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Joint Ranging and Clock Synchronization for Dense
Heterogeneous IoT Networks

Tarik Kazaz, Mario Coutino, Gerard J. M. Janssen, Geert Leus and Alle-Jan van der Veen
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology, 2628 CD Delft, The Netherlands

Abstract—Synchronization and ranging in internet of things (IoT) net-
works are challenging due to the narrowband nature of signals used
for communication between IoT nodes. Recently, several estimators for
range estimation using phase difference of arrival (PDoA) measurements
of narrowband signals have been proposed. However, these estimators are
based on data models which do not consider the impact of clock-skew
on the range estimation. In this paper, clock-skew and range estimation
are studied under a unified framework. We derive a novel and precise
data model for PDoA measurements which incorporates the unknown
clock-skew effects. We then formulate joint estimation of the clock-skew
and range as a two-dimensional (2-D) frequency estimation problem
of a single complex sinusoid. Furthermore, we propose: (i) a two-way
communication protocol for collecting PDoA measurements and (ii) a
weighted least squares (WLS) algorithm for joint estimation of clock-skew
and range leveraging the shift invariance property of the measurement
data. Finally, through numerical experiments, the performance of the
proposed protocol and estimator is compared against the Cramér Rao
lower bound demonstrating that the proposed estimator is asymptotically
efficient.

Index Terms—joint estimation, clock synchronization, range, localiza-
tion, internet of things, time-slotted channel hopping.

I. INTRODUCTION

Synchronization and localization are key requirements of future
internet of things (IoT) applications. IoT networks enable distributed
information processing tasks such as sensing, aggregation, and other
tasks which benefit from node location information and network-
wide synchronization [1], [2]. Typically, IoT nodes are low-power
devices equipped with low-cost reference clock sources, i.e. local
oscillators, and narrowband radio chips. The individual clocks of the
nodes drift from each other due to local oscillator imperfections,
environmental and voltage variations. Therefore, it is essential to
periodically synchronize and calibrate the clocks in order to keep the
time synchronization among the nodes in the network. Clock drifts
have a direct impact on various IoT applications, for instance, on the
range estimation between the nodes, which is a crucial input for most
network localization techniques.

Clock synchronization and node localization in IoT networks
have received considerable attention in the past. Many research
efforts have approached these problems as either separate or joint
estimation problems [3]–[9]. Existing methods can be classified into
(i) time-stamping methods based on ultra-wideband (UWB) signals
[3]–[6], and (ii) phase-based methods which utilize carrier phase
measurements of narrowband signals [7]–[9]. Methods falling in the
first class offer high timing resolution and a plethora of protocols
and algorithms for joint ranging and clock synchronization have
been proposed [4]–[6]. However, in general, these methods are not
applicable to IoT networks due to the narrowband radio constraints
of the nodes. On the other side, the methods based on phase-based
ranging, i.e. phase difference of arrival (PDoA), do not consider the
impact of unknown clock-skew on range estimation [7]–[9]. These
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methods are based on a simplified and inaccurate data model which
results in a biased range estimation due to the influence of clock-
skew.

In this paper, we aim for joint clock-skew and range estimation
from PDoA measurements. We derive a novel and precise data model
which considers hardware imperfections of the IoT nodes, i.e. clock-
skew of the local oscillators, and wireless channel effects. Therefore,
we propose a two-way communication protocol for collecting PDoA
measurements over a two-dimensional (2-D) set of equispaced time
epochs and carrier frequencies. With this data, a matrix whose rows
collect measurements acquired on the same carrier frequencies but
different time epochs is constructed. This data matrix exhibits a struc-
ture that allows 2-D frequency estimation techniques. Furthermore,
we show that the data matrix is rank one and that its principal singular
vectors have a shift invariance property which enables joint estimation
of the clock-skew and range.

