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Abstract—Perceptual measures are usually considered more
reliable than instrumental measures for evaluating the perceived
level of reverberation. However, such measures are time consum-
ing and expensive, and, due to variations in stimuli or assessors,
the resulting data is not always statistically significant. Therefore,
an (objective) measure of the perceived level of reverberation
becomes desirable. In this paper, we develop a new method to
predict the level of reverberation from audio signals by relating
the perceptual listening test results with those obtained from a
machine learned model. More specifically, we compare the use of
a multiple stimuli test for within and between class architectures
to evaluate the perceived level of reverberation. An expert set
of 16 human listeners rated the perceived level of reverberation
for a same set of files from different audio source types. We
then train a machine learning model using the training data
gathered for the same set of files and a variety of reverberation
related features extracted from the data such as reverberation
time, and direct to reverberation ratio. The results suggest that
the machine learned model offers an accurate prediction of the
perceptual scores.

Index Terms—Reverberation time, Human subject test, Ma-
chine learning, MLP.

I. INTRODUCTION

Perceived level of reverberation was identified as an impor-
tant perceptual attribute that users of sound effect repositories
search for frequently [1]. Being able to limit search results
to sound effects that have no apparent reverberation would be
of great benefit to users. Yet even after decades of research,
models for predicting the apparent reverberation have yet to
be developed.

Research has shown that the perceived level of reverberation
depends considerably on the source signal and the shape of the
reverberation decay [2]. Various studies, including an IEEE
challenge, have resulted in different methods for extracting
specific measurable reverberation features from audio signal,
such as the reverberation time and direct-to-reverberant ratio
[31, [4], [5], [6]. However, these measures do not always
directly relate to the perceived level of reverberation. For
example the reverberation time (RT) is an important parameter
for characterizing the quality of an auditory space. Sounds in
reverberant environments are subject to coloration. This affects
speech intelligibility and sound localization. Many state-of-
the-art audio signal processing algorithms, for example in
Automatic Speech Recognition (ASR), speaker recognition
[71, [8], [9], hearing-aids and telephony, are expected to have

the ability to characterize the listening environment, and turn
on an appropriate processing strategy accordingly [10].

This paper proposes a new method for predicting the
perceived level of reverberation from audio files using machine
learning approaches.

II. HUMAN PERCEPTION

Human ratings of reverberance were collected to develop a
model of perceived reverberation. Two types of ratings were
collected in listening tests: (i) within-source, making direct
comparisons of a single source type; and (ii) between-sources,
comparisons across multiple different sources.

A. Stimuli selection

For the within-source evaluation, stimuli were selected that
are likely to benefit from a model of reverberation. Source
types were selected by examining a 1-month search history
of freesound !, identifying source types that were commonly
searched for along with the terms reverberant, dry, or dead
(common terms relating to reverberation [1]). This analysis
leads to the identification of five commonly searched source
types: snare, atmosphere, thunder, hit, and vocal.

A keyword search was performed using the freesound API.
Each source type was searched in isolation, as well as with
the reverberant, dry, and dead additional search terms (e.g.
searching for ’snare’, ’reverberent snare’, ’dry snare’, and
’dead snare’). For each search, 50 random sound effects were
downloaded and converted to wav files with 44.1kHz sample
rate.

A manual filtering was conducted, removing sounds not of
the desired source type. Five sound effects were selected from
each search term, and presented to an independent expert, who
selected five sounds from each source type that demonstrated
a range of apparent reverberation.

For the between-sources evaluation, the same stimuli se-
lection method was conducted for five other timbral attributes
of hardness, depth, brightness, roughness, and metallic-nature;
five sources selected for each attribute, each source with five
stimuli. After a pilot study, the median rated stimuli rated
for each attribute/source combination was selected for the
between-sources experiment; a total of 30 stimuli.

Uhttps://freesound.org/



Each stimulus was loudness matched using the Nugen
Audio LM Correct to -35.2 LUFS, the lowest loudness level
of all normalised stimuli.

B. Listening tests

All listening tests were conducted in an acoustically treated
editing room, using Neumann KH120A active studio monitors.
The playback system was aligned to produce a level of 74
dBgpy, at the listening position with -14 dBFS pink noise.
This produced a comfortable listening level when the stimuli
were reproduced.

Both listening tests were conducted with a multiple stimulus
comparison test interface, presenting a number of stimuli
simultaneously, allowing participants to audition each stimulus
as many times as desired, rate each stimulus on a scale from 0
to 100, and rearrange the ordering of the stimuli into ascending
order based on their ratings.

