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Abstract. We consider the problems of reaching average consensus and solving consensus-based opti-
mization over unreliable communication networks wherein packets may be dropped accidentally during
transmission. Existing work either assumes that the link failures affect the communication on both
directions or that the message senders know exactly, in each iteration, how many of their outgoing links
are functioning properly. In this paper, we consider directed links, and we do not require each node
know its current outgoing degree.
First, we propose and characterize the convergence rate of reaching average consensus. Then we apply
our robust consensus update to the classical distributed dual averaging method wherein the consensus
update is used as the information aggregation primitive. We show that the local iterates converge to a
common optimum of the global objective at rate O( 1√

t
), where t is the number of iterations, matching

the failure-free performance of the distributed dual averaging method.

1 Introduction

Reaching consensus and solving distributed optimization are two closely related global tasks of
multi-agent networks. In the former, every agent has a private input, and the common goal of the
networked agents is to reach an agreement on a value that is determined by these private inputs
such as maximum, minimum, average, etc. In the latter, typically, every agent has a private cost
function, and the common goal is to collaboratively minimize a global objective which is some
proper aggregation of these private cost functions.

Average consensus has received intensive attention [8,10,22] partially because one can use av-
erage consensus as a way to aggregate agents’ private information. Different strategies to robustify
reaching average consensus against unreliable networks have been proposed [17,7,4,21,6]. Undi-
rected graphs were considered in [17,6], where the link failures affect the communication on both
directions. Dynamically changing data and networks are considered in [6]. Directed graphs were first
considered in [7], however, only biased averages were achieved. Later work corrected these biases
[4,21] via introducing auxiliary variables at each agent; however, only asymptotic convergence was
shown. To the best of our knowledge, non-asymptotic convergence rate is still lacking 1.

Consensus-based multi-agent optimization is an important family of distributed optimization
algorithms. In a typical consensus-based multi-agent optimization problem [5,14,13,20], each agent
i keeps a private cost function hi : X → R, and the networked agents collectively want to reach
agreement on a global decision x∗ ∈ X such that the average of these private cost functions is
minimized, i.e.,

x∗ ∈ argminx∈X
1

n

n∑
i=1

hi(x),

? This research is supported in part by National Science Foundation awards NSF 1329681 and 1421918. Any opinions,
findings, and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect
the views of the funding agencies or the U.S. government.
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1 As indicated by the common arXiv code, [19] is only an early version of this work.
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where n is the total number of agents in the system. The applications of such distributed optimiza-
tion problems include distributed machine learning and distributed resource allocation. Robustify-
ing distributed optimization against link failures has received some attention recently [5,13]. Duchi
et al. [5] assumed that each realizable link failure pattern admits a doubly-stochastic matrix. As-
suming each agent knows, in each iteration, the number of outgoing links that are working properly
[13], the requirement for doubly stochastic matrices was removed by incorporating the push-sum
mechanism. However, the implementation of push-sum in [13] implicitly assumed the adoption of
acknowledgement mechanism.

In this work, we consider directed links, and we do not require each node know its current
outgoing degree. That is, the message losses might be asymmetric between a pair of agents, and if
a message packet is dropped by a link, the sender is not aware of this loss. Although acknowledge
mechanisms can be incorporated to improve reliability, it may slow down the convergence due
to the necessity of message retransmission. In this paper, we first propose and characterize the
convergence rate of reaching average consensus in the presence of packet-dropping link failures.
Then we apply our robust consensus update to the classical distributed dual averaging method
wherein the consensus update is used as the information aggregation primitive. We show that the
local iterates converge to a common optimum of the global objective at rate O( 1√

t
), where t is

the number of iterations, matching the failure-free performance of the distributed dual averaging
method.

2 Network Model and Notation

We consider a synchronous system which consists of n networked agents. The network structure
is represented by a strongly connected graph G(V, E), where V = {1, . . . , n} is the collection of
agents, and E is the collection of directed communication links. Let Ii = {j | (j, i) ∈ E} and
Oi = {j | (i, j) ∈ E} be the sets of incoming neighbors and outgoing neighbors, respectively, of
agent i. For ease of exposition, we assume no self-loops exist, i.e., i /∈ Ii ∪ Oi, ∀i ∈ V. For i ∈ V,
let doi = |Oi|. The communication links are unreliable in that packets may be dropped during
transmission unexpectedly. However, a given link is assumed to be operational at least once during
B consecutive iterations, where B ≥ 1. Similar assumption is adopted in [13,14].

3 Robust Average Consensus

Reaching average consensus in directed networks has been intensively studied [16,1,12]. In particu-
lar, in Push-Sum [12,2], each networked agent updates two coupled iterates and the ratio of these
two iterates approaches the average asymptotically. The correctness of Push-Sum crucially relies on
“mass preservation” (specified later) of the system. However, when the communication links suffer
packet-dropping failures, the desired “mass preservation” may not hold. Robustification method
has been introduced to recover the dropped “mass” [10,9], where auxiliary variables are introduced
to record the total “mass” sent and delivered, respectively, through a given communication link.
However, only asymptotic convergence is provably guaranteed [10,9]. In this section, we focus on
characterizing the convergence rate of robust average consensus. To do that, we need to provide
an algorithmic fix of the robust Push-Sum proposed in [10]. This simple fix allows us to use the
standard matrix product analysis to show convergence. Note that better convergence rates might
be obtained by carefully exploring the structures of the communication graphs.

