
Distributed Non-Convex First-Order Optimization and Information

Processing: Lower Complexity Bounds and Rate Optimal Algorithms

Haoran Sun and Mingyi Hong ∗

September 17, 2019

Abstract

We consider a class of popular distributed non-convex optimization problems, in which agents con-
nected by a network G collectively optimize a sum of smooth (possibly non-convex) local objective
functions. We address the following question: if the agents can only access the gradients of local func-
tions, what are the fastest rates that any distributed algorithms can achieve, and how to achieve those
rates.

First, we show that there exist difficult problem instances, such that it takes a class of distributed
first-order methods at least O(1/

√
ξ(G) × L̄/ε) communication rounds to achieve certain ε-solution

[where ξ(G) denotes the spectral gap of the graph Laplacian matrix, and L̄ is some Lipschitz constant].
Second, we propose (near) optimal methods whose rates match the developed lower rate bound (up to a
ploylog factor). The key in the algorithm design is to properly embed the classical polynomial filtering
techniques into modern first-order algorithms. To the best of our knowledge, this is the first time that
lower rate bounds and optimal methods have been developed for distributed non-convex optimization
problems.

Keywords. Non-convex distributed optimization; Optimal methods; Lower complexity bounds.

1 Introduction

1.1 Problem and motivation

In this work, we consider the following distributed optimization problem over a network

min
y∈RS

f̄(y) :=
1

M

M∑
i=1

fi(y), (1)

where fi(y) : RS → R is a smooth and possibly non-convex function accessible to agent i. There is no
central controller, and the M agents are connected by a network defined by an undirected and unweighted
graph G = {V, E}, with |V| = M vertices and |E| = E edges. Each agent i can only communicate with its
immediate neighbors, and it can access one component function fi (by “access” we meant that it will be
able to query the function and obtain its values and gradients; this notion will be defined precisely shortly).

∗H. Sun and M. Hong are with the Department of Electrical and Computer Engineering (ECE), University of Minnesota,
Minneapolis, MN 55414, USA. Email: {sun00111,mhong}@umn.edu

1

ar
X

iv
:1

80
4.

02
72

9v
4

 [
m

at
h.

O
C

]
 1

6
Se

p
20

19

A common way to reformulate problem (1) in the distributed setting is given below. Introduce M local
variables x1, · · · , xM ∈ RS and a concatenation of M variables x := [x1; · · · ;xM] ∈ RSM×1, and suppose
the graph {V, E} is connected, then the following formulation is equivalent to the global consensus problem

min
x∈RSM

f(x) :=
1

M

M∑
i=1

fi(xi), s.t. xi = xj ,∀ (i, j) ∈ E . (2)

The main benefit of the above formulation is that the objective function is now separable, and the linear
constraint encodes the network connectivity pattern.

1.2 Distributed non-convex optimization

Distributed non-convex optimization has gained considerable attention recently. For example, it finds
applications in training neural networks [1], clustering [2], and dictionary learning [3], just to name a few.

The problem (1) and (2) have been studied extensively in the literature when fi’s are all convex; see
for example [4–6]. Primal based methods such as distributed subgradient (DSG) method [4], the EXTRA
method [6], as well as primal-dual based methods such as distributed augmented Lagrangian method [7],
Alternating Direction Method of Multipliers (ADMM) [8,9] have been proposed.

On the contrary, only recently there have been works addressing the more challenging problems without
assuming convexity of fi; see [1,3,10–23]. The convergence behavior of the distributed consensus problem
(1) has been studied in [3,10,11]. Reference [12] develops a non-convex ADMM based methods for solving
the distributed consensus problem (1). However the network considered therein is a star network in which
the local nodes are all connected to a central controller. References [14, 15] propose a primal-dual based
method for unconstrained problem over a connected network, and derives a global convergence rate for this
setting. In [13, 17, 18], the authors utilize certain gradient tracking idea to solve a constrained nonsmooth
distributed problem over possibly time-varying networks. The work [19] summarizes a number of recent
progress in extending the DSG-based methods for non-convex problems. References [1, 16, 20] develop
methods for distributed stochastic zeroth and/or first-order non-convex optimization. It is worth noting
that the distributed algorithms proposed in all these works converge to first-order stationary solutions,
which contain local maximum, local minimum and saddle points.

Recently, the authors of [22, 24–26] have developed first-order distributed algorithms that are capable
of computing second-order stationary solutions (which under suitable conditions become local optimal
solutions). Other second-order distributed algorithms such as [27,28] are design for convex problems, and
they utilize high-order Hessian information about local problems.

1.3 Lower and upper rate bounds analysis

Despite all the recent interests and contributions in this field, one major question remains open:

(Q) What is the best convergence rate achievable by any distributed algorithms for
the non-convex problem (1)?

Question (Q) seeks to find a “best convergence rate”, which is a characterization of the smallest number
of iterations required to achieve certain high-quality solutions, among all distributed algorithms. Clearly,
understanding (Q) provides fundamental insights to distributed optimization and information processing.
For example, the answer to (Q) offers meaningful optimal estimates on the total amount of communication

2

and computation effort required to achieve a given level of accuracy. Further, the identified optimal
strategies capable of attaining the best convergence rates will also help guide the practical design of
distributed information processing algorithms.

Question (Q) is easy to state, but formulating it rigorously is quite involved and a number of delicate
issues have to be clarified. Below we provide a high level discussion on some of these issues.
(1) Fix Problem and Network Classes. A class of problems P and networks N of interest should be
fixed. Roughly speaking, in this work, we will fix P to be the family of smooth unconstrained problem (1),
and N to be the set of connected and unweighted graphs with finite number of nodes.
(2) Characterize High-Quality Solutions. For a properly defined error constant ε > 0, one needs
to define a high-quality solution in distributed and non-convex setting. Differently from the centralized
case, the following questions have to be addressed: Should the solution quality be evaluated based on the
averaged iterates among all the agents, or on the individual iterates? Shall we include some consensus
measure in the solution characterization? Different solution notion could potentially lead to different lower
and upper rate bounds.
(3) Fix Algorithm Classes. A class of algorithms A has to be fixed. In the classical complexity analysis
in (centralized) optimization, it is common to define the class of algorithms by the information structures
that they utilize [29]. In the distributed and non-convex setting, it is necessary to specify both the function
information that can be used by individual nodes, as well as the communication protocols that are allowed.
(4) Develop Sharp Upper Bounds. It is necessary to develop algorithms within class A, which possess
provable and sharp global convergence rate for problem/network class (P,N). These algorithms provide
achievable upper bounds on the global convergence rates.
(5) Identify Lower Bounds. It is important to characterize the worst rates achievable by any algorithm
in class A for problem/network class (P,N). This task involves identifying instances in (P,N) that are
difficult for algorithm class A.
(6) Match Lower and Upper Bounds. The key task is to investigate whether the developed algorithms
are rate optimal, in the sense that rate upper bounds derived in (4) match the worst-case lower bounds
developed in (5). Roughly speaking, matching two bounds requires that for the class of problem and
networks (P,N), the following quantities should be matched between the lower and upper bounds: i) the
order of the error constants ε; ii) the order of problem parameters such as M , or that of network parameters
such as the spectral gap, diameter, etc.