We propose an algorithm for joint clock-skew and range estimation
based on weighted least squares (WLS) using the ideas of 2-D
frequency estimation [10]–[12]. In this approach, the shift invariance
of the left singular vector provides the range estimate, while the
shift invariance of the right singular vector provides the clock-
skew estimate. Finally, the performance of the proposed protocol
and estimator is compared against the Cramér Rao lower bound
(CRLB) using numerical simulations demonstrating that the proposed
estimator is asymptotically efficient and approaches the CRLB for
sufficiently high signal-to-noise ratio (SNR).
Notation: Upper (lower) bold face letters are used to denote matrices
(column vectors), while (.)T , (.)H , (.)∗, �, IN and 0N respec-
tively represent transpose, Hermitian transpose, complex conjugate,
element-wise Hadamard product, N ×N identity matrix and N × 1

vector of zeros. Furthermore, (̂.) denotes estimate of a parameter,
E(.) is the expectation operator and vec(.) forms a vector from a
matrix by stacking the columns of the matrix.

II. PROBLEM FORMULATION AND SYSTEM MODEL

Without loss of generality, consider a single sensor (node 0) and
anchor node (node 1) in a fully asynchronous wireless IoT network, as
shown in Fig. 1. Let us, assume that the anchor node has a relatively
stable clock oscillator and known position, while the sensor node
has an unknown position and a non-ideal oscillator with frequency
drift. The clock behavior of the sensor node is considered to be
characterized by the first-order affine clock model [13]

ν0 = ν1(1 + ηo), (1)

where ηo is the clock-skew of the sensor node measured in parts per
million (ppm), while ν0 and ν1 are the frequencies of the oscillator
signals at the sensor and anchor node, respectively.

Here, we assume that the nodes are equipped with narrowband
radio transceivers allowing two-way communication. In addition, the
radio transceivers support estimation of the phase difference between
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node 1 (anchor)

node 0 (sensor)
Fig. 1: Illustration of the nodes in the IoT network, with known and
unknown parameters, two-way carrier messages and a data message.

the carrier frequency of the received signal and its own local oscillator
frequency.

For simplicity, consider that the nodes are distributed over a two-
dimensional space. Let the vectors xi ∈ R2×1, i = 0, 1 collect
the coordinates of the nodes, where the coordinates of the sensor
node x0 are unknown. The range between the anchor and sensor
node is defined as d01 = d10 = ‖x1 − x0‖2, where ‖ · ‖2 denotes
the Euclidean norm.
Frequency synthesizer model. In order to transmit a signal in a
desired frequency band, each radio transceiver generates a carrier
signal. The carrier signal is generated by the frequency synthesizer
of the transceiver which is driven by the clock signal of the local
oscillator. Modern radio transceivers support communication on a
number of carrier frequencies which can be selected by changing the
gain of the divider in the frequency synthesizer.

Therefore, we can assume that all the nodes have the same
frequency synthesizer with a set of K equispaced gains defined as
G(k) = G(1) + (k − 1)ΔG, k = 1, . . . ,K, where G(k) ∈ Q is the
kth gain and ΔG is the step of the frequency divider. The carrier
frequency generated at the output of the frequency synthesizer for
the kth gain is given by f

(k)
i = G(k)νi, i = 0, 1 [14]. The set of all

equispaced carrier frequencies supported by the frequency synthesizer
can be written as

Fi = {f (k)
i = f

(1)
i + (k − 1)Δfi : {f (1)

i ,Δfi} ∈ R}Kk=1, (2)

where Δfi = ΔGνi, i = 0, 1 is the step of the frequency synthesizer,
and it depends on the clock oscillator signal frequency (1).
Signal model. Consider that the sensor node transmits a single tone
unmodulated carrier signal at the kth carrier frequency

s
(k)
0 (t) = �

{
s0e

j
(
2πf

(k)
0 t+ϕ

(k)
0

)}
, (3)

where s0 ∈ R is the amplitude of the complex envelope of s
(k)
0 (t)

and ϕ
(k)
0 is the unknown phase offset introduced by the process of

switching the carrier frequency [15].
The transmitted signal s

(k)
0 (t) is narrowband, and therefore, it

is reasonable to consider flat-fading effects in the channel model.
The signal received at the anchor node after propagation through the
channel and down-conversion by f