3.1 Robust Push-Sum

In this subsection, we briefly review the Push-Sum algorithm [12,2] and its robust variant [10]. In
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Algorithm 1: Push-Sum [12,2]

1 Initialization: zi[0] = yi ∈ Rd, wi[0] = 1 ∈ R.
2 for t ≥ 1 do

3 Broadcast zi[t−1]
doi+1

and wi[t−1]
doi+1

to all outgoing neighbors;

4 zi[t]←
∑
j∈Ii∪{i}

zj [t−1]

doj+1
, and wi[t]←

∑
j∈Ii∪{i}

wj [t−1]

doj+1
.

5 end

standard Push-Sum [12,2], described in Algorithm 1, each agent i runs two iterates:

– value sequence {zi[t]}∞t=0, and

– weight sequence {wi[t]}∞t=0,

where zi[0] = yi ∈ Rd is the private input, and wi[0] = 1 ∈ R is the initial weight of agent i.
The weight sequences {wi[t]}∞t=0 are introduced to relax the need for doubly stochastic matrices.
In a sense, the weights are used to correct the “bias” caused by the network structure. In each
iteration of Algorithm 1, each agent i divides both the local value zi and local weight wi by doi + 1,
recalling that doi is the out-degree of agent i in the fixed G(V, E). Among the doi + 1 parts of the
value fractions zi

doi+1 and the weight fractions wi
doi+1 , agent i sends doi parts to its outgoing neighbors

and maintains one part itself. Upon receiving the value fractions and the weight fractions from
its incoming neighbors, agent i sums them up respectively. When the communication network is
reliable, the ratio of the value and the weight converges to the average of the private inputs, i.e.,

lim
t→∞

zi[t]

wi[t]
=

1

n

n∑
j=1

yj , ∀ i = 1, · · · , n. (1)

The correctness of Push-Sum algorithm relies crucially on the mass preservation of the system
[3,12], which says that the total weights kept by the agents in the system sum up to n at every
iteration, i.e.,

n∑
i=1

wi[t] = n, ∀ t. (2)

Unfortunately, (2) does not hold in the presence of packet-dropping link failures. Nevertheless,
as illustrated in [10] (also described below in Algorithm 2), if we are able to keep track of the
dropped “mass”, we are able to show that the total mass is preserved in some augmented graph,
where virtual agents/nodes are introduced. Though it is tempting to view running Algorithm 2 as
running standard push-sum on the augmented graph, this might not be true. As can be seen later,
the dynamics under Algorithm 2, in the current form, are unstable. In this paper, we provide a
simple algorithmic fix of Algorithm 2.

Similar to the standard Push-Sum, in Algorithm 2, each agent i wants to share with its outgoing
neighbors of its value fraction zi

doi+1 and weight fraction wi
doi+1 . If agent i sends these two fractions out

directly, the total mass will not be preserved. In order to recover the “mass” dropped by an incoming
link, in addition to zi[t] and wi[t], each agent i uses variable σ̃i[t] to record the cumulative weight
(up to iteration t) sent through each outgoing link, and uses variable σi[t] for the corresponding
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Algorithm 2: Robust Push-Sum [10]

1 Initialization: zi[0] = yi ∈ Rd, wi[0] = 1 ∈ R, σi[0] = 0 ∈ Rd, σ̃i[0] = 0 ∈ R, and ρji[0] = 0 ∈ Rd, ρ̃ji[0] = 0 ∈ R
for each incoming link, i.e., j ∈ Ii.

2 for t ≥ 1 do

3 σi[t]← σi[t− 1] + zi[t−1]
doi+1

, σ̃i[t]← σ̃i[t− 1] + wi[t−1]
doi+1

;

4 Broadcast (σi[t], σ̃i[t]) to outgoing neighbors;
5 for each incoming link (j, i) do
6 if message (σj [t], σ̃j [t]) is received then
7 ρji[t]← σj [t], ρ̃ji[t]← σ̃j [t];
8 else
9 ρji[t]← ρji[t− 1], ρ̃ji[t]← ρ̃ji[t− 1];

10 end
11 zi[t]←

∑
j∈Ii∪{i} (ρji[t]− ρji[t− 1]), and wi[t]←

∑
j∈Ii∪{i} (ρ̃ji[t]− ρ̃ji[t− 1]).

