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Abstract—The problem of spectral efficiency maximization for
hybrid analog/digital transceiver architecture, subject to both
transmit and receiver power constraints, is considered. With the
processing power constraint of the receiver, the number of radio
frequency (RF) chains and analog-to-digital (ADC) resolution
used greatly affect the achievable transmission rate. We formulate
an optimization problem to find this trade-off, and provide an
efficient algorithm to solve it. Numerical results show that for
power constrained hybrid receiver, there is a trade-off between
the number of RF chains and the ADC resolution, that can obtain
maximal spectral efficiency.

Index Terms—Hybrid analog/digital beamforming, millimeter
wave communication, analog-to-digital converters.

I. INTRODUCTION

There is growing interest in the exploration of underuti-
lized millimeter wave (mm-wave) frequency spectrum for the
future-generation wireless networks [1], because the available
multi-GHz bandwidth in the mm-wave band is essential to
meet very high peak data rate and low latency requirements
of the next-generation wireless networks. Moreover, the small
wave-length of mm-wave band signal allows the use of very
large antenna arrays at both the transmitter and receiver, and it
can provide high array gain, which is essential to compensate
for the large path loss in the radio channel, and to provide
large numbers of spatial degrees of freedom [2].

In conventional multiple-input multiple-output (MIMO) sys-
tems, precoder/combiner is generally designed at baseband via
digital processors [3]. This fully-digital precoding/combining
requires radio frequency (RF) chains, including signal mixers,
digital-to-analog/analog-to-digital converters (DAC/ADC), as
many as the number of antenna elements. As mm-wave com-
munication requires a large scale MIMO system to combat the
propagation loss, the use of fully-digital precoding/combining
techniques for mm-wave communication is not practically
feasible, because of its huge implementation cost and power
consumption. Given such constraints, the use of hybrid (ana-
log/digital beamforming) architecture with a low resolution
ADC/DAC is a potential solution [4], [5].

We consider the problem of spectral efficiency maximiza-
tion for hybrid analog/digital transceiver architecture, subject
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Fig. 1. Hybrid architectures: a) fully-connected, b) partially-connected.

to both transmit and receiver (processing) power constraints.
With the power constraint of the receiver, there exist a trade-
off: whether to use low resolution ADC with a large number
of antennas and RF chains, or to use high resolution ADC
with few antennas and RF chains. The main contribution of
the paper is to evaluate this trade-off, and propose an efficient
algorithm to design hybrid analog/digital beamformers for
mm-wave communication.

II. SYSTEM MODEL

We consider a MIMO system with hybrid analog/digital
architecture as shown in Fig. 1. The transmitter and receiver
are equipped with N and M antennas, respectively. The set
of transmit and receive antennas are denoted by N and M,
respectively. We denote the set of RF chains in the transmitter
by NRF = {1, . . . , NRF}. The set of RF chains in the receiver
is denoted by MRF = {1, . . . ,MRF}. It is assumed that
NRF ≤ N and MRF ≤ M ; and the transmitter and receiver
communicate via S data streams, with S ≤ min(NRF,MRF).

We denote a set of antennas that are connected to nth RF
chain in the transmitter by N (n), and its complement N (n) =
N\N (n) denotes the set of antennas that are not connected to
nth RF chain. Similarly, the set of antennas that are connected
to mth RF chain in the receiver is denoted by M(m), and
its complement is denoted by M(m) = M\M(n). In the
case of fully-connected hybrid architecture (Fig. 1(a)), we have
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|N (n)| = N and |M(m)| = M for all n ∈ NRF, m ∈ MRF.
We denote VRF ∈ CN×NRF as an analog precoder, and

VBB ∈ CNRF×S as a baseband digital precoder. Let V =
VRFVBB, then the received signal can be expressed as

y = HVd+ z, (1)

where H ∈ CM×N represents the channel matrix, d ∈ CS

is a vector of data stream such that E{ddH} = IS , and z ∼
CN (0, σ2I) is white Gaussian noise. We assume that each
element of analog precoder VRF is implemented using a phase
shifter, such that |VRF(k, n)|2 = 1 and VRF(k̄, n) = 0 for
all k ∈ N (n), k̄ ∈ N (n), and n ∈ NRF.