Convergence rate analysis (aka iteration complexity analysis) for convex problems dates back to Nes-
terov, Nemirovsky and Yudin [30,31], in which lower bounds and optimal first-order algorithms have been
developed; also see [32]. In recent years, many accelerated first-order algorithms achieving those lower
bounds for different kinds of convex problems have been derived; see e.g., [33–35], including those devel-
oped for distributed convex optimization [36]. In those works, the problem is to optimize minx f(x) with
convex f , the optimality measure used is f(x)− f(x∗), and the lower bound can be expressed as [32, The-
orem 2.2.2]

f(xt)− f(x∗) ≤ ‖x
0 − x∗‖L
(t+ 2)2

, (3)

where L is the Lipschitz constant for ∇f ; x∗ (resp. x0) is the global optimal solution (resp. the initial
solution); t is the iteration index. Therefore to achieve ε-optimal solution in which f(xt) − f(x∗) ≤ ε,

one needs

√
‖x∗−x0‖L

ε iterations. Recently the above approach has been extended to distributed strongly

convex optimization in [37]. In particular, the authors consider problem (1) in which each fi is strongly

3

Network Instances
Problem Classes

Uniform Lipschitz U Non-uniform Lipschitz {Li} Rate Achieving Algorithm
Complete/Star O(U/ε) O(1/ε×

∑
i Li/M) D-GPDA (proposed)

Random Geometric Õ(U
√
M/(
√

logMε)) Õ(
√
M/(

√
log(M)ε)×

∑
i Li/M) xFILTER (proposed)

Path/Circle Õ(UM/ε) Õ(M/ε×
∑

i Li/M) xFILTER (proposed)

Grid Õ(U
√
M/ε) Õ(

√
M/ε×

∑
i Li/M) xFILTER (proposed)

Centralized O(U/ε) O(1/ε×
∑

i Li/M) Gradient Descent

Table 1: The main results of the paper when specializing to a few popular graphs. The entries show the best rate bounds achieved by
the proposed algorithms (either D-GPDA or xFILTER) for a number of specific graphs and problem class; Li is the Lipschitz constant
for ∇fi [see (4)]; for the uniform case U = L1, · · · , LM . For the uniform Lipschitz the lower rate bounds derived for the particular graph
matches the upper rate bounds (we only show the latter in the table). The last row shows the rate achieved by the centralized gradient

descent algorithm. The notation Õ denotes big O with some polynomial in logarithms, i.e, use Õ to denote O(log(M)) where M is the
problem dimension.

convex, and they provide lower and upper rate bounds for a class of algorithms in which the local agents
can utilize both ∇fi(x) and its Fenchel conjugate ∇∗fi(x). We note that this result is not directly related to
the class of “first-order” method, since beyond the first-order gradient information, the Fenchel conjugate
∇∗fi(x) is also needed, but computing this quantity requires performing certain exact minimization, which
itself involves solving a strongly convex optimization problem. Other related works in this direction also
include [38] and [39]. In particular, the work [39] is a non-smooth extension of [37], where the lower
complexity bound under the Lipschitz continuity of the global and local objective function are discussed
and the optimal algorithm is proposed.

When the problem becomes non-convex, the size of the gradient function can be used as a measure of
solution quality. In particular, let h∗T := min0≤t≤T ‖∇f(xt)‖2, then it has been shown that the classical
(centralized) gradient descent (GD) method achieves the following rate [32, page 28]

h∗T ≤
c0L(f(x0)− f(x∗))

T + 1
, where c0 > 0 is some constant.

It has been shown in [40] that the above rate is (almost) tight for GD. Recently, [41] has further shown
that the above rate is optimal for any first-order methods that only utilize the gradient information, when
applied to problems with Lipschitz gradient. However, no lower bound analysis has been developed for
distributed non-convex problem (19); there are even not many algorithms that provide achievable upper rate
bounds (except for the recent works [12,15,42,43]), not to mention any analysis on the tightness/sharpness
of these upper bounds.

1.4 Contribution of this work

In this work, we address various issues that arise in answering (Q). Our main contributions are given
below:
1) We identify a class of non-convex problems and networks (P,N), a class of distributed first-order
algorithms A, and rigorously define the ε-optimality gap that measures the progress of the algorithms;
2) We develop the first lower complexity bound for class A to solve class (P,N): To achieve ε-optimality,
it is necessary for any a ∈ A to perform O(1/

√
ξ(G)× L̄/ε) rounds of communication among all the nodes,

where ξ(G) represents certain spectral gap of the graph Laplacian matrix, and L̄ is the averaged Lipschitz
constants of the gradients of local functions. On the other hand, it is necessary for any such algorithm to

4

perform O(L̄/ε) rounds of computation among all the nodes.
3) We design two algorithms belonging to A, one based on primal-dual optimization scheme, the other
based on a novel approximate filtering -then- predict and tracking (xFILTER) strategy, both of which
achieve ε-optimality condition with provable global rates [in the order of O(1/ε)];
4) We show that the xFILTER is an optimal method in A for problem class (P,N) as well as a number
of its refinements, in that they precisely achieve the lower complexity bounds that we derived (up to a
ploylog factor).

In Table 1, we specialize some key results developed in the paper to a few popular graphs.
Notations. For a given symmetric matrix B, we use λmax(B), λmin(B) and λmin(B) to denote the
maximum, the minimum and the minimum nonzero eigenvalues; We use IP to denote an identity matrix
with size P , and use ⊗ to denote the Kronecker product. We use [M] to denote the set {1, · · · ,M}. For
a vector x we use x[i] to denote its ith element. We use Õ to denote O(log(M)) where M is the problem
dimension. We use i ∼ j to denote two connected nodes i and j, i.e., for a graph G := {V, E}, i ∼ j if
i 6= j, and (i, j) ∈ E .

2 Preliminaries

2.1 The class P, N , A

We present the classes of problems, networks and algorithms to be studied, as well as some useful results.
We parameterize these classes using a few key parameters so that we can specify their subclasses when
needed.
Problem Class. A problem is in class PML if it satisfies the following conditions.

A1. The objective is an average of M functions; see (1).

A2. Each component function fi(x)’s has Lipschitz gradient:

‖∇fi(xi)−∇fi(zi)‖ ≤ Li‖xi − zi‖, ∀ xi, zi ∈ RS , ∀ i, (4)

where Li ≥ 0 is the smallest positive number such that the above inequality holds true. Define
L̄ := 1

M

∑M
i=1 Li, Lmax := maxi Li, and Lmin similarly.

Define the matrix of Lipschitz constants as:

L := diag([L1, · · · , LM])⊗ IS ∈ RMS×MS . (5)

A3. The function f(x) is lower bounded over x ∈ RMS , i.e.,

f := inf
x
f(x) > −∞. (6)

These assumptions are rather mild. For example an fi satisfies [A2-A3] is not required to be second-order
differentiable. Below we provide a few non-convex functions that satisfy Assumption [A2-A3], and each of
those can be the component function fi’s. Note that the first four functions are of particular interest in
learning neural networks, as they are commonly used as activation functions.
(1) The sigmoid function is given by sigmoid(x) = 1

1+e−x . We have sigmoid(x) ≥ 0, sigmoid′′(x) ∈ (−1, 1),
therefore [A2-A3] are true with L ≤ 1.