12 end

13 end

quantity of the value sequence. In particular,

σi[t] = σ[t− 1] +
zi[t− 1]

doi + 1
, and

σ̃i[t] = σ̃i[t− 1] +
wi[t− 1]

doi + 1
, (3)

with σi[0] = 0 ∈ Rd, and σ̃i[0] = 0 ∈ R. In each iteration, agent i broadcasts the tuple (σi[t], σ̃i[t]) to
all of its outgoing neighbors. To record the cumulative information delivered via the link (i, k), the
outgoing neighbor k uses a pair of variables ρik[t] and ρ̃ik[t], with ρik[0] = 0 ∈ Rd and ρ̃ik[0] = 0 ∈ R.
If the link (i, k) is operational, i.e., the tuple (σi[t], σ̃i[t]) is successfully delivered, then

ρik[t] = σi[t], and ρ̃ik[t] = σ̃i[t].

Otherwise, since no new message is delivered, both ρik[t] and ρ̃ik[t] are unchanged. In summary, if
the link is operational at a given iteration, then

total “mass” sent = total “mass” delivered;

Otherwise,

total “mass” sent 6= total “mass” delivered.

In addition, if the link (i, k) is operational at iteration t, it holds that

ρik[t]− ρik[t− 1] =
t−1∑
r=t′

zi[r]

doi + 1
, and (4)

ρ̃ik[t]− ρ̃ik[t− 1] =
t−1∑
r=t′

wi[r]

doi + 1
, (5)

where t′ is the immediately preceding iteration of t such that link (i, k) is operational. As a link is
reliable at least once during B consecutive iterations, it holds that t− t′ ≤ B. Under Algorithm 2,
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it has been shown that [10], at each agent i,

zi[t]

wi[t]

a.s.−−→ 1

n

n∑
i=1

yi, as t→∞.

However, no convergence rate (asymptotic or non-asymptotic) is given. Informally speaking, this
is because the dynamics of the system under Algorithm 2 is not stable enough. In particular,
in the augmented graph constructed in [10] (formally defined later), the two iterates “kept” by
the virtual agents are reset to zero periodically and unexpectedly. This “reset” causes non-trivial
technical challenges. In particular, the corresponding matrix product does not converge to a rank
one matrix.

3.2 Convergent Robust Push-Sum

In this subsection, we propose a simple algorithmic fix of Algorithm 2. We refer to our algorithm
as Convergent Robust Push-Sum, described in Algorithm 3. Note that this does not mean that our
Algorithm 3 is superior or inferior to Algorithm 2 [10].

Our Algorithm 3 has the same set of variables as that in Algorithm 2. For ease of exposition,
we use σ+i [t], σ̃+i [t], z+i [t], and w+

i [t] to emphasize the fact that they are intermediate values of
corresponding quantities in an iteration. In each iteration of our Algorithm 3, the cumulative

Algorithm 3: Convergent Robust Push-Sum

1 Initialization: zi[0] = yi ∈ Rd, wi[0] = 1 ∈ R, σi[0] = 0 ∈ Rd, σ̃i[0] = 0 ∈ R, and ρji[0] = 0 ∈ Rd, ρ̃ji[0] = 0 ∈ R
for each incoming link, i.e., j ∈ Ii.

2 for t ≥ 1 do

3 σ+
i [t]← σi[t− 1] + zi[t−1]

doi+1
, σ̃+

i [t]← σ̃i[t− 1] + wi[t−1]
doi+1

;

4 Broadcast
(
σ+
i [t], σ̃+

i [t]
)

to outgoing neighbors;
5 for each incoming link (j, i) do
6 if message

(
σ+
j [t], σ̃+

j [t]
)
is received then

7 ρji[t]← σ+
j [t], ρ̃ji[t]← σ̃+

j [t];

8 else
9 ρji[t]← ρji[t− 1], ρ̃ji[t]← ρ̃ji[t− 1];

10 end

11 z+i [t]← zi[t−1]
doi+1

+
∑
j∈Ii (ρji[t]− ρji[t− 1]), w+

i [t]← wi[t−1]
doi+1

+
∑
j∈Ii (ρ̃ji[t]− ρ̃ji[t− 1]).

12 end

13 σi[t]← σ+
i [t] +

z+i [t]

doi+1
, σ̃i[t]← σ̃+

i [t] +
w+

i [t]

doi+1
, zi[t]←

z+i [t]

doi+1
, wi[t]←

w+
i [t]

doi+1
.

14 end

transmitted value and weight (σi, σ̃i), and the local value and weight (zi, wi) are updated twice,
with the first update being identical to that in Algorithm 2. As mentioned before, with only this
first update, the dynamics in the system is not stable enough, as the two iterates “kept” by the
virtual agents are reset to zero periodically and unexpectedly. This “reset” is prevented by the
second update in our Algorithm 3. Intuitively speaking, in the second update, each agent pushes
nonzero “mass” to the virtual agents on its outgoing links. As a result of this, the two iterates
“kept” by a virtual agent will never be zero at the end of an iteration.

3.3 Augmented Graph

The augmented graph of a given G(V, E), denoted as Ga(Va, Ea), is constructed as follows [21]:
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1. Va = V ∪ E , i.e., |E| additional auxiliary agents are introduced, each of which represents a link
in G(V, E). For ease of notation, we use nij to denote the virtual agent corresponding to edge
(i, j).