(k)
1 is given by

r
(k)
01 (t) = β

(k)
01 se

j
(
2πμ

(k)
01 t+δ

(k)
01

)
+ n

(k)
1 (t), (4)

where β
(k)
01 ∈ C is the complex path attenuation of the channel at

f
(k)
0 , μ(k)

01 = f
(k)
0 − f

(k)
1 and δ

(k)
01 = ϕ

(k)
0 − ϕ

(k)
1 are the unknown

kth carrier frequency and phase offsets, respectively, while n
(k)
1 (t) �

CN (0, σ2
1) denotes the zero-mean complex Gaussian noise present at

the anchor node. The complex path attenuation is defined as β
(k)
01 =

α
(k)
01 e−j2πf

(k)
0 τ01 where α

(k)
01 ∈ R+ is the channel attenuation, τ01 =

d01/c = d10/c is the unknown propagation delay between two nodes
and c is the known propagation speed of the radio signal. Using the
frequency synthesizer and clock models, the carrier frequency offset
is given by μ

(k)
01 = μ

(1)
01 + (k − 1)Δμ01 where Δμ01 = Δf1ηo.

The objective in this paper is then to estimate the unknown
parameters ηo and d01 given the two-way communication between
nodes and PDoA functionalities of the radio transceivers.

III. COMMUNICATION PROTOCOL AND DATA MODEL

In the following, we first derive a detailed data model for PDoA
measurements considering a classical two-way protocol for ranging.
Then, based on the derived model we propose a novel 2-D PDoA
protocol for joint ranging and synchronization.

A. Classical PDoA ranging protocol

In the classical two-way PDoA protocol (cf. Fig. 2a) the sensor node
initiates the communication and sends a message using the signal
s
(k)
0 (t), i.e. using carrier frequency f

(k)
0 , to the anchor node. Then,

the anchor node receives the message as the signal r(k)01 (t) and replies
back to the sensor node by sending a message using signal s(k)1 (t),
i.e. using carrier frequency f

(k)
1 . After the exchange, both nodes

change their carrier frequencies to f
(k+1)
i = f

(k)
i + Δfi, i = 0, 1,

and the same two-way message exchange pattern is repeated. The
phase difference of the carrier signals, ψ

(k)
0 and ψ

(k)
1 , using the

kth carrier frequency are measured at both sensor and anchor nodes,
respectively. Now, considering the noiseless case and assuming that
channel reciprocity1 conditions hold, using (4) ψ

(k)
0 and ψ

(k)
1 are

given by
ψ

(k)
0 = −2πμ

(k)
01 Δt− 2πf

(k)
1 τ01 − δ

(k)
01

ψ
(k)
1 = −2πf

(k)
0 τ01 + δ

(k)
01 ,

(5)

where Δt is the deterministic time epoch between measurements
collected at anchor and sensor nodes, while all other nondeterministic
timing differences between nodes are absorbed in δ

(k)
01 . In general,

the time epoch Δt is controllable by the anchor node and it has
values in the order of tens of microseconds. In the classical PDoA
protocol, it is assumed that Δt is fixed during the recollection of the
measurements.

In this paper, we focus on indoor localization scenarios where the
channel coherence time is typically of the order of several hundreds
of milliseconds [16]. Hence, we can assume that N ≤ K two-
way messages have been exchanged according to the PDoA protocol
within the channel coherence time. For the sake of simplicity, the
N phase difference measurements recorded at sensor and anchor
nodes are transformed in their negative complex exponential form and

collected in the vectors b0 =
[
e−jψ

(1)
0 , . . . , e−jψ

(N)
0

]T
∈ CN×1,

b1 =
[
e−jψ

(1)
1 , . . . , e−jψ

(N)
1

]T
∈ CN×1.