Let WRF ∈ CM×MRF and WBB ∈ CMRF×S denote the
analog and baseband digital combiner matrices, respectively.
The estimated data vector d̂ obtained by analog/digital com-
bining and ADC quantization can be written as

d̂ = WH
BBQ

(
WH

RFy
)
= WH

BBQ
(
WH

RFHx+WH
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)
, (2)

where Q(·) denotes a scalar quantization function, which
applies component-wise. Similar to VRF, we assume that each
element of matrix WRF is implemented using a phase shifter.

We apply additive quantization noise model [6] to decom-
pose the quantized signal (2), and it can be reduced to [6]

d̂ = WH
BB

{
(1− βb)(W

H
RFHx+WH

RFz) + zq
}
, (3)

where βb is b-bit ADC distortion factor, and zq is quantization
noise with covariance βb(1− βb)E{diag(WH

RFyy
HWRF)}.

We assume a non-uniform quantizer, and in this case the
distortion factor βb can be approximated as βb ≈ π

√
3

2 2−2b

for b > 3 [6]. For b ≤ 3 the value of βb is given in [7].

A. Power Consumption Model of Receiver

Let PPS, PRFchain, PLNA, PADC(b), and PBB denote the
power consumptions of a phase shifter (PS), RF chain, low
noise amplifier (LNA), b-bit ADC, and baseband processor.

We assume that a PS can be turned on/off to save re-
ceiver power consumption. Let akm be a binary variable
associated with a PS connecting kth antenna with mth RF
chain. Then total power consumption by the PSs becomes
PPS

∑
m∈MRF

∑
k∈M(m) akm. Note that mth RF chain is

required to be enabled, if any PS connected to it is turned
on. Hence, we define a binary variable cm = maxk∈M(m) akm
associated with mth RF chain. Therefore, the power consump-
tion of the receiver can be approximated as

Prx(a, b, c, e) = PPS

∑
m∈MRF

∑
k∈M(m) akm +

∑
m∈MRF

cm
(
PRFchain

+ 2PADC(b)
)
+

∑
k∈M ekPLNA + PBB, (4)

where ek=maxm∈MRF
akm is a variable associated with kth

receive antenna’s LNA; ek is one, if any PS connected to

kth receive antenna is selected. Furthermore, we approximate
PADC(b) = ξfs2

b, where ξ is the ADC’s energy consumption
per conversion step and fs is the Nyquist sampling rate [8].

B. Problem Formulation

We consider a downlink scenario, where power and cost
requirements in a base station (transmitter) is not stringent
as compared with a mobile device (receiver). Therefore, we
assume that the base station is equipped with high-resolution
ADCs/DACs. Then, by assuming that the transmitter and
receiver power allocations are subject to tr(VVH) ≤ Pmax

tx

and Prx(a, b, c, e) ≤ Pmax
rx , respectively, the problem of

spectral efficiency maximization with the b-bit ADCs in the
receiver can be expressed as

maximize R(V,WRF,WBB, b)

subject to tr(VVH) ≤ Pmax
tx (5a)

V = VRFVBB (5b)

|VRF(k, n)|2 = 1, k ∈ N (n), n ∈ NRF (5c)

VRF(k, n) = 0, k ∈ N (n), n ∈ NRF (5d)

Prx(a, b, c, e) ≤ Pmax
rx (5e)

|WRF(k,m)|2 = akm, k ∈ M,m ∈ MRF (5f)

maxk∈M(m) akm = cm, m ∈ MRF (5g)

maxm∈MRF
akm = ek, k ∈ M (5h)

akm = {0, 1}, k ∈ M(m),m ∈ MRF (5i)

cm = {0, 1}, m ∈ MRF (5j)

ek = {0, 1}, k ∈ M (5k)

akm = 0, k ∈ M(m),m ∈ MRF, (5l)

with variables V,WRF,WBB,a, c, e; and R is defined in (6).

III. ALGORITHM DERIVATION

Problem (5) is a nonconvex problem, and we propose a
suboptimal algorithm to solve it. The proposed algorithm is
based on the alternating optimization technique in conjunction
with the sequential convex programming (SCP) [9], [10].