2. E ⊆ Ea, i.e., the edge set in Ga(Va, Ea) preserves the topology of G(V, E);
3. Additionally, auxiliary edges are introduced: each auxiliary agent nij has one incoming neighbor

– agent i – and one outgoing neighbor – agent j.

(a) Original graph (b) Augmented graph

Fig. 1: For each directed link, a buffer agent is added.

As shown in Fig. 1, in the augmented graph (i.e., Fig. 1(b)), four additional agents are introduced,
each of which corresponds to a directed edge of the original graph.

3.4 Matrix Representation

For each link (j, i) ∈ E , and t ≥ 1, define the indicator variable B(j,i)[t] as follows:

B(j,i)[t] ,

{
1, if link (j, i) is reliable at time t;
0, otherwise.

(6)

Recall that zi and wi are the value and weight for i ∈ V = {1, · · · , n}. For each (j, i) ∈ E , we define
znji and wnji as

znji [t] , σj [t]− ρji[t], and (7)

wnji [t] , σ̃j [t]− ρ̃ji[t], (8)

with znji [0] = 0 ∈ Rd and wnji [0] = 0 ∈ R.
Let m = n + |E|. We next show that the evolution of z and w can be described in a matrix

form. Since the update of value z and weight w are identical, for ease of exposition, henceforth, we
focus on the value sequence z.

From steps 6 – 10 of Algorithm 3, we know

ρji[t] = B(j,i)[t]σ
+
j [t] + (1− B(j,i)[t])ρji[t− 1], . (9)

By (6), (7) and (9), for each i ∈ V, the update of zi isz
+
i [t] = zi[t−1]

doi+1 +
∑

j∈Ii B(j,i)[t]
(
zj [t−1]
doj+1 + znji [t− 1]

)
,

zi[t] =
z+i [t]
doi+1 .

(10)
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Thus,

zi[t] =
zi[t− 1]

(doi + 1)2
+
∑
j∈Ii

B(j,i)[t]

(doi + 1)
(
doj + 1

)zj [t− 1] +
∑
j∈Ii

B(j,i)[t]

(doi + 1)
znji [t− 1]. (11)

Similarly, we get

znji [t] =
zj [t− 1](
doj + 1

)2 +
∑
k∈Ij

B(k,j)[t](
dok + 1

) (
doj + 1

)zk[t− 1] +
∑
k∈Ij

B(k,j)[t]

doj + 1
znkj [t− 1]

+
1− B(j,i)[t]

doj + 1
zj [t− 1] +

(
1− B(j,i)[t]

)
znji [t− 1]. (12)

The detailed derivation of (12) can be found in Appendix A. Thus, we construct a matrix M[t] ∈
Rm×m with the following structure:

Mi,i[t] ,
1

(doi + 1)2
;

Mj,i[t] ,
B(j,i)[t]

(doi + 1)
(
doj + 1

) , ∀ j ∈ Ii;
Mnji,i[t] ,

B(j,i)[t]

doi + 1
, ∀ j ∈ Ii;

Mj,nji [t] ,
1(

doj + 1
)2 +

1− B(j,i)[t]

doj + 1
;

Mk,nji [t] ,
B(k,j)[t](

dok + 1
) (
doj + 1

) , ∀ k ∈ Ij ;
Mnkj ,nji [t] ,

B(k,j)[t]

doj + 1
, ∀ k ∈ Ij ;

Mnji,nji [t] , 1− B(j,i)[t]. (13)

and any other entry in M[t] be zero. It is easy to check that the obtained matrix M[t] is row
stochastic. Let Ψ(r, t) be the product of t− r + 1 row-stochastic matrices

Ψ(r, t) ,
t∏

τ=r

M[τ ] = M[r]M[r + 1] · · ·M[t],

with r ≤ t. In addition, Ψ(t+ 1, t) , I by convention.
For ease of exposition, without loss of generality, let us fix a one-to-one mapping between

{n+ 1, · · · ,m} and (j, i) ∈ E . Thus, for each non-virtual agent i ∈ V = {1, · · · , n}, we have

zi[t] =

m∑
j=1

zj [0]Ψji(1, t) =

n∑
j=1

yjΨji(1, t), (14)

where the last equality holds due to zj [0] = yj for i ∈ V and zj [0] = 0 for j /∈ V. Similar to (14),
for the weight evolution, for each i ∈ {1, · · · ,m}, we have

wi[t] =
n∑
j=1

wj [0]Ψji(1, t), (15)
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Using ergodic coefficients and some celebrated results obtained by Hajnal [11], we show the following
thoerem.