For classification purposes and for labeling the audio files
based on the human rating, each of the scores converted to
three-class and two-class reverberation. For two-class reverber-
ation setup any audio files which were scored from 0 to 50 are
labeled as a file with low level of reverberation and the ones
scored from 51 to 100 are labelled as a file with the high level
of reverberation. Similarly for the three-class reverberation
setup files with the score from 0 to 30 are labelled as low,
31 to 60 as medium and 61 to 100 as high.

1) Within-source ratings: For the within-source listening
tests, each page contained all five stimuli of a single source
type. Listeners were instructed to rate the relative perceived
level of reverberation, using the full range of the scale in each
page.

Sixteen listeners completed this listening test, all of whom
were undergraduate students on the Tonmeister Sound Record-
ing course at the University of Surrey, all having technical ear
training and experience in listening tests.

2) Between-sources ratings: Prior to listening tests, an
independent expert was asked to identify the most and least
reverberent stimuli for use as hidden anchors.

Before each test, participants were presented all 30 stimuli
on a single familiarisation interface to become accustomed
to the range of reverberation. Each test page comprised nine
sliders, two of which were the hidden anchors, the other seven
being a randomised order for the remaining stimuli. Partic-
ipants were ask to make ratings of perceived reverberation
relative to the full range heard during the familiarisation stage.

III. EXPERIMENTAL SETUP
A. Feature extraction

Following features have been extracted form each of the
audio files and per each channel.

e Reverberation time (RT60)

o Direct to reverberation ratio (DRR)
o Early decay time (EDT)

« Early to late index (CTE)

Each of the recordings was analyzed individually. Figure 1
shows the impulse responses and the decay curves for a sounds
in our database.

The function that we have used to extract these four features
from audio file is based on the usage of reverse cumulative
trapezoidal integration to estimate the decay curve.
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Fig. 1. Example of impulse response and the decay curve for the audio file
with the low level of reverberation.

1) Reverberation time: The function which was used to es-
timate the reverberation time from the audio files uses reverse
cumulative trapezoidal integration to estimate the decay curve,
and a linear least-square fit to estimate the slope between 0
dB and -60 dB. Estimates are taken in octave bands and the
overall figure is an average of the 500 Hz and 1 kHz bands.
The function determines the direct sound as the peak of the
squared audio wave files.

2) Direct to reverberation ratio: DRR is calculated in the
following way:

DRR = 10 % logl0(X(Ty — C : Ty + C)?/X(Ty + C + 1 :
end)?)

where X is the approximated integral of the impulse, T} is
the time of the direct impulse, and C' = 2.5ms. The direct-



TABLE I

PREDICTION ACCURACY ACHIEVED IN TERMS OF CORRECTLY IDENTIFIED INSTANCES.

Features Setup Number of classes Logistic Classifier | Decision Tree MLP
RT, DRR, CTE, EDT Within source type 3 reverberation classes 60.00 % 68.00 % 56.00 %
RT, DRR, CTE, EDT Within source type 2 reverberation classes 64.00 % 76.00 % 64.00 %
RT, DRR, CTE, EDT | Between source type | 3 reverberation classes 50.00 % 46.66 % 60.00 %
RT, DRR, CTE, EDT | Between source type | 2 reverberation classes 66.66 % 73.33 % 83.33 %
RT Between source type | 2 reverberation classes - % - % 76.67 %
DRR Between source type | 2 reverberation classes - % - % 73.33 %
CTE Between source type | 2 reverberation classes - % - % 63.33 %
EDT Between source type | 2 reverberation classes - % - % 66.67 %

to-reverberant energy ratio cue,

DRR, results primarily from

audio files and each channel. For the training part the class

the diffuse reverberant sound-field present in environments
with sound reflecting surfaces. This sound-field is a collec-
tion of, perhaps, thousands of complex reflections: degraded,
delayed, and attenuated copies of the original waveform. As
source distance increases, reverberant energy remains roughly
constant, although direct-path energy decreases by 6 dB per
doubling of source distance; hence, the direct-to-reverberant
energy ratio, DRR, decreases. The precise amount that DRR
changes with distance depends critically on the amount of
reverberant energy present, which is determined by properties
of the acoustic environment. For room environments, rever-
berant energy as a function of time is determined principally
by the size of the room and the acoustic properties of the
reflecting surfaces of the room. Many outdoor environments
also produce reverberation, therefore a direct-to-reverberant
energy ratio cue varies with distance [11]. In simpler but
related acoustic situations involving a sound source with a
single simple reflection, or echo, detection thresholds for
the echo are known to be stimulus dependent. The lowest
thresholds result from brief, impulsive signals [12] and higher
thresholds result from longer duration signals with slow onsets
[13].