5

(2) The arctan function satisfies arctan(x) ∈ (−π
2 ,

π
2), arctan′′(x) = −2x

(x2+1)2 ∈ [−1, 1]. So [A2-A3] hold

with L ≤ 1.
(3) The tanh function satisfies tanh(x) ≥ −1, tanh′′(x) ∈ [−1, 1], so [A2-A3] hold with L ≤ 1.
(4) The logit function is related to the tanh function as follows

2logit(x) =
2ex

ex + 1
= 1 + tanh(x/2),

then Assumptions [A2-A3] are again satisfied.
(5) The log(1 + x2) function has applications in structured matrix factorization [44]. Clearly it is lower
bounded. Its second-order derivative is also bounded.
(6) Other functions like sin(x), sinc(x), cos(x) are easy to verify. Consider f(x) := −x1x2 + (x1 −
1)2

+ + (−x1 − 1)2
+ where (z)2

+ := max{0, z}2. This function is interesting because it is not second-order
differentiable; nonetheless we can verify that [A2-A3] are satisfied with L =

√
2 + 1.

Network Class. Let N denote a class of networks represented by an undirected and unweighted graph
G = {V, E}, with |V| = M vertices and |E| = E edges, and edge weights all being 1. In this paper the
term ‘network’ and ‘graph’ will be used interchangeably. Also, we use NM

D to denote a class of network
similarly as above, but with M nodes and a diameter of D, defined below [where dist(·) indicates the
distance between two nodes]:

D := max
u,v∈V

dist(u, v). (7)

Following the convention in [45], we define a number of graph related quantities below. First, define the
degree of node i as di, and define the averaged degree as:

d̄ :=
1

M

M∑
i=1

di. (8)

Define the incidence matrix (IM) A ∈ RE×M as follows: if e ∈ E and it connects vertex i and j with
i > j, then Aev = 1/

√
dv if v = i, Aev = −1/

√
dv if v = j and Aev = 0 otherwise; see the definition

in [45, Theorem 8.3]. Using these definitions, the graph Laplacian matrix and the degree matrix are defined
as follows (see [45, Section 1.2]):

L := ATA ∈ RM×M , and P := diag[d1, · · · , dM] ∈ RM×M . (9)

In particular, the elements of the Laplacian are given as:

[L]ij =

1 if i = j
− 1√

didj
if i ∼ j, i 6= j

0 otherwise.

We note that the graph Laplacian defined here is sometimes known as the normalized graph Laplacian
in the literature, but throughout this paper we follow the convention used in the classical work [45] and
simply refer it as the graph Laplacian. For convenience, we also define a scaled version of the IM:

F := AP 1/2 ∈ RE×M . (10)

6

It is known that IM and scaled IM satisfy the following (where 1 ∈ RM is an all one vector):

F1 = AP 1/2
1 = 0. (11)

Define the second smallest eigenvalue of L, as λmin(L):

λmin(L) = inf
x:
∑M

i=1 xidi=0,x 6=0

xTLx∑M
i=1 x

2
i di

. (12)

Then the spectral gap of the graph G can be defined below:

ξ(G) =
λmin(L)

λmax(L)
≤ 1. (13)

Algorithm Class. Define the neighbor set for node i ∈ E as

Ni := {i | i ∼ j, j 6= i}. (14)

We say that a distributed, first-order algorithm is in class A if it satisfies the following conditions.

B1. At iteration 0, each node can obtain some network related constants, such as M , D, eigenvalues of
the graph Laplacian L, etc.

B2. At iteration t+ 1, each node i ∈ [M] first conducts a communication step by broadcasting the local
xti to all its neighbors, through a function Qti(·) : RS → RS . Then each node will generate the new
iterate, by combining the received message with its past gradients using a function W t

i (·):

vti = Qti(x
t
i)︸ ︷︷ ︸

communication step

, xt+1
i ∈W t

i

(
{{vkj }j∈Ni ,∇fi(xki), xki }tk=1

)
︸ ︷︷ ︸

computation step

. (15)

In this work, we will focus on the case where the Qti(·)’s and W t
i (·)’s are linear operators.

Clearly A belongs to the class of first-order methods because only local gradient information is used.
It is also a class of distributed algorithms because at each iteration the nodes only communicate with their
immediate neighbors.

Additionally, in practical distributed algorithms such as DSG, ADMM or EXTRA, nodes are dictated to
use a fixed strategy to linearly combine all its neighbors’ information. To model such a requirement, below
we consider a slightly restricted algorithm class A′, where we require each node to use the same coefficients
to combine its neighbors (note that allowing the nodes to use a fixed but arbitrary linear combination is
also possible, but the resulting analysis will be more involved).

In particular, we say that a distributed, first-order algorithm is in A′ if it satisfies B1 and the following:

B2’. At iteration t+ 1, each node i ∈ [M] performs:

vti = Qti(x
t
i), x

t+1
i ∈W t

i

{∑
j∈Ni

vtj ,∇fi(xki), xki }tk=1

 . (16)

7

We remark that, in both algorithm classes, one round of communication occurs at each iteration, where
each node broadcasts its local variable xti once. Therefore, the total iteration number is the same as the
total communication rounds. However, the total times that the entire gradient {∇fi(xi)}Mi=1 is evaluated
could be smaller than the total iteration number/communication rounds. This is because when we compute
xt+1
i , the operation W t

i (·) can set the coefficient in front of ∇fi(xri) to be zero, effectively skipping the local
gradient computation.

2.2 Solution Quality Measure

Next we provide definitions for the quality of the solution. Note that since we consider using first-order
methods to solve non-convex problems, it is expected that in the end some first-order stationary solution
with small ‖∇f‖ will be computed.

Our first definition is related to a global variable yt ∈ RS . We say that yt is a global ε-solution if the
following holds:

yt ∈ span
{
xti
}M
i=1

, min
t∈[T]
‖∇g(yt)‖2 ≤ ε. (17)

This definition is conceptually simple and it is identical to the centralized criteria in Section 1.3. However
it has the following issues. First, no global variable yt will be formed in the entire network, so criteria (17)
is difficult to evaluate. Second, there is no characterization of how close the local variables xti’s are. To see
the second point, consider the following toy example.
Example 1: Consider a network with M = 2 and f1(y) = −y2 and f2(y) = y2. Suppose that the local
variables take the following values: xT1 = −10 and xT2 = 10. Then if we pick yT = (xT1 + xT2)/2 = 0, we
have

∇g(yT) =
1

2
(∇f1(yT) +∇f2(yT)) = 0.

This suggests that at iteration T , there exists one linear combination that makes measure (17) precisely
zero. However one can hardly say that the current solution (xT1 , x

T
2) = (−10, 10) is a good solution for

problem (2). �
To address the above issue, we provide a second definition which is directly related to local variables

{xi ∈ RS}Mi=1. At a given iteration T , we say that {xTi } is a local ε-solution if the following holds:

h∗T := min
t∈[T]

∥∥∥∥ M∑
i=1

∇fi(xti)
M

∥∥∥∥2

+
1

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

√
LiLj‖xti − xtj‖2 ≤ ε. (18)

Clearly this definition takes into consideration the consensus error as well as the size of the local
gradients. When applied to Example 1, this measure will be large. Note that the constant 1

Mλmin(P 1/2LP 1/2)

is needed to balance the two different measures. Also note that the “ mint∈[T] ” operation is needed to
track the best solution obtained before iteration T , because the quantity inside this operation may not be
monotonically decreasing.

In our work we will focus on providing answers to the following specific version of question (Q):

For any given ε > 0, what is the minimum iteration T (as a function of ε) needed for any algorithm in
class A (or class A’) to solve instances in classes (P,N), so to achieve h∗T ≤ ε?