Theorem 1. Under Algorithm 3, at each agent i ∈ V = {1, · · · , n},∥∥∥∥∥ zi[t]wi[t]
− 1

n

n∑
k=1

yk

∥∥∥∥∥ ≤
∑n

k=1 yk
nβnB+1

γb
t

nB+1
c,

where β , 1
maxi∈V (d

o
i+1)2

and γ , 1− βnB+1

Here we use ‖·‖ to denote `2 norm. The proof of Theorem 1 can be found in Appendix B. Note
that the above convergence rate might not be tight. Better rates might be obtained by carefully
exploring the structures of the communication graphs.

4 Robust Distributed Dual Averaging Method

We apply Algorithm 3 to distributed dual averaging method as information fusion primitive.
Throughout this section, we assume that each agent i knows a private cost function hi : X → R,
where
(A) X ⊆ Rd is nonempty, convex and compact; and
(B) hi is convex and L–Lipschitz continuous with respect to `2 norm, i.e., for all x, y ∈ X ,

‖hi(x)− hi(y)‖ ≤ L ‖x− y‖ , ∀i ∈ V (16)

We are interested in solving

min
x∈X

h(x) ,
1

n

n∑
i=1

hi(x). (17)

using a multi-agent network where the communication links may suffer packet-dropping failures.
Let X∗ be the collection of optimal solutions of h subject to X . Since X ⊆ Rd is a nonempty,
convex and compact, X∗ is also nonempty, convex and compact.

In addition to the estimate sequence {x[t]}∞t=0, in dual averaging method, there is an additional
sequence {z[t]}∞t=0 in the dual space that essentially aggregates all the sub-gradients generated so
far. In addition, the dual averaging scheme involves a proximal function ψ : Rd → R that is strongly
convex. In this paper, we choose ψ to be 1–strongly convex with respect to `2 norm, that is

ψ(y) ≥ ψ(x) + 〈∇ψ(x), y − x〉+
1

2
‖x− y‖2 ,

for x, y ∈ Rd. In addition, we assume that ψ ≥ 0 and argminxψ(x) = 0 ∈ Rd, which is also referred
as proximal center. This choice of ψ is rather standard [5,20]. This proximal function, in a sense, is
used to “smooth” the update of the primal sequence {x[t]}∞t=0.

One typical iterate sequence under dual averaging method is as follows. Initializing z[0] = x[0] =
0 ∈ Rd, for iteration (t ≥ 0), compute g[t] ∈ ∂h(x[t]), and update z and x as

z[t+ 1] = z[t] + g[t], (18)

x[t+ 1] =
∏ψ

x∈Rd
(z[t+ 1], α[t]) , (19)
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where
∏ψ
x∈Rd(·) is the projection operator defined as∏ψ

x∈Rd
(z, α) , argminx∈Rd

{
〈z, x〉+

1

α
ψ(x)

}
. (20)

From (19), we know that the update of x is based on all the subgradients generated so far, and
all these subgradients are weighted equally. The convergence rate of the dual averaging method is
O( 1√

t
), which is faster than the subgradient method whose convergence rate is O( log t√

t
). Besides,

the constants of the dual averaging method are often smaller [15].
Next we present our Robust Push-Sum Distributed Dual Averaging (RPSDA) method. In our

RPSDA, each agent i locally keeps

– estimate sequence {xi[t]}∞t=0,
– gradient aggregation (value) sequence {zi[t]}∞t=0, and
– weight sequence {wi[t]}∞t=0,

where xi[0] = zi[0] = 0 ∈ Rd and wi[0] = 1 ∈ R. In addition, let {α[t]}∞t=0 be a sequence of
positive stepsizes. We will specify the choice of α[t] in our statement of theorem. Note that the only

Algorithm 4: RPSDA

1 Initialization: zi[0] = xi[0] = σi[0] = 0 ∈ Rd, σ̃i[0] = 0 ∈ R, wi[0] = 1 ∈ R, ρji[0] = 0 ∈ Rd and ρ̃ji[0] = 0 ∈ R
for each incoming link, i.e., j ∈ Ii.

2 for t ≥ 1 do

3 σ+
i [t]← σi[t− 1] + zi[t−1]

doi+1
, σ̃+

i [t]← σ̃i[t− 1] + wi[t−1]
doi+1

;

4 Broadcast
(
σ+
i [t], σ̃+

i [t]
)

to outgoing neighbors;
5 for each incoming link (j, i) do
6 if message

(
σ+
j [t], σ̃+

j [t]
)
is received then

7 ρji[t]← σ+
j [t], ρ̃ji[t]← σ̃+

j [t];

8 else
9 ρji[t]← ρji[t− 1], ρ̃ji[t]← ρ̃ji[t− 1];

10 end

11 z+i [t]← zi[t−1]
doi+1

+
∑
j∈Ii (ρji[t]− ρji[t− 1]), w+

i [t]← wi[t−1]
doi+1

+
∑
j∈Ii (ρ̃ji[t]− ρ̃ji[t− 1]).

12 end

13 σi[t]← σ+
i [t] +

z+i [t]

doi+1
, σ̃i[t]← σ̃+

i [t] +
w+

i [t]

doi+1
, zi[t]←

z+i [t]

doi+1
, wi[t]←

w+
i [t]

doi+1
.