For ranging purposes, the phase offset represent nuisance param-
eter which can be eliminated from the acquired measurements by
considering a = b0 � b1 instead. The argument of the kth element
in a is given by

arg{ak} = 2πμ
(k)
01 Δt+ 2π(f

(k)
1 + f

(k)
0 )τ01. (6)

Using the frequency synthesizer model and (5), we can write

μ
(k)
01 = G(1)ν1η0 + (k − 1)η0Δf1,

f
(k)
1 +f

(k)
0 = (2 + η0)(G

(1)ν1 + (k − 1)Δf1).
(7)

1The received signals at anchor and sensor nodes differs only in the signs
of phase and frequency offset.
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Fig. 2: (a) Classical PDoA two-way ranging protocol, (b) 2-D PDoA protocol for ranging and synchronization, and (c) 2-D equispaced time-frequency
grid at anchor node.

Therefore, the vector a has the model

a(τη) = a(τη)
[
1, ej2πΔf1τη , . . . , ej2π(N−1)Δf1τη

]T
, (8)

where a(τη) = ej2πG(1)ν1τη is the the first element in a(τη) and
τη = ηoΔt+ (2 + ηo)τ01. Note that a(τη) has a shift invariance
structure. This structure is precisely the one that has a uniform linear
array (ULA) response vector in array processing [17]. However, in
this case the phase shift of the elements in a(τη) is caused by
equispaced carrier frequency switching, i.e. frequency hopping.

B. 2-D PDoA ranging and synchronization protocol

The shift invariance of a(τη) only allows for the estimation of a single
parameter τη . However, ηo and τ01, i.e. d01, cannot be uniquely
determined from a(τη). For example, estimation of the τ01 from
a(τη) results in an estimate biased by the clock-skew. To alleviate
this, here, we are interested in a protocol for collecting measurements
that allows joint clock-skew and range estimation.

In the classical PDoA protocol, measurements are collected over
the set of equispaced carrier frequencies while the time epoch Δt
is fixed during message exchange. In the 2-D PDoA protocol, we
propose to collect the measurements over a 2-D set of equispaced
time epochs and carrier frequencies (cf. Figs. 2b and 2c). In this case,
the sensor node transmits a single message per two-way exchange,
while the anchor node transmits P messages based on the equispaced
time epochs. The set of the equispaced time epochs for the kth carrier
frequency is given by Δt(k,p) = pΔt/k, where k = 1, . . . , N and
p = 1, . . . , P . Note that these time epochs depend on the index of
the carrier frequency, i.e. k.

The P phase difference measurements recorded at the sensor
node for the kth carrier frequency are transformed in their negative
complex exponential form and collected in the vector bk ∈ CP×1. As
before, we follow a similar approach for nuisance parameters elimina-
tion. The vector that collects noiseless PDoA measurements recorded
at the kth carrier frequency is written as ak = e−jψ

(k)
1 bk ∈ CP×1

which satisfies the model

ak(ηo, τ01) = a(τη)γ
k−1[1, φ, . . . , φP−1]T , (9)

where a(τη) is defined in (8), γ = ej2πΔf1(2+ηo)τ01 and φ =
ej2πΔf1ηoΔt.
Remark: (Practical implementation): The 2-D PDoA protocol re-
quires that during a single two-way message exchange no carrier
frequency switching occurs. This constraint ensures that the phase
offset between two nodes remains constant during time hopping.
However, there is no constraint on the frequency hopping sequence.
This makes the proposed protocol attractive for implementation as an
adaption of existing medium access control protocols such as time-
slotted channel hopping (TSCH) or WirelessHART [18].

IV. JOINT CLOCK-SKEW AND RANGE ESTIMATION

In the following, we show how to jointly estimate clock-skew, i.e.
ηo, and range, i.e. time delay τ01, from collected measurements.