8

2.3 Some Useful Facts and Definitions

Below we provide a few facts about the above classes.
On Lipschitz constants. Assume that each fi has Lipschitz continuous gradient with constant Li in (4).
Then we have :

‖∇f̄(y1)−∇f̄(y2)‖ ≤
M∑
i=1

1

M
Li‖y1 − y2‖ := L̄‖y1 − y2‖, ∀ y1, y2 ∈ RS , (19)

where L̄ is the average of the local Lipschitz gradients. We also have the following

‖∇f(x)−∇f(z)‖2 =
1

M2

M∑
i=1

‖∇fi(xi)−∇fi(zi)‖2, ∀ xi, zi ∈ RS

which implies

‖∇f(x)−∇f(z)‖ ≤ 1

M
‖L(x− z)‖, ∀ x, z ∈ RMS , (20)

where the matrix L is defined in (5).
On Quantities for Graph G. This section presents a number of properties for a given graph G. Define
the following matrices:

Σ := diag[σ1, · · · , σE] � 0, Υ := diag([β1, · · · , βM]) � 0. (21)

Define B ∈ RE×M = |F | where the absolute value is taken component-wise. Then we have the following:

1

2

(
F TF +BTB

)
= P = diag[d1, · · · , dM] ∈ RM×M (22)

1

2

(
F TΣ2F +BTΣ2B

)
= diag

{ ∑
j:i∼j

σ2
ij

}
j∈N

 := ∆,

where P is the degree matrix defined in (9).
For two diagonal matrices Υ2 and Σ2 of appropriate sizes, the generalized Laplacian (GL) matrix is

defined as:

LG = Υ−1F TΣ2FΥ−1, (23)

and its elements are given by:

[LG]ij =

∑

q:i∼q σ
2
iq

β2
i

if i = j

− σ2
ij

βi×βj if (ij) ∈ E , i 6= j

0 otherwise

.

9

Define a diagonal matrix K ∈ RE×E as below:

[K]e,q =

{ √
LiLj if e = q, and e = (i, j)

0 otherwise
. (24)

Then when specializing Υ = P 1/2L1/2 and Σ2 = K, the GL matrix becomes:

L̃ := L−1/2P−1/2F TKFP−1/2L−1/2. (25)

Note that if any diagonal element in the matrix L is zero, then L−1 denotes the Moore - Penrose matrix
pseudoinverse. Similarly, when specializing Υ = L1/2 and Σ2 = K, then the GL matrix becomes:

L̂ := L−1/2F TKFL−1/2. (26)

These matrices will be used later in our derivations.
Below we list some useful results about the Laplacian matrix [45–47]. First, all eigenvalues of L lie in

the interval [0, 2]. Also because λmin(L) = λmin(P−1/2F TFP−1/2), we have

λmin(L) ≤ λmin(F TF). (27)

Also we have that [45, Lemma 1.9]

λmin(L) ≥ 1

D
∑

i di
. (28)

The eigenvalues of L for a number of special graphs are given below:
1) Complete Graph: The eigenvalues are 0 and M/(M − 1) (with multiplicity M − 1), so ξ(G) = 1;
2) Star Graph: The eigenvalues are 0 and 1 (with multiplicity M − 2), and 2, so ξ(G) = 1/2;
3) Path Graph: The eigenvalues are 1− cos(πm/(M − 1)) for m = 0, 1, · · · ,M − 1, and ξ(G) ≥ 1/M2.
4) Cycle Graph: The eigenvalues are 1− cos(2πm/M) for m = 0, 1, · · · ,M − 1, and ξ(G) ≥ 1/M2.
5) Grid Graph: The grid graph is obtained by placing the nodes on a

√
M ×

√
M grid, and connecting

nodes to their nearest neighbors. We have ξ(G) ≥ 1/M .
6) Random Geometric Graph: Place the nodes uniformly in [0, 1]2 and connect any two nodes separated
by a distance less than a radius R ∈ (0, 1). Then if the connectivity radius R satisfies [47]

R = Ω

(√
log1+ε(M)/M

)
, for any ε > 0, (29)

then with high probability

ξ(G) = O
(

log(M)

M

)
. (30)

3 Lower Complexity Bounds

In this section we develop the lower complexity bounds for algorithms in class A to solve problems PML
over network N . We will mainly focus on the case where fi’s have uniform Lipschitz constants, that is, we

10

21 3 M-1 MM-2

Figure 1: The path graph used in our construction.

assume that
Li = U, ∀ i ∈ [M],

and we denote the resulting problem class as PMU . At the end of this section, generalization to the non-
uniform case will be briefly discussed.

Our proof combines ideas from the classical proof in Nesterov [29], as well as two recent construc-
tions [41] (for centralized non-convex problems) and [37] (for strongly convex distributed problems). Our
construction differs from the previous works in a number of ways, in particular, the constructed functions
are only first-order differentiable, but not second-order differentiable. Further, we use the local-ε solution
(18) to measure the quality of the solution, which makes the analysis more involved compared with the
existing global error measures in [29,37,41].

To begin with, we construct the following two non-convex functions

h(x) :=
1

M

M∑
i=1

hi(xi), f(x) :=
1

M

M∑
i=1

fi(xi), (31)

as well as the corresponding versions that evaluate on a “centralized” variable y

h̄(y) :=
1

M

M∑
i=1

hi(y), f̄(y) :=
1

M

M∑
i=1

fi(y). (32)

Here we have xi ∈ RT , for all i, y ∈ RT , and x := (x1, · · ·xM) ∈ RTM×1. Later we make our construction
so that functions h and h̄ are easy to analyze, while f and f̄ will be in the desired function class in
PMU . Without loss of generality, in the construction we will assume ∇fi will be Lipschitz with constant
U ∈ (0, 1), for all i ∈ [M].

3.1 Path Graph (D = M − 1)

First we consider the extreme case in which the nodes form a path graph with M nodes and each node i
has its own local function hi, shown in Figure 1. For notational simplicity assume that M is a multiple of
3, that is M = 3C for some integer C > 0. Also assume that T is an odd number without loss of generality.

Let us define the component functions hi’s in (31) as follows.

hi(xi) =

Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j), i ∈
[
1,
M

3

]

Θ(xi, 1), i ∈
[
M

3
+ 1,

2M

3

]

Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j + 1), i ∈
[

2M

3
+ 1,M

]
(33)

11

-5 0 5

w

-1

-0.5

0

0.5

1

1.5

2

fu
n
c
ti
o
n
 v

a
lu

e

(w)

'(w)

''(w)

Figure 2: The functional value, and derivatives of Ψ.

-5 0 5

w

-4

-2

0

2

4

6

8

10

12

fu
n
c
ti
o
n
 v

a
lu

e

(w)

'(w)

''(w)

Figure 3: The functional value, and derivatives of Φ.

where we have defined the following functions

Θ(xi, j) := Ψ(−xi[j − 1])Φ(−xi[j])−Ψ(xi[j − 1])Φ(xi[j]), ∀ j ≥ 2 (34a)

Θ(xi, 1) := −Ψ(1)Φ(xi[1]). (34b)

The component functions Ψ,Φ : R→ R are given as below

Ψ(w) :=

{
0 w ≤ 0

1− e−w2
w > 0,

and Φ(w) := 4 arctanw + 2π.