A. Transmit Precoder Design

The transmit analog/digital precoders are obtained by as-
suming that the optimal receiver structure (i.e., fixed WRF,
WBB) is used. Furthermore, to efficiently find a solution we
adopt a large-scale MIMO system assumption (where matrix
WH

RFWRF is approximately a diagonal) [4], [11]. Then an
approximate solution for problem (5) is obtained, by solving
the following optimization problem:

maximize B log2

∣∣∣∣∣I+
(1− βb)H̃VVHH̃H

σ2Υ

∣∣∣∣∣
subject to tr(VVH) ≤ Pmax

tx ,

(7)



with variable V, where H̃ = WH
RFH and Υ =

diag
(
diag(WH

RFWRF)
)
. Note that in (7), constraints (5b)-

(5d) are dropped to find a fully-digital precoder V.
Let {v̄1, . . . , v̄S} and {α1, . . . , αS} be the dominant right

singular vectors and corresponding singular values of the ma-
trix ((1−βb)/σ

2)1/2Υ−1/2H̃. Then the fully-digital precoder
for problem (7) can be expressed as [2, Ch. 7.1]

V� = [
√
p1v̄1, . . . ,

√
pSv̄S ], (8)

where {pi}i=1,...,S are power allocation obtained by using
water filling method, given by

pi =
(
μ− 1/α2

i

)+
, i = 1, . . . , S, (9)

and a constant μ is chosen such that
∑S

i=1 pi = Pmax
tx .

1) Factorize V� into VRF and VBB: We derive alternating
direction method of multipliers (ADMM) [12] based algorithm
to factorize V� into VRF and VBB. To do this, we minimize
a Frobenius norm between V� and VRFVBB subject to
constraints (5c) and (5d) as follows:

minimize ‖V� −VRFVBB‖2F
subject to |VRF(k, n)|2 = 1, k ∈ N (n), n ∈ NRF

VRF(k, n) = 0, k ∈ N (n), n ∈ NRF,
(10)

with variables VRF and VBB.
Note that problem (10) is not a convex optimization prob-

lem, and ADMM is not guaranteed to converge for a non-
convex problem [12]. However, if each step of the ADMM
iteration is tractable, the ADMM algorithm can still be used
to derive (possibly suboptimal) solution method for nonconvex
problem [12, Ch. 9]. To derive ADMM algorithm for prob-
lem (10), we start by introducing an auxiliary variable Z as a
copy of VRF. Then problem (10) can be equivalently written
as

minimize ‖V� − ZVBB‖2F
subject to Z = VRF

|VRF(k, n)|2 = 1, k ∈ N (n), n ∈ NRF

VRF(k, n) = 0, k ∈ N (n), n ∈ NRF,

(11)

with variables Z, VRF, and VBB.
For convenience, we express problem (11) compactly. To

do this we introduce a set VRF and function g(VRF) as

VRF = {VRF |constraints (5c) and (5d)} , (12)

g(VRF) =

{
0 VRF ∈ VRF

∞ otherwise
. (13)

Then problem (11) can be written compactly as

minimize ‖V� − ZVBB‖2F + g(VRF)
subject to Z = VRF,

(14)

with variables Z, VRF, and VBB.
ADMM algorithm: To derive the ADMM algorithm we first

form the augmented Lagrangian [12] of problem (14). Let
Ω ∈CNRF×N be the dual variable associated with the equality
constraint of problem (14). Then the augmented Lagrangian

for problem (14), with the equality constraints on the complex
variables, can be written as [13]

Lρ

(
Z,VBB,VRF,Ψ

)
= ‖V� − ZVBB‖2F + g(VRF)

+ ρ‖Z−VRF +Ψ‖2F − ρ‖Ψ‖2F . (15)

where ρ > 0 and Ψ = (1/ρ)Ω.
To obtain the ADMM iteration, let Z be the first block,

and (VBB,VRF) be the second block. Then each iteration of
ADMM algorithm consists of the following three steps [12]:

Zl+1 = argmin
Z

Lρ

(
Z,Vl

BB,V
l
RF,Ψ

l
)

(16)

(Vl+1
BB ,Vl+1

RF ) = argmin
VBB,VRF∈VRF

Lρ

(
Zl+1,VBB,VRF,Ψ

l
)

(17)

Ψl+1 = Ψl + Zl+1 −Vl+1
RF , (18)

where l is the iteration counter. It is easy to see that expres-
sion (17) is separable in variables VBB and VRF. Further-
more, updates Zl+1 and Vl+1

BB are solutions of unconstrained
quadratic optimization problems. Thus, we can get

Zl+1 =
(
V�VlH

BB + ρVl
RF − ρΨl

)(
Vl

BBV
lH
BB + ρI

)−1
(19)

Vl+1
BB = (Z(l+1)HZl+1)−1Z(l+1)HV�. (20)