The noise-corrupted version of ak is given by mk = ak + nk,
where nk is a zero-mean complex Gaussian distributed noise vector2.
From a set of N noisy 2-D PDoA measurements, we construct a
measurement matrix of size P ×N as

M = [m1, . . . ,mN ]. (10)

The measurement matrix satisfies the model

M = A+N, (11)

where A = [a1, . . . ,aN ] and N ∈ CP×N is the noise matrix. Using
(9), it is straightforward to show that A can be modeled as

A = q(η0, τ01)h
T (η0, τ01), (12)

where
q =a(τη)[1, φ, . . . , φ

P−1]T

h = [1, γ, . . . , γN−1]T .
(13)

Model (11), using relation (12), resembles the signal model for
2-D frequency estimation of a single complex sinusoid in white
Gaussian noise. This is a classical signal processing problem for
which numerous methods have been proposed [10]–[12], [20]. Al-
though the maximum likelihood estimator proposed in [20] can attain
optimum performance, it has high computational requirements due to
the multidimensional search. Here, we are interested in suboptimal
but computationally more attractive (practical) methods. To do so,
inspired by [12], we develop an algorithm for joint clock-skew and
range estimation.

From (12), we can observe that A has rank one and that the vectors
q and h span its column and row space, respectively. Since q and h
exhibit shift invariance, it is possible to estimate γ and φ from the
low-rank approximation of M. Then, from φ and γ, the parameters
ηo and τ01, i.e. d01, immediately follow.

In particular, let u1 and v1 be the principal orthonormal basis
vectors for the column and row span of the rank-one approximation
of M, respectively. These vectors can be obtained using the singular
value decomposition (SVD) of M and can be expressed as

u1 = 1/ρqq, v1 = 1/ρhh
∗, (14)

where ρq and ρh are unknown complex constants. Now, let us define
the selection matrices:

Jφ1 = [IP−1 0P−1], Jγ1 = [IN−1 0N−1],

Jφ2 = [0P−1 IP−1], Jγ2 = [0N−1 IN−1].
(15)

2The phase estimation errors in the PLLs are Thikonov, i.e. von Mises
distributed [19]. However, for large signal to noise ratio, the Thikonov
distribution can be approximated by a Gaussian distribution.
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Fig. 3: RMSE of estimated clock-skew, η̂0, vs (a-b) signal to noise ratio, and (c) number of two-way communications.
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Fig. 4: RMSE of estimated range, d̂01, vs (a-b) signal to noise ratio, and (c) number of two-way communications.

To estimate φ, we take subvectors consisting of the first and,
respectively, the last P − 1 elements of the u1. That is, we consider
uφ1 = Jφ1u1 and uφ2 = Jφ2u1, respectively. We follow the same
process for the estimation of γ, i.e. we take subvectors vγ1 = Jγ1v1

and vγ2 = Jγ2v1, respectively. From the shift invariance property of
u1 and v1 we have that

uφ2 ≈ uφ1φ and vγ2 ≈ vγ1γ
∗. (16)

In the case of white noise, the approximate solutions to the relations
in (16) can be found using least squares (LS). However, here we are
adopt the weighted least squares (WLS) approach [11] and formulate
problem (16) as

φ̂ = argmin
φ

‖C−1/2
φ (uφ1φ− uφ2)‖22

γ̂ = argmin
γ

‖C−1/2
γ (vγ1γ

∗ − vγ2)‖22,
(17)

where Cφ = E(rφr
H
φ ) and Cγ = E(rγr

H
γ ) are the covariance ma-

trices of the residuals rφ = uφ1φ− uφ2 and rγ = vγ1γ
∗ − vγ2,

respectively. Therefore, the weighting matrices are the inverse of the
covariance of the residuals, i.e. Wφ = C−1

φ and Wγ = C−1
γ . The

optimal Wφ and Wγ for the considered problem are given in closed-
form by [21]

Wφ[p, n] = (Pmin(p, n)− pn)φ(p−n)/P

Wγ [p, n] = (Nmin(p, n)− pn)γ(n−p)/N,
(18)

where p = 1, . . . , P and n = 1, . . . , N . Note that Wφ and Wγ

depend on the unknown parameters φ and γ. Therefore, first we
estimate φ and γ using LS and then these estimates are used for

construction of Wφ and Wγ . Finally, the WLS is used to obtain
φ̂ and γ̂. Based on the WLS estimates of φ and γ the unknown
parameters are computed as

η̂o = (2πΔf1Δt)−1arg(φ̂)

d̂01 = c(2πΔf1Δt(2 + η̂o))
−1arg(γ̂).