14 Compute a subgradient gi[t− 1] ∈ ∂hi (xi[t− 1]);
15 zi[t]← zi[t] + gi[t− 1];

16 xi[t]←
∏ψ
X

(
zi[t]
wi[t]

, α[t− 1]
)

;

17 end

difference between Algorithm 4 and Algorithm 3 is that a subgradient is computed and added to
the local value z. One importantly, the local estimate x is updated using dual averaging update.

For ease of exposition, let gi[r] = 0 for each virtual agent i ∈ {n+ 1, · · · ,m} and r ≥ 0. Similar
to (14) and (15), we have

zi[t] =
t−1∑
r=0

n∑
j=1

gj [r]Ψj,i(r, t)

wi[t] =
n∑
j=1

Ψj,i(1, t).
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Let z̄[t] , 1
n

∑n
i=1 zi[t]. We have

z̄[t] =
1

n

m∑
i=1

zi[t] =
1

n

t−1∑
r=0

n∑
i=1

gi[r]. (21)

Let {α[t]}∞t=0 be a sequence of non-increasing stepsizes. For each agent i ∈ V, we define the running
average of xi[t], denoted by x̂i[T ], as follows:

x̂i[T ] =
1

T

T∑
t=1

xi[t].

Theorem 2. Let x∗ ∈ X∗, and suppose that ψ(x∗) ≤ R2. Let {α[t] = A√
t
}∞t=1 with α[0] = A be the

sequence of stepsizes used in Algorithm 4 for some positive constant A. Then, for T ≥ nB + 1, we
have for all j ∈ V,

h (x̂j [T ])− h(x∗) ≤ 2L2A

T
(2
√
T + 1) +

R2

A
√
T

+
3L2A

βnB+1(1− γ
1

nB+1 )γ
nB
nB+1

2
√
T + 1

T
.

Recall from Theorem 1 that β , mini∈V
1

(doi+1)2
and γ , 1 − βnB+1. Similar to the results in

Theorem 1, the rate in Theorem 2 might be improved by carefully exploring the structures of the
communication graphs.

Note that Theorem 2 holds for any positive constant A. Optimizing over A, the constant hidden
in O( 1√

T
) can be improved.
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links: Analysis via coefficients of ergodicity. In Proceedinsg of IEEE Conference on Decision and Control (CDC),
pages 2761–2766, December 2012.

22. L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus with least-mean-square deviation. Journal of
Parallel and Distributed Computing, 67(1):33–46, 2007.

A Proof of Equation (12)

By (7), we have

znji [t] = σj [t]− ρji[t]

= σ+j [t] +
z+j [t]

doj + 1
−
(
B(j,i)[t]σ

+
j [t] + (1− B(j,i)[t])ρji[t− 1]

)
= (1− B(j,i)[t])

(
σj [t− 1] +

zj [t− 1]

doj + 1

)
− (1− B(j,i)[t])ρji[t− 1] +

z+j [t]

doj + 1

= (1− B(j,i)[t])znji [t− 1] + (1− B(j,i)[t])
zj [t− 1]

doj + 1
+

z+j [t]

doj + 1

=

 1(
doj + 1

)2 +
1− B(j,i)[t]

doj + 1

 zj [t− 1] +
∑
k∈Ij

B(k,j)[t](
dok + 1

) (
doj + 1

)zk[t− 1]

+
∑
k∈Ij

B(k,j)[t]

doj + 1
znkj [t− 1] +

(
1− B(j,i)[t]

)
znji [t− 1].

B Proof of Theorem 1

In this subsection, we investigate the convergence behavior of Ψ(r, t) (where r ≤ t) using ergodic
coefficients and some celebrated results obtained by Hajnal [11].



12

Given a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are defined as:

δ(A) , max
j

max
i1,i2

|Ai1j −Ai2j | , (22)

λ(A) , 1−min
i1,i2

∑
j

min{Ai1j ,Ai2j}. (23)

Informally speaking, the coefficients of ergodicity defined in (22) and (23) characterize the “dif-
ference” between any pair of rows of the given row-stochastic matrix A. It is easy to see that
0 ≤ δ(A) ≤ 1, 0 ≤ λ(A) ≤ 1, and that the rows of A are identical if and only if δ(A) = 0 = λ(A).
In addition, the ergodic coefficients δ(·) and λ(·) have the following connection.

Proposition 1. [11] For any p square row stochastic matrices Q[1],Q[2], . . .Q[p], it holds that

δ(Q[1]Q[2] . . .Q[p]) ≤ Πp
k=1 λ(Q[k]). (24)

Proposition 1 implies that if λ(Q[k]) ≤ 1 − c for some c > 0 and for all 1 ≤ k ≤ p, then
δ(Q[1],Q[2] · · ·Q[p]) goes to zero exponentially fast as p increases. Next we show that, for suffi-
ciently large t, it holds that λ(Ψ(1, t)) ≤ 1 − βnB, where β , 1

maxi∈V (d
o
i+1)2

. To prove this claim,

we need the following lemma, whose proof is rather standard and is omitted.