The update Vl+1
RF in expression (17) can be obtained by

solving the following optimization problem:

minimize ‖Ψl + Zl+1 −VRF‖2F
subject to |VRF(k, n)|2 = 1, k ∈ N (n), n ∈ NRF

VRF(k, n) = 0, k ∈ N (n), n ∈ NRF,

(21)

Problem (21) is separable in each variable VRF(k, n). Thus a
solution V�

RF(k, n) can be expressed as

V�
RF(k, n) = ejθ, with θ = arg

(
Ψl(k, n) + Zl+1(k, n)

)
,

for all k ∈ N and n ∈ NRF.

B. Analog Combiner Design

In order to obtain analog combiner WRF and the associated
components (i.e., the required number of RF chains, PSs,
and LNAs) transmit analog/digital precoders (VRF,VBB) are
fixed in problem (5). Furthermore, the diag(·) operator is
relaxed, and problem (5) is approximated as

maximize f0(D,WRF)

subject to constraints (5e) − (5l) (22a)

D = I− diag(c1, . . . , cMRF
), (22b)

with variables WRF, a, c, e, and D. In problem (22) function
f0(D,WRF) is defined as

f0(D,WRF) = B log2
|D+WH

RF(σ
2I+G)WRF|

|D+WH
RF(σ

2I+ βbG)WRF| ,

where G = HVVHHH. Note that the use of auxiliary variable
D makes the term |D+WH

RF(σ
2I+βbG)WRF| nonsingular.

However, it does not affect the objective of problem (5).



In function f0(D,WRF), we can see that if numerator |D+
WH

RF(σ
2I+G)WRF| increases, the term in denominator |D+

WH
RF(σ

2I+βbG)WRF| also increases. We further exploit this
relative incremental behavior in function f0(D,WRF), and
find an approximate solution for problem (22) by solving the
following optimization problem:

maximize B log2 |D+WH
RF(σ

2I+G)WRF|
+ δ

∑
m∈MRF

∑
k∈M(m) akm log(akm)

subject to Prx(a, b, c, e) ≤ Pmax
rx (23a)

|WRF(k,m)|2 ≤ akm, k ∈ M,m ∈ MRF

(23b)

akm ≤ cm, k ∈ M(m),m ∈ MRF (23c)

akm ≤ ek, m ∈ MRF, k ∈ M (23d)

0 ≤ akm ≤ 1, k ∈ M(m),m ∈ MRF (23e)

akm = 0, k ∈ M(m),m ∈ MRF (23f)

0 ≤ cm ≤ 1, m ∈ MRF (23g)

0 ≤ ek ≤ 1, k ∈ M (23h)

D = I− diag(c1, . . . , cMRF), (23i)

with variables WRF, a, c, e, and D; a parameter δ > 0.
Note that we have relaxed the binary constraints in (22a),
and employed a penalty function akm log(akm) (negative en-
tropy function) to promote binary values for {akm}. Function
akm log(akm) has maximum values at akm equal to zero or
one. Thus, there exits a value of parameter δ that can achieve
binary values for variables {akm}.

Problem (23) is still not a convex, and we use the SCP
approach [10] to solve it. By using the first order approxima-
tion [14, App. A.4] of the objective function near arbitrary
points D̂, ŴRF, and {âkm}k∈M(m),m∈MRF

, a convex ap-
proximation of problem (23) can be written as

maximize Btr
(
(D̂+ ŴH

RFFŴRF)
−1(D+ 2ŴH

RFFWRF)
)

+ δ
∑

m∈MRF

∑
k∈M(m)

(
1 + log(âkm)

)
akm

subject to constraints (23a) − (23h), (24a)

with variables WRF, a, c, e, and D; where F = σ2I+G.
Problem (24) approximates a solution for (23) near arbitrary

points D̂, ŴRF, and {âkm}. Hence, to obtain the best
local solution for (23), we need to solve (24) repeatedly
for different values of D̂, ŴRF, and {âkm}. Thus, we take
the solution D�, W�

RF and a� of problem (24) as the next
iterate

(
i.e., we set D̂ = D�, ŴRF = W�

RF, and {âkm =
a�km}k∈M(m),m∈MRF

)
, then again solve problem (24). This

step is repeated until convergence.