Suppose x1 = x2 = · · · = xM = y, then the average function becomes:

h̄(y) :=
1

M

M∑
j=1

hi(y) = Θ(y, 1) +
T∑
i=2

Θ(y, i)

= −Ψ(1)Φ (y[1]) +

T∑
i=2

[Ψ (−y[i− 1]) Φ (−y[i])−Ψ (y[i− 1]) Φ (y[i])] .

Further for a given error constant ε > 0 and a given averaged Lipschitz constant U ∈ (0, 1), let us
define

fi(xi) :=
150πε

U
hi

(
xiU

75π
√

2ε

)
. (35)

Therefore we also have, if x1 = x2 = · · · = xM = y, then

f̄(y) :=
1

M

M∑
i=1

fi(y) =
150πε

U
h̄

(
yU

75π
√

2ε

)
. (36)

First we present some properties of the component functions hi’s.

12

0
5

20

5

(w
)

(v
) 40

v

0

w

60

0

-5 -5

Figure 4: The functional value for Θ(w, v) = Ψ(w)Φ(v).

Lemma 3.1 The functions Ψ and Φ satisfy the following.

1. For all w ≤ 0, Ψ(w) = 0, Ψ′(w) = 0.

2. The following bounds hold for the functions and their first and second-order derivatives:

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
, − 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4, − 3
√

3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R

3. The following key property holds:

Ψ(w)Φ′(v) > 1, ∀ w ≥ 1, |v| < 1. (37)

4. The function h is lower bounded as follows:

hi(0)− inf
xi
hi(xi) ≤ 10πT , h(0)− inf

x
h(x) ≤ 10πT .

5. The first-order derivative of h̄ (resp. hj) is Lipschitz continuous with constant ` = 75π (resp. `j =
75π, ∀ i).

Proof. Property 1) is obviously true.
To prove Property 2), note that following holds for w > 0:

Ψ(w) = 1− e−w2
, Ψ′(w) = 2e−w

2
w, Ψ′′(w) = 2e−w

2 − 4e−w
2
w2, ∀ w > 0. (38)

13

Obviously, Ψ(w) is an increasing function over w > 0, therefore the lower and upper bounds are Ψ(0) =
0,Ψ(∞) = 1; Ψ′(w) is increasing on [0, 1√

2
] and decreasing on [1√

2
,∞], where Ψ′′(1√

2
) = 0, therefore the

lower and upper bounds are Ψ′(0) = Ψ′(∞) = 0,Ψ′(1√
2
) =

√
2
e ; Ψ′′(w) is decreasing on (0,

√
3
2] and

increasing on [
√

3
2 ,∞) [this can be verified by checking the signs of Ψ′′′(w) = 4e−w

2
w(2w2 − 3) in these

intervals]. Therefore the lower and upper bounds are Ψ′′(
√

3
2) = − 4

e
3
2
,Ψ′′(0+) = 2, i.e.,

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
, − 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0.

Further, for all w ∈ R, the following holds:

Φ(w) = 4 arctanw + 2π, Φ′(w) =
4

w2 + 1
, Φ′′(w) = − 8w

(w2 + 1)2
. (39)

Similarly, as above, we can obtain the following bounds:

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4, − 3
√

3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R.

We refer the readers to Fig. 2 – Fig. 3 for illustrations of these functions.
To show Property 3), note that for all w ≥ 1 and |v| < 1,

Ψ(w)Φ′(v) > Ψ(1)Φ′(1) = 2(1− e−1) > 1

where the first inequality is true because Ψ(w) is strictly increasing and Φ′(v) is strictly decreasing for all
w > 0 and v > 0, and that Φ′(v) = Φ′(|v|).

Next we show Property 4). Note that 0 ≤ Ψ(w) < 1 and 0 < Φ(w) < 4π. Therefore we have
h(0) = −Ψ(1)Φ(0) < 0 and using the construction in (33)

inf
xi
hi(xi) ≥ −Ψ(1)Φ(xi[1])− 3

bT/2c∑
j=1

sup
w,v

Ψ(w)Φ(v) (40)

≥ −4π − 6πT ≥ −10πT , (41)

where the first inequality follows Ψ(w)Φ(v) > 0 and second follows Ψ(w)Φ(v) < 4π, we reach the conclusion.
Finally we show Property 5), using the fact that a function is Lipschitz if it is piecewise smooth with

bounded derivative. From construction (33), the first-order partial derivative of hq(y) can be expressed
below.
Case I) If i is even, we have

∂hq
∂y[i]

=

3 (−Ψ (−y[i− 1]) Φ′ (−y[i])−Ψ (y[i− 1]) Φ′ (y[i])) , q ∈ [1, M3]

0, q ∈ [M3 + 1, 2M
3]

3 (−Ψ′ (−y[i]) Φ (−y[i+ 1])−Ψ′ (y[i]) Φ (y[i+ 1])) , q ∈ [2M
3 + 1,M]

. (42)

14

Case II) If i is odd but not 1, we have

∂hq
∂y[i]

=

3 (−Ψ′ (−y[i]) Φ (−y[i+ 1])−Ψ′ (y[i]) Φ (y[i+ 1])) , q ∈ [1, M3]

0, q ∈ [M3 + 1, 2M
3]

3 (−Ψ (−y[i− 1]) Φ′ (−y[i])−Ψ (y[i− 1]) Φ′ (y[i])) , q ∈ [2M
3 + 1,M]

. (43)

Case III) If i = 1, we have

∂hq
∂y[1]

=

{
−Ψ(1)Φ′(y[1]) + 3 (−Ψ′ (−y[1]) Φ (−y[2])−Ψ′ (y[1]) Φ (y[2])) , q ∈ [1, M3]

−Ψ(1)Φ′(y[1]), q ∈ [M3 + 1,M]
. (44)

Obviously,
∂hq
∂y[i] is a piecewise smooth function for any i, q, and it either equals zero or is separated at

the non-differentiable point y[i] = 0 because of the function Ψ.
Further, fix a point y ∈ RT and a unit vector v ∈ RT where

∑T
i=1 v[i]2 = 1. Define

gq(θ; y, v) := hq(y + θv)

to be the directional projection of hq on to the direction v at point y. We will show that there exists ` > 0
such that |gq ′′(0; y, v)| ≤ ` for all y 6= 0 (where the second-order derivative is taken with respect to θ).

First we can compute gq
′′(0; y, v) as follows:

g
′′
q (0; y, v) =

T∑
i1,i2=1

∂2

∂y[i1]∂y[i2]
hq (y) v[i1]v[i2] =

∑
δ∈{0,1,−1}

T∑
i=1

∂2

∂y[i]∂y[i+ δ]
hq (y) v[i]v[i+ δ],

where we take v[0] := 0 and v[T + 1] := 0.
The second-order partial derivative of hq(y) (∀y 6= 0) is given as follows when i is even:

∂2hq
∂y[i]∂y[i]

=

3 (Ψ (−y[i− 1]) Φ′′ (−y[i])−Ψ (y[i− 1]) Φ′′ (y[i])) , q ∈ [1, M3]

0, q ∈ [M3 + 1, 2M
3]

3 (Ψ′′ (−y[i]) Φ (−y[i+ 1])−Ψ′′ (y[i]) Φ (y[i+ 1])) , q ∈ [2M
3 + 1,M]

(45)

∂2hq
∂y[i]∂y[i+ 1]

=

{
0, q ∈ [1, 2M

3]

3 (Ψ′ (−y[i]) Φ′ (−y[i+ 1])−Ψ′ (y[i]) Φ′ (y[i+ 1])) , q ∈ [2M
3 + 1,M]

(46)

∂2hq
∂y[i]∂y[i− 1]

=

{
3 (Ψ′ (−y[i− 1]) Φ′ (−y[i])−Ψ′ (y[i− 1]) Φ′ (y[i])) , q ∈ [1, M3]

0, q ∈ [M3 + 1,M]
. (47)

By applying Lemma 3.1 – i) [i.e., Ψ(w) = Ψ′(w) = Ψ′′(w) = 0 for ∀ w ≤ 0], we immediately obtain that at
least one of the terms Ψ (−y[i− 1]) Φ′′ (−y[i]) or −Ψ (y[i− 1]) Φ′′ (y[i]) is zero. It follows that

Ψ (−y[i− 1]) Φ′′ (−y[i])−Ψ (y[i− 1]) Φ′′ (y[i]) ≤ sup
w
|Ψ(w)| sup

v
|Φ′′(v)|.