(19)

Note that first the clock-skew is estimated and later this estimate is
used for the estimate of the range.

V. RESULTS

A. Cramér Rao Lower Bound

To assess the performance of the proposed estimators (19) we derive
the CRLB for joint clock-skew and range estimation using the model
(11). For an unbiased estimator θ̂, the CRLB is the lower bound on
the error variance, that is

var(θ̂) ≥ F−1 (20)

where var(θ̂) = E((θ̂ − θ)(θ̂ − θ)T ) and F is the Fisher infor-
mation matrix. We assume that the proposed estimators (19) are
approximately unbiased for sufficiently large SNR and well designed
measurement matrix M [22].

In the case of 2-D frequency estimation of the sum of the sinusoids,
the Fisher information matrix is given by [23]

Fp,k = 2σ−2�
[
∂aH

∂θp

∂a

∂θk

]
∈ R

2×2 (21)

where Fp,k is the (p, k)th element of F, σ2 is the variance of the
noise, ∂/∂θp is the partial derivative with respect to the pth element
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of θ, a = vec(A) ∈ CPN×1 is the vector formed by stacking the
columns of A. The resulting Fisher information matrix is invertible,
so closed-form expressions for the CRLBs are given by

var(η̂0) ≥ 6

SNR(2πΔf1Δt)2PN(P 2 − 1)
,

var(d̂01) ≥ 6c2

SNR(4πΔf1)2PN(N2 − 1)
.

(22)

where SNR = σ−2.

B. Simulations

In the following, simulations are used to compare the performance of
the proposed protocol and algorithm with state-of-the-art estimators
for the same problem. We consider two nodes, i.e. anchor and sensor,
which are deployed randomly within a range of 140m. The carrier
frequency step Δfi, i = 0, 1 and time epoch Δt are set to 0.5MHz
and 80μs, respectively. The clock-skew of the sensor node ηo is set to
80ppm. The phase difference of arrival measurements are corrupted
with zero-mean Gaussian noise and all results presented are averaged
over 103 independent Monte Carlo runs.

Figs. 3a and 4a show the root mean square error (RMSE) of
clock-skew and range against the signal-to-noise-ratio for various
estimators. The number of time and frequency hops is equal and set
to 10. All the algorithms are independently applied to the same set of
PDoA measurements. As shown in the figures, the proposed algorithm
outperforms the approximate iterative quadratic maximum-likelihood
(AIQML) [21], weighted linear predictor (WLP) [24] and ESPRIT
[10] for both clock-skew and range. Furthermore, for sufficiently
high SNR the proposed algorithm is asymptotically efficient and
approaches the theoretical bounds, i.e. the CRLB.

Fig. 3b and 4b show the RMSE of clock-skew and range against
the SNR for a different number of PDoA measurements collected
over time epochs (P ) and carrier frequencies, (N ). It is shown that
by increasing the number of PDoA measurements collected over time
epochs the accuracy of the clock-skew estimates is increased, while
the accuracy of the range estimates increases with N .

Fig. 3c and 4c show the RMSE of clock-skew and range against
the number of PDoA measurements, while SNR is set to 10dB. In
all scenarios the number of time and frequency hops is equal. Similar
as in the previous scenarios, the proposed algorithm outperforms
AIQML, WLP and ESPRIT. In addition, it can be seen that the
proposed estimator achieves the CRLB.

VI. CONCLUSIONS

In this paper, we investigated the problem of joint ranging and clock-
skew estimation using PDoA measurements. A novel and precise data
model for PDoA measurements is derived. The derived model enables
joint clock-skew and range estimation from PDoA measurements
collected over a 2-D equispaced time-frequency grid. We have
proposed a novel protocol for collection of PDoA measurements and
an algorithm based on WLS to jointly estimate the clock-skew and
range. The presented algorithm leverages shift invariance properties
of principal singular vectors of the collected measurements. The
proposed estimator is asymptotically efficient and reaches the CRLB
for sufficiently high SNR.
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