3) Early to late index: Early reflections arriving whitin
50ms after the direct sound are not perceived separately
but are rather integrated for directional cues. A measure to
characterize a reverbrant room situation with respect to speech
intelligibility is the early to late energy ratio. CTE is the same
size as RT. This is calculated in the following way:
end)?) where TE is 50ms.

4) Early decay time: EDT is also the same size as the
RT. The slope of the decay curve is determined from the fit
between 0 and -10 dB. The decay time is calculated from the
slope as the time required for a 60 dB decay.

B. Modeling methods

For classification purposes we have used multiple functions
provided by the Weka toolkit 2. We have tried logistic classi-
fier, decision tree, and multilayer perceptron (MLP) [14], [15],
[16], [17].

All the machine learning approaches use the same set of
features, which are: RT, DRR, EDT and CTE extracted from

Zhttps://www.cs.waikato.ac.nz/ml/weka/

labels are obtained from the human experiments. Each audio
file is scored by 16 human listeners and the class label for
each file is the Median of scores provided by the listeners.
Because of the availability of small number of samples per
each class we have carried out 3 folds cross validation setup.
Per each round two folds have been used for training and the
third fold kept for testing, and this setup repeated three times.
So every instance has been used for both training and testing.

1) Logistic classifier: For k classes for n instances and m
attributes, the parameter matrix B to be calculated will be
an m % (k — 1) matrix. The probability for class j with the
exception of the last class is:

(k-1)
Pi(X;) = exp(X;B;)/(( Y exp(X;=Bj)+1) ()
j=1
The last class has the probability of:
(k—1)

L= (> Pi(Xy) )

j=1

2) Decision tree: Among decision tree algorithms, J. Ross
Quinlan’s ID3 and its successor, C4.5, are probably the most
popular in the machine learning community [18]. In this
research C4.5 algorithm is used.

Decision tree algorithms begin with a set of examples and
create a tree data structure that can be used to classify new
examples. Each example is described by a set of features
which can have numeric or symbolic values. Associated with
each training case is a label representing the name of a class.
Each internal node of a decision tree contains a test, the result
of which is used to decide what branch to follow from that
node. The leaf nodes contain class labels instead of tests. In
classification mode, when a test example (which has no label)
reaches a leaf node, C4.5 classifies it using the label stored
there [19].

3) Multilayer perceptron: Weka uses a classifier that relies
on backpropagation to learn a MLP to classify instances. The
network can be built by hand or set up using a simple heuristic.
The network parameters can also be monitored and modified
during training time. The nodes in this network are all sigmoid
(except for when the class is numeric, in which case the output



nodes become unthresholded linear units). For full details
about the implimentation of MLP and how to use it in WEKA
please refer to [14].

IV. EXPERIMENTAL RESULTS

In this section obtained results from different setups and
using different number of classes have been compared. Table
I summarizes the performance of three machine learning
approaches in automatic prediction of a perceived level of
reverberation from audio sounds. Machine learning approaches
which have been used are logistic classifier, decision tree and
MLP. Column 1 in the Table I shows what features/feature
were used as an input. Initially all four extracted features are
used for different experimental setups.

Table I shows that the best performances for within and
between source types architectures, when using four extracted
features as an input, are 76.00 % and 83.33 %, when using
two reverberation classes (dry and high reverberation), and by
Decision tree and MLP algorithms, respectively.

We expected to get better performance when using the
within source type architecture compared with the between
source type. This finding is in agreement with our initial
expectation as based on the human listening test it is a simpler
task for human listeners as well. The MLP method outperform
the decision tree and logistic classifier for between source type
experiments. This can be due to the fact that MLP needs large
amount of data for training and for the between source type
experiments we had larger number of audio files available for
training.

In order to find the most effective extracted feature we
repeated the experiment with the best obtained performance,
which was the between source type architecture, using two
reverberation classes and MLP. The results of these experi-
ments are placed in the last four column of the Table 1. These
experiments show the most effective stand alone feature is the
reverberation time followed by direct to reverberation ratio,
early to late index and early decay time.

V. CONCLUSION

The perceived level of reverberation has been a subject for
many research. Different methods for extracting specific mea-
surable reverberation features from audio signals have been
proposed, e.g. different methods for calculating reverberation
time and direct to reverberation ratio. None of these features
on their own could always relate to the perceived level of
reverberation.