Similarly,
Ψ′′ (−y[i]) Φ (−y[i+ 1])−Ψ′′ (y[i]) Φ (y[i+ 1]) ≤ sup

w
|Ψ′′(w)| sup

v
|Φ(v)|

15

Ψ′ (−y[i]) Φ′ (−y[i+ 1])−Ψ′ (y[i]) Φ′ (y[i+ 1]) ≤ sup
w
|Ψ′(w)| sup

v
|Φ′(v)|.

Therefore, take the maximum over equations (45) to (47) and plug in the above inequalities, we obtain∣∣∣∣ ∂2hq
∂y[i1]∂y[i2]

∣∣∣∣ ≤ 3 max{sup
w
|Ψ′′(w)| sup

v
|Φ(v)|, sup

w
|Ψ(w)| sup

v
|Φ′′(v)|, sup

w
|Ψ′(w)| sup

v
|Φ′(v)|}

= 3 max

{
8π,

3
√

3

2
, 4

√
2

e

}
< 25π, ∀ i1 being even, ∀ i2

where the equality comes from Lemma 3.1 – ii).
We can also verify that the above bound for i being odd but not 1 is exactly the same.
When i = 1 we have following:

∂2hq
∂y[1]∂y[1]

=

{
−Ψ(1)Φ′′(y[1]) + 3 (−Ψ′′ (−y[1]) Φ (−y[2])−Ψ′′ (y[1]) Φ (y[2])) , q ∈ [1, M3]

−Ψ(1)Φ′′(y[1]), q ∈ [M3 + 1,M]

∂2hq
∂y[1]∂y[2]

=

{
3 (−Ψ′ (−y[1]) Φ′ (−y[2])−Ψ′ (y[1]) Φ′ (y[2])) , q ∈ [1, M3]

0, q ∈ [M3 + 1,M]

Again by applying Lemma 3.1 – i) and ii),∣∣∣∣ ∂2hq
∂y[1]∂y[i2]

∣∣∣∣ ≤ max{sup
w
|Ψ(1)Φ′′(w)|+ 3 sup

w
|Ψ′′(w)| sup

v
|Φ(v)|, 3 sup

w
|Ψ′(w)| sup

v
|Φ′(v)|}

= max

{
3
√

3

2
(1− e−1) + 24π, 12

√
2

e

}
< 25π, ∀ i2.

Summarizing the above results, we obtain:

|g′′q (0; y, v) | = |
∑

δ∈{0,1,−1}

T∑
i=1

∂2

∂y[i]∂y[i+ δ]
hq (y) v[i]v[i+ δ]|

≤ 25π
∑

δ∈{0,1,−1}

|
T∑
i=1

v[i]v[i+ δ]|

= 25π

(
|
T∑
i=1

v[i]2|+ 2|
T∑
i=1

v[i]v[i+ 1]|

)

≤ 75π
T∑
i=1

|v[i]2| = 75π.

Overall, the first-order derivatives of hq are Lipschitz continuous for any q with constant ` = 75π.
To show the same result for the function h̄, we can apply (19). This completes the proof. Q.E.D.

The following lemma is a simple extension of the previous result.

Lemma 3.2 We have the following properties for the functions f and f̄ defined in (36) and (35).

16

1. We have ∀ x ∈ RTM×1

f(0)− inf
x
f(x) +

1

MU
‖d0‖2 ≤

1650π2ε

U
T,

where we have defined

d0 := [∇f1(0), · · · ,∇fM (0)]. (48)

2. We have ∥∥∇f̄(y)
∥∥ =
√

2ε

∥∥∥∥∇h̄(yU

75π
√

2ε

)∥∥∥∥ , ∀ y ∈ RT×1. (49)

3. The first-order derivatives of f̄ and that for each fj , j ∈ [M] are Lipschitz continuous, with the same
constant U > 0.

Proof. To show that property 1) is true, note that from the definition of fi(xi) we have

∇fi(xi) =
√

2ε×∇hi
(

xiU

75π
√

2ε

)
.

Therefore the following holds:

1

M
‖d0‖2 =

2ε

M

M∑
i=1

‖∇hi(0)‖2

=
2ε

M

M∑
i=1

|Ψ(1)Φ′(0)|2 = 32ε(1− exp(−1))2. (50)

Therefore we have the following:

f(0)− inf
x
f(x) +

‖d0‖2

MU
=

150πε

U

(
h(0)− inf

x
h(x) +

16(1− exp(−1))2

75π

)
.

Then by applying Lemma 3.1 we have that for any T ≥ 1, the following holds

f(0)− inf
x
f(x) +

‖d0‖2

MU
≤ 150πε

U
× (10πT + 0.03) ≤ 150πε

U
× 11πT.

Property 2) is true due to the definition of f̄ .
Property 3) is true because the following

‖∇f̄(z)−∇f̄(y)‖ =
√

2ε

∥∥∥∥∇h̄(zU

75π
√

2ε

)
−∇h̄

(
yU

75π
√

2ε

)∥∥∥∥ ≤ U‖z − y‖
where the last inequality comes from Lemma 3.1 – (5). This completes the proof. Q.E.D.

Next let us analyze the size of ∇h̄. We have the following result.

17

Lemma 3.3 If there exists k ∈ [T] such that |y[k]| < 1, then

∥∥∇h̄(y)
∥∥ =

∥∥∥∥∥ 1

M

M∑
i=1

∇hi(y)

∥∥∥∥∥ ≥
∣∣∣∣∣ 1

M

M∑
i=1

∂

∂y[k]
hi(y)

∣∣∣∣∣ > 1.

Proof. The first inequality holds for all k ∈ [T], since 1
M

∑M
i=1

∂
∂y[k]hi(y) is one element of 1

M

∑M
i=1∇hi(y).

We divide the proof for second inequality into two cases.
Case 1. Suppose |y[j − 1]| < 1 for all 2 ≤ j ≤ k. Therefore, we have |y[1]| < 1. Using (44), we have the
following inequalities:

∂

∂y[1]
hi(y)

(i)

≤ −Ψ(1)Φ′(y[1])
(ii)
< −1, ∀i (51)

where (i) is true because Ψ′(w),Φ(w) are all non-negative from Lemma 3.1 -(2); (ii) is true due to Lemma
3.1 – (3). Therefore, we have the following

∥∥∇h̄(y)
∥∥ =

∥∥∥∥∥ 1

M

M∑
i=1

∇hi(y)

∥∥∥∥∥ ≥
∣∣∣∣∣ 1

M

M∑
i=1

∂

∂y[1]
hi(y)

∣∣∣∣∣ > 1.

