbors, the objective function

decreases by a factor of 0.25.

It is not hard to see that this condition is necessary. For

n = 8, there is only one equivalence class of strongly equiva-

lent maximal matrices, and such matrices have a determinant

of ±4096. Further, for any maximal matrix, changing any

single entry results in a matrix with determinant ±3072.2

Empirically, we have not found any non-maximal matrices

where a similar property holds. However, we defer on a

rigorous proof of this conjecture. We state similar conjectures

for the cases n = 10 and n = 12.

Conjecture 2. For n = 10, a vertex is maximal if and only

if 20 of its 100 neighbors decrease the objective function by

a fraction of 1/3 and 80 of its 100 neighbors decrease the

objective function by a fraction of 1/6.

Conjecture 3. For n = 12, a vertex is maximal if and only

if all 144 of its neighbors decrease the value of the objective

function by a fraction of 1/6.
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