In this paper, we develop a new method to predict the
level of reverberation from audio signals by relating the
perceptual listening test results with those obtained from a
machine learned model. More specifically, we compare the
use of a multiple stimuli test for within and between class
architectures to evaluate the perceived level of reverberation
from the humans opinion. We train a machine learning model
using the training data gathered for the same set of files and
a variety of reverberation related features extracted from the
data, RT60, DRR, EDT and CTE. The best result of 83.33 % is

obtained when using all four features as an input for between
source type setup and 2 reverberation class.

ACKNOWLEDGMENT

This work was partially supported by the H2020 Project
entitled AudioCommons funded by the European Commission
with Grand Agreement number 688382.

REFERENCES

[11 Andy Pearce, Tim Brookes, and Russell Mason. Timbral attributes for
sound effect library searching. In Audio Engineering Conference on
Semantic Audio, pages 629-633. IEEE, 2016.

[2] Jouni Paulus, Christian Uhle, and Jrgen Herre. Perceived level of
late reverberation in speech and music. In Audio Engineering Society
Convention 130, May 2011.

[3] Pavel Zahorik. Direct to reverberant energy ratio sensitivity. The Journal
of the Acoustical Society of America, 112(5):2110-2117, 2002.

[4] Benjamin Cauchi, Hamza Javed, Timo Gerkmann, Simon Doclo, Stefan

Goetze, and Patrick Naylor. Perceptual and instrumental evaluation of

the perceived level of reverberation. In Acoustics, Speech and Signal

Processing (ICASSP), 2016 IEEE International Conference on, pages

629-633. IEEE, 2016.

Gaubitch N. Moore A. Eaton, J. and P. Naylor. Estimation of room

acoustic parameters: The ace challenge. IEEE Transaction on Audio,

Speech and Language Processing, 24(10):1681-1693, 2016.

Lima A. Netto S. Lee B. Said A. Schafer R. Prego, T. and Kalker

T. A blind algorithm for reverberation-time estimation using subband

decomposition of speech signals. The Journal of the Acoustical Society

of America, 131(4):2811-2816, 2016.

Saeid Safavi. Speaker characterization using adult and childrens speech.

PhD thesis, University of Birmingham, 2015.

[8]1 S. Safavi, A. Hanani, M. Russell, P. Jancovic, and M. J. Carey.

Contrasting the effects of different frequency bands on speaker and

accent identification. IEEE Signal Processing Letters, 19(12):829-832,

Dec 2012.

Saeid Safavi, Martin Russell, and Peter Jancovic. Automatic speaker,

age-group and gender identification from children’s speech. Computer

Speech & Language, 50:141 — 156, 2018.

Rama Ratnam, Douglas L. Jones, Bruce C. Wheeler, William D.

OBrien, Charissa R. Lansing, and Albert S. Feng. Blind estimation of

reverberation time. The Journal of the Acoustical Society of America,

114(5):2877-2892, 2003.

Douglas G Richards and R Haven Wiley. Reverberations and amplitude

fluctuations in the propagation of sound in a forest: implications for

animal communication. The American Naturalist, 115(3):381-399,

1980.

Pavel Zahorik. Direct-to-reverberant energy ratio sensitivity. The Journal

of the Acoustical Society of America, 112(5):2110-2117, 2002.

Earl D Schubert and Joel Wernick. Envelope versus microstructure in

the fusion of dichotic signals. The Journal of the Acoustical Society of

America, 45(6):1525-1531, 1969.

Tan H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data

Mining: Practical machine learning tools and techniques. Morgan

Kaufmann, 2016.

S. Safavi, H. Gan, I. Mporas, and R. Sotudeh. Fraud detection in voice-

based identity authentication applications and services. In 2016 IEEE

16th International Conference on Data Mining Workshops (ICDMW),

pages 1074-1081, Dec 2016.

S. Safavi, H. Gan, and I. Mporas. Improving speaker verification perfor-

mance under spoofing attacks by fusion of different operational modes.

In 2017 IEEE 13th International Colloquium on Signal Processing its

Applications (CSPA), pages 219-223, March 2017.

Saeid Safavi and Iosif Mporas. Improving performance of speaker iden-

tification systems using score level fusion of two modes of operation.

In International Conference on Speech and Computer, pages 438—444.

Springer, 2017.

Ross Quinlan.  C4.5: Programs for Machine Learning.

Kaufmann Publishers, San Mateo, CA, 1993.

[19] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81—

106, 1986.

[5

=

[6

=

[7

—

[9

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18] Morgan