Lemma 1. Suppose that t − r + 1 ≥ nB + 1 and B ≥ 1. Then every entry in Ψ(r, t) is lower
bounded by βnB+1.

By Proposition 1 and Lemma 1, we are able to show Lemma 2, which says that the difference
between any pair of rows in Ψ(r, t) goes to 0 exponentially fast.

Lemma 2. For r ≤ t, it holds that δ (Ψ(r, t)) ≤ γb
t−r+1
nB+1

c, where γ = 1− βnB+1.

The proof of Lemma 13 is a straightforward application of Proposition 1 and Lemma 1; thus is
omitted.

Theorem 3. Under Algorithm 3, at each agent i ∈ V = {1, · · · , n},∥∥∥∥∥ zi[t]wi[t]
− 1

n

n∑
k=1

yk

∥∥∥∥∥ ≤
∑n

k=1 yk
nβnB+1

γb
t

nB+1
c,

where ‖·‖ is the `2 norm.

Proof. ∥∥∥∥∥ zi[t]wi[t]
− 1

n

n∑
k=1

yk

∥∥∥∥∥ =

∥∥∥∥∥
∑n

j=1 yjΨj,i(1, t)∑n
j=1 Ψj,i(1, t)

− 1

n

n∑
k=1

yk

∥∥∥∥∥
=

∥∥∥∥∥n
∑n

j=1 yjΨj,i(1, t)−
∑n

k=1 yk
∑n

j=1 Ψj,i(1, t)

n
∑n

j=1 Ψj,i(1, t)

∥∥∥∥∥
=

∥∥∥∑n
j=1 yj

∑n
k=1 (Ψj,i(1, t)−Ψk,i(1, t))

∥∥∥
n
∑n

j=1 Ψj,i(1, t)

≤
∑n

j=1 yjnγ
b t
nB+1

c

n
∑n

j=1 Ψj,i(1, t)
, by Lemma 2

≤
∑n

k=1 yk
nβnB+1

γb
t

nB+1
c, by Lemma 1,

and the proof is complete.
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C Proof of Theorem 2

The proof of Theorem 2 relies on a couple of auxiliary lemmas, stated and proved next. We need
the sequence {y(t)}∞t=1 that is defined by the projection of z̄[t]:

y[t] ,
∏ψ

X
(z̄[t], α[t− 1]) . (25)

Using the standard convexity arguments as in [20], the following lemma holds. Note that the
summation on the RHS is over all agents in the original graph G(V, E) rather than the augmented
graph Ga(Va, Ea).

Lemma 3. For any x∗ ∈ X , it holds that

h(x̂j [T ])− h(x∗) ≤ L2

T

T∑
t=1

α[t− 1] +
1

Tα[T ]
ψ(x∗) +

2L

nT

T∑
t=1

n∑
i=1

α[t− 1]

∥∥∥∥z̄[t]− zi[t]

wi[t]

∥∥∥∥
+
L

T

T∑
t=1

α[t− 1]

∥∥∥∥z̄[t]− zj [t]

wj [t]

∥∥∥∥ .
Proof. Adding and subtracting h (ŷ[T ])

h (x̂j [T ])− h(x∗) = h (ŷ[T ])− h(x∗) + h (x̂j [T ])− h (ŷ[T ])

≤ h(ŷ[T ])− h(x∗) + L ‖x̂j [T ]− ŷ[T ]‖

≤ 1

T

T∑
t=1

(h(y[t])− h(x∗)) +
L

T

T∑
t=1

‖xj [t]− y[t]‖ .

The first inequality holds from L–Lipschitz contunity; and the second inequality is true due to the
convexity of h as well as the definition of the running averages x̂j [T ] and ŷ[T ]. Now we add and

subtract
∑T

t=1
1
n

∑n
i=1 hi (xi[t]) and use convexity and L–Lipschitz continuity of the component

functions hi(x) to get

h (x̂j [T ])− h(x∗) ≤ 1

T

T∑
t=1

1

n

n∑
i=1

(hi(y[t])− hi(xi[t])) +
1

T

T∑
t=1

1

n

n∑
i=1

(hi(xi[t])− hi(x∗))

+
L

T

T∑
t=1

‖xj [t]− y[t]‖

≤ 1

T

T∑
t=1

1

n

n∑
i=1

L ‖xi[t]− y[t]‖+
1

T

T∑
t=1

1

n

n∑
i=1

〈gi[t], xi[t]− x∗〉+
L

T

T∑
t=1

‖xj [t]− y[t]‖

≤ L

Tn

T∑
t=1

α[t− 1]

n∑
i=1

∥∥∥∥ zi[t]wi[t]
− z̄[t]

∥∥∥∥+
1

nT

T∑
t=1

n∑
i=1

〈gi[t], xi[t]− x∗〉

+
L

T

T∑
t=1

α[t− 1]

∥∥∥∥ zj [t]wj [t]
− z̄[t]

∥∥∥∥ , (26)
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For the second term in (26), we have

n∑
i=1

〈gi[t], xi[t]− x∗〉 =
n∑
i=1

〈gi[t], y[t]− x∗〉+
n∑
i=1

〈gi[t], xi[t]− y[t]〉

=

〈
n∑
i=1

gi[t], y[t]− x∗
〉

+
n∑
i=1

〈gi[t], xi[t]− y[t]〉 .