C. Digital Baseband Combiner Design

For fixed transmitter and analog combiner, we obtain
MMSE solution for WBB, and it can be expressed as [15]

WBB = J−1WH
RFHVRFVBB, (25)

where J is given by

J = (1−βb)W
H
RFHVVHHHWRF+σ2(1−βb)W

H
RFWRF

+ βbdiag
(
WH

RFHVVHHHWRF + σ2WH
RFWRF

)
.

Finally, we summarized a proposed algorithm to solve
problem (5) below.

Algorithm 1: Design hybrid beamforming for problem (5).

1) Initialization: feasible points D0, W0
RF, and {a0km};

parameter δ > 0. Obtain singular value decomposition
of H = ÛΣV̂H, and set iteration index i = 0.

2) Receiver analog components design:
a) Set Ṽ = (Pmax

tx /S)V̂, and G = HṼṼHHH.
b) Set D̂ = Di, ŴRF = Wi

RF and {âkm =
aikm}k∈M(m),m∈MRF

.
c) Solve problem (24), and denote the solution by

{W�
RF,a

�, c�, e�,D�}. Set Di+1 = D�, Wi+1
RF =

W�
RF and {ai+1

km = a�km}k∈M(m),m∈MRF
.

d) Stopping criteria: if stopping criteria is satisfied,
STOP. Otherwise set i = i+ 1, and go to step 2b.

3) Obtain transmit precoder V� by using expression (8).
4) Factorize V� into VRF and VBB by ADMM itera-

tions (16)-(18).
5) Obtain digital combiner WBB by using expression (25).

IV. SIMULATION RESULTS

The hybrid transceiver architecture as shown in Fig. 1(a) is
considered. We assume that the transmitter and receiver are
equipped with N = 64 and M = 8 antennas, respectively,
and they communicate via S = 3 data streams. We set
NRF = 6 RF chains at the transmitter. A geometric path
loss model [4], [5] with L scattering clusters is considered.
Furthermore, we assume a uniform linear array antenna con-
figuration. Thus, a channel H ∈ CM×N can be modeled
as H =

√
MN/L

∑L
l=1 αlsrx(θl)stx(φl)

H, where αl is a
complex gain of the lth channel tap, and vectors srx(θl) and
stx(φl) are expressed as

srx(θl = (1/
√
M)[1, ejωd sin(θl), . . . , ejωd(M−1) sin(θl)]T (26)

stx(φl) = (1/
√
N)[1, ejωd sin(φl), . . . , ejωd(N−1) sin(φl)]T, (27)

where ω = 2π/λ, λ is wavelength, and d is antenna spacing.
In the simulation, we set L = 6, d = λ/2, αl ∼ CN (0, 1),
θl ∈ [0, 2π), and φl ∈ [0, 2π).

The exact computation of the dissipated power by
each component of receiver is difficult. To model re-
ceiver power consumption, we assume PLNA = 20mW,
PPS = 10mW, PRFchain = 40mW, PBB = 200mW,
ξ = 500fJ/conversion–step, and channel bandwidth B =
1GHz [16]–[18].

Fig. 2 shows spectral efficiency versus ADC resolution b
for different values of receiver power constraint Pmax

rx . As a
benchmark fully-digital MIMO with infinite resolution ADC



is considered. Results show that for small values of Pmax
rx

(i.e., power-constrained receiver), the achievable rate decreases
with increase in the ADC resolution. It is because ADC power
consumption scales exponentially with bits b per sample [8],
and there is not sufficient power to activate enough RF chains.
This we can see in Fig. 3.
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Fig. (4) shows the spectral efficiency versus SNR for
Pmax
rx = 3 W. Plots are drawn for ADC resolution b =

2, 4, 6, 8, 10 bits and for the fully-digital MIMO system. Re-
sults show that the achievable rate approach the fully-digital
MIMO system with the increase in ADC resolution b, only if
the receiver is not power-limited. For example, in Fig. 4 when
ADC b = 10 bit, the achievable rate is smaller than that for
b = 2 bits. This is because Pmax

rx = 3 W is not enough to
support power consuming high-precision ADCs.

V. CONCLUSIONS

We have considered the problem of hybrid beamforming
with low resolution ADC for millimeter wave communica-
tions. The hybrid precoder/decoder design algorithm for max-
imizing the spectral efficiency has been proposed. Numerical
results show that there is a trade-off between the number of
active RF chains and ADC resolution, for power constrained
hybrid receiver, that can obtain maximal spectral efficiency.
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