Case 2) Suppose there exists 2 ≤ j ≤ k such that |y[j − 1]| ≥ 1.
We choose j so that |y[j − 1]| ≥ 1 and |y[j]| < 1. Therefore, depending on the choices of (i, j) we have

three cases

∂hi(y)

∂y[j]
=

−3 (Ψ (−y[i− 1]) Φ′ (−y[j]) + Ψ (y[i− 1]) Φ′ (y[j])) , i ∈ [1, M3]

0, i ∈ [M3 + 1, 2M
3]

−3 (Ψ′ (−y[j]) Φ (−y[i+ 1]) + Ψ′ (y[j]) Φ (y[i+ 1])) , i ∈ [2M
3 + 1,M]

.

If i ∈ [1, M3], because |y[j−1]| ≥ 1 and |y[j]| < 1, using Lemma 3.1 – (3), and the fact that the negative
part is zero for Ψ, and Φ′ is even function, the expression further equals to

−3 ·Ψ(|y[j − 1]|)Φ′ (|y[j]|)]
(37)
< −3, (52)

If i ∈ [2M
3 + 1,M] the expression is obviously non-positive because both Ψ′ and Φ are nonnegative.

Overall, we have ∣∣∣∣∣ 1

M

M∑
i=1

∂hi(y)

∂y[j]

∣∣∣∣∣ >
∣∣∣∣∣∣ 1

M

M/3∑
i=1

3

∣∣∣∣∣∣ = 1.

This completes the proof. Q.E.D.

Lemma 3.4 Define x̄ := 1
M

∑M
i=1 xi, and assume that U ∈ (0, 1). Then we have∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2 ≥
1

2

∥∥∇f̄(x̄)
∥∥2
.

Proof. First let us derive a useful property. Define d := [d1; d2; · · · ; dM] where di is the degree for node i;

18

further define

x̄ :=
1

M

M∑
i=1

xi, x̃i := xi − x̄, x̃ := [x̃1; x̃2; · · · ; x̃M].

It is easy to observe that :
x̃T1 = 0, and x̃ /∈ Null(F TF).

Then the following holds:

xTF TFx =
∑

(i,j):i∼j

‖xi − xj‖2 =
∑

(i,j):i∼j

‖x̃i − x̃j‖2 = x̃TF TFx̃ ≥ λmin(F TF)‖x̃‖2. (53)

Therefore the following holds:

M∑
i=1

‖x̄− xi‖2 ≤
1

λmin(F TF)

∑
(i,j):i∼j

‖xi − xj‖2 =
1

λmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2. (54)

Based on the above property, we have the following series of inequalities

∥∥∇f̄(x̄)
∥∥2 ≤ 2

∥∥∥∥ 1

M

M∑
i=1

(∇fi(x̄)−∇fi(xi))
∥∥∥∥2

+ 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

(i)

≤ 2

M

M∑
i=1

∥∥∥∥∇fi(1

M

M∑
j=1

xj)−∇fi(xi)
∥∥∥∥2

+ 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

(ii)

≤ 2

M

M∑
i=1

U2

∥∥∥∥ 1

M

M∑
j=1

xj − xi
∥∥∥∥2

+ 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

(iii)

≤ 2U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xj − xi‖2 + 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

,

where in (i) and (iii) we have used the convexity of the function ‖ · ‖2; in (ii) we used Lemma 3.2 – (3); in
(iii) we have also used the assumption that U ∈ (0, 1) and (54). Overall we have∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2 ≥
1

2
‖∇f(x̄)‖2 .

This completes the proof. Q.E.D.

Lemma 3.5 Consider using an algorithm in class A or in class A′ to solve the following problem:

min
x∈RTM×1

h(x) =
1

M

M∑
i=1

hi(xi), (55)

over a path graph. Assume the initial solution: xi = 0, ∀ i ∈ [M]. Let x̄ = 1
M

∑M
i=1 xi denote the average

of the local variables. Then the algorithm needs at least (M3 + 1)T iterations to have xi[T] 6= 0, ∀ i and

19

x̄[T] 6= 0.

Proof. For a given k ≥ 2, suppose that xi[k], xi[k + 1], ..., xi[T] = 0, ∀i, that is, support{xi} ⊆
{1, 2, 3, ..., k − 1} for all i. Then Ψ′ (xi[k]) = Ψ′ (−xi[k]) = 0 for all i, and hi has the following partial
derivative when k is even:

∂hi(xi)

∂xi[k]
=

{
−3 (Ψ (−xi[k − 1]) Φ′ (−xi[k])) + 3 (Ψ (xi[k − 1]) Φ′ (xi[k])) , i ∈ [1, M3]

0, i ∈ [M3 + 1,M]
(56)

and the following partial derivative when k is odd and k ≥ 3:

∂hi(xi)

∂xi[k]
=

{
0, i ∈ [1, 2M

3]

−3 (Ψ (−xi[k − 1]) Φ′ (−xi[k])) + 3 (Ψ (xi[k − 1]) Φ′ (xi[k])) , i ∈ [2M
3 + 1,M]

. (57)

Recall that for any algorithm in class A or A′, each agent is only able to compute linear combination
of historical gradient and neighboring iterates [cf. (15) and (16)]. Therefore, for a given node i, as long as
the kth element of the gradient as well as that of its neighbors have never been updated once, xi[k] remains

to be zero. Combining this observation with the above two expressions for ∂hi(xi)
∂xi[k] , we can conclude that

when support{xi} ⊆ {1, 2, 3, ..., k − 1} for all i, then in the next iteration xi[k] will be possibly non-zero
on the node i ∈ [1, M3] for even k and i ∈ [2M

3 + 1,M] for odd k, and all other nodes still have xj [k] = 0,
∀ j 6= i.

Now suppose that the initial solution is xi[k] = 0 for all (i, k). Then at the first iteration only ∂hi(xi)
∂xi[1]

is non-zero for all i, due to the fact that ∂hi(xi)
∂xi[1] = Ψ(1)Φ′(0) = 4(1 − e−1) for all i from (44). If follows

that even if every node is able to compute its local gradient, and can communicate with their neighbors,
it is only possible to have xi[1] 6= 0, ∀i. At the second iteration, we can use (56) to conclude that it is only

possible to have ∂hr(xr)
∂xr[k] 6= 0 for some r ∈ [1, M/3], therefore when using an algorithm in class A, we can

conclude that xi[2] = 0 for all i /∈ [1, M/3].
Then following our construction (33), we know the nodes in the set [1, M3] and the set [2M

3 + 1,M]
have minimum distance M/3. It follows that using an algorithm in A or A′, it takes at least M/3
iterations for the non-zero xr[2] and the corresponding gradient vector to propagate to at least one node
in set [2M/3 + 1,M]. Once we have xj [2] 6= 0 for some j ∈ [2M/3 + 1, M], then according to (57),

it is possible to have
∂hj(xj)
∂xj [3] 6= 0, and once this gradient becomes non-zero, the corresponding variable

xj [3], j ∈ [2M/3 + 1, M] can become nonzero.
Following the above procedure, it is clear that we need at least MT

3 iterates and T computations to
make xi[T] possibly non-zero. Q.E.D.