Let g[t] = 1
n

∑n
i=1 gi[t]. It holds that

z̄[t] =
1

n

t−1∑
r=0

n∑
i=1

gi[r], (27)

and that

y[t] =
∏ψ

X
(z̄[t], α[t− 1]) =

∏ψ

X

(
t∑

τ=1

g[t], α[t− 1]

)
.

Thus,

T∑
t=1

1

n

〈
n∑
i=1

gi[t], y[t]− x∗
〉

=

T∑
t=1

〈g[t], y[t]− x∗〉 =
L2

2

T∑
t=1

α[t− 1] +
1

α[T ]
ψ(x∗), (28)

where the last inequality holds since ‖g[r]‖ ≤ L for all r ≥ 0. In addition,

n∑
i=1

〈gi[t], xi[t]− y[t]〉 ≤ L
n∑
i=1

α[t− 1]

∥∥∥∥ zi[t]wi[t]
− z̄[t]

∥∥∥∥ . (29)

Plugging (28) and (29) back to (26), we get

h(x̂j [T ])− h(x∗) ≤ L2

T

T∑
t=1

α[T − 1] +
1

Tα[T ]
ψ(x∗) +

2L

nT

T∑
t=1

n∑
i=1

α[t− 1]

∥∥∥∥z̄[t]− zi[t]

wi[t]

∥∥∥∥
+
L

T

T∑
t=1

α[t− 1]

∥∥∥∥z̄[t]− zj [t]

wj [t]

∥∥∥∥ ,
proving the proposition.

To complete the convergence analysis, we need to bound each term
∥∥∥z̄[t]− zi[t]

wi[t]

∥∥∥ for any agent

i and any iteration t ≥ 1. Our analysis is different from that in [20], due to M[t]’s dependency on
time t.

Lemma 4. When t ≥ nB + 1, for each i ∈ V, it holds that∥∥∥∥z̄[t]− zi[t]

wi[t]

∥∥∥∥ ≤ L

βnB+1(1− γ
1

nB+1 )γ
nB
nB+1

.
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Proof. Similar to the proof of Theorem 1, it can be shown that

∥∥∥∥z̄[t]− zi[t]

wi[t]

∥∥∥∥ =

∥∥∥∥∥∥ 1

n

t−1∑
r=0

n∑
j=1

gj [r]−
∑t−1

r=0

∑n
j=1 gj [r]Ψj,i(r, t)∑n
j=1 Ψj,i(1, t)

∥∥∥∥∥∥
=

∥∥∥∥∥
∑t−1

r=0

∑n
j=1 gj [r]

∑n
k=1 (Ψk,i(1, t)−Ψj,i(r, t))

n
∑n

j=1 Ψj,i(1, t)

∥∥∥∥∥
≤

∥∥∥∑t−1
r=0

∑n
j=1 gj [r]

∑n
k=1 (Ψk,i(1, t)−Ψj,i(r, t))

∥∥∥
nnβnB+1

≤
L
∑t−1

r=0

∑n
j=1

∑n
k=1 ‖Ψk,i(1, t)−Ψj,i(r, t)‖
n2βnB+1

We know that

‖Ψk,i(1, t)−Ψj,i(r, t)‖ =

∥∥∥∥∥∥
m∑
p=1

Ψk,p(1, r − 1)Ψp,i(r, t)−Ψj,i(r, t)

∥∥∥∥∥∥
≤

m∑
p=1

Ψk,p(1, r − 1) ‖Ψp,i(r, t)−Ψj,i(r, t)‖

≤ γb
t−r+1
nB+1

c.

Thus, we have ∥∥∥∥z̄[t]− zi[t]

wi[t]

∥∥∥∥ ≤ L

βnB+1(1− γ
1

nB+1 )γ
nB
nB+1

.

Now we are ready to finish the proof of Theorem 2.

Proof (Proof of Theorem 2). By the assumption that ψ(x∗) ≤ R2 and Lemmas 3 and 4, we have

h(x̂j [T ])− h(x∗) ≤ L2

T

T∑
t=1

α[t− 1] +
1

Tα[T ]
R2 +

3L

T

T∑
t=1

α[t− 1]
L

βnB+1(1− γ
1

nB+1 )γ
nB
nB+1

. (30)

For the chosen step-sizes α[t] = A√
t

for t ≥ 1 and α[0] = A, we have

T∑
t=1

α[t− 1] =

T−1∑
t=1

A√
t

+A ≤ 2
√
TA+A. (31)

Plugging the above upper bound on the step-sizes (31) back to (30), the bound in the statement
of Theorem 2 is obtained.
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