Theorem 3.1 Let U ∈ (0, 1) and ε be positive. Let x0[i] = 0 for all i ∈ [M]. Then for any distributed
first-order algorithm in class A or A′, there exists a problem in class PMU and a network in class N , such
that it requires at least the following number of iterations

t ≥ 1

3
√
ξ(G)

(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 (58)

20

to achieve the following error

h∗t =

∥∥∥∥ 1

M

M∑
i=1

∇fi(xti)
∥∥∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xti − xtj‖2 < ε. (59)

Proof. By Lemma 3.5 we have x̄[T] = 0 for all t < M+3
3 T . Then by applying Lemma 3.2 – (2) and

Lemma 3.3, we can conclude that the following holds

∥∥∇f̄(x̄[T])
∥∥ =
√

2ε

∥∥∥∥∇h̄(x̄[T]U

75π
√

2ε

)∥∥∥∥ > √2ε, (60)

where the second inequality follows that there exists k ∈ [T] such that | x̄[k]U

75π
√

2ε
| = 0 < 1, then we can

directly apply Lemma 3.3. Then by applying Lemma 3.4 gives h∗(M+3)T/3 > ε.
The third part of Lemma 3.2 ensures that fi’s are U -Lipschitz continuous gradient, and the first part

shows

f(0)− inf
x
f(x) +

‖d0‖2

MU
≤ 1650π2ε

U
T,

Therefore we obtain

T ≥

(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 . (61)

Summarizing the above argument, we have

t ≥ M + 3

3
T ≥ M + 3

3

(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 .
By noting that for path graph ξ(G) ≥ 1/M2, this completes the proof. Q.E.D.

3.2 Generalization

The previous section analyzes the lower complexity bounds for problem PMU over a path network. The
obtained results can be extended in a number of direction.

3.2.1 Uniform Li, Fixed D and M

In this subsection, we would like to generalize Theorem 3.1 to a slightly wider class of networks (beyond
the path graph used in our construction). Towards this end, consider a path-star graph shown in Fig. 5.
The graph contains a path graph with D−1 nodes, and the remaining nodes are divided into D−1 groups,
each with either bM/(D− 1)− 1c or bM/(D− 1)− 1c+ 1 nodes, and each group is connected to the nodes
in the path graph by using a star topology. We have the following corollary to Theorem 3.1.

Corollary 3.1 Let U ∈ (0, 1) and ε be positive, and fix any D and M such that D ≤ M − 1. For any
algorithm in class A or A′, there exists a problem in class PMU and a network in class NM

D , so that to

21

1 D-1

M

3
nodes

B

M

3
nodes

A C

M

3
nodes

D−1

3
nodes

D−1

3
+ 1 distance

Figure 5: The path-star graph used in our construction.

achieve accuracy h∗t < ε, it requires at least the following number iterations

t ≥ D

3

(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 .
Alternatively, the above bound can be expressed as the following

t ≥
√

(D − 1)/(2M)

3
√
ξ(G)

(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 .
Proof. Fix any D and M such that D ≤ M − 1, we can construct a path-star graph as described in

Fig.5, whose diameter is D.
To show the lower bounds for such a graph, we split all M nodes into three sets A,B, C based on the

main path, each with M
3 nodes (assume M is a multiple of 3), where A and C has minimum D+2

3 distance
(assume D − 1 is a multiple of 3). Then we construct the component functions hi’s as follows.

hi(xi) =

Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j), i ∈ A

Θ(xi, 1), i ∈ B

Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j + 1), i ∈ C

(62)

Since the graph has diameter D in the above construction, and the distance between any two elements
in A and C is at least D+2

3 (assume D − 1 is a multiple of 3), by a similar step in Lemma 3.5 we can
conclude that we need at least (D+2

3 +1)T iterations to achieve xi[T] 6= 0. By applying (61), we can obtain
the desired result.

22

To show the second result, note that from (28) we have∑
i

diD ≥
1

λmin(L)
(63)

For the path-star graph under consideration,∑
i

di ≤ 2(D − 1)− 2 + 2 (M − (D − 1)) ≤ 2M,

so the following holds:

D2 ≥ D/2M

λmin(L)
≥ (D − 1)/(2M)

λmin(L)
.

The desired result is then immediate. Q.E.D.

3.2.2 Non-uniform Li, Fixed N

Finally, for the problem class with non-uniform Lipschitz constants, we can extend the previous result to
any network in class N (by properly assigning different values of Li’s to different nodes). In this case the
lower bound will be dependent on the spectrum property of L̂ as defined in (26) (expressed below for easy
reference)

L̂ := L−1/2F TKFL−1/2. (64)

Corollary 3.2 Let ε be positive. For any given network in NM
D , and for any algorithm in A, there exists

a problem in PML such that to achieve accuracy h∗t < ε, it requires at least the following iterations

t ≥ 1

3

√
ξ(L̂)

(
f(0)− infx f(x) +

‖d0‖2
L−1

M

)
L̄

1650π2
ε−1

 . (65)

To prove this result, we select the values of the coefficient set {Li}Mi=1, so that the “effective” network
topology becomes a path. In particular, for any given network in N , we can construct local functions as
follows: First, along the longest path of size D, we distributed the functions into three sets A,B, C, where
A and C denotes the first and last D

3 nodes on the path respectively, and B denotes the rest nodes on the
path. Second, for the rest of the functions not on the path, denoted as set D, set their local functions to
zero (or equivalently, set the corresponding Li’s to zero). Then, the local function belongs to each set can
be expressed as:

23

hi(xi) =

M

D
Θ(xi, 1) +

3M

D

bT/2c∑
j=1

Θ(xi, 2j), i ∈ A

M

D
Θ(xi, 1), i ∈ B

M

D
Θ(xi, 1) +

3M

D

bT/2c∑
j=1

Θ(xi, 2j + 1), i ∈ C

0, i ∈ D

(66)

This way the network reduces to a path graph. Note that the Lipschitz constant for the gradient of
h(y) = 1

M

∑M
i=1 hi(y) is still 1, and we can use the similar constructions and proof steps leading to Theorem

3.1 to prove the claim.

4 The Proposed Algorithms

In this section, we introduce two different types of algorithms for solving problem (2). The algorithm is
near-optimal, and can achieve the lower bounds derived in Section 3 except for a multiplicative polylog
factor in M . To simplify the notation, we utilize the definitions introduced in Section 2, and rewrite
problem (2) in the following compact form

min
x∈RSM

f(x) :=
1

M

M∑
i=1

fi(xi), s.t. (F ⊗ IS)x = 0. (67)

It can be verified that, by using the definition of F , the constraint in this problem is equivalent to the ones
given in (2). For notational simplicity, in the following we will assume that S = 1 (scalar variables). All
the results presented in subsequent sections extend easily to case with S > 1.

4.1 The D-GPDA Algorithm

We first present a Distributed Gradient Primal-Dual Algorithm (D-GPDA), which relaxes the linear con-
straint (67), and gradually enforces it as the algorithm proceeds. To describe the algorithm, let us introduce
the augmented Lagrangian (AL) function as

AL(x, λ) = f(x) + 〈λ, Fx〉+
1

2
‖ΣFx‖2, (68)

where λ ∈ RE is the dual variable; Σ = diag([σ1, · · · , σE]) ∈ RE×E is a diagonal positive definite matrix.
In the following, we will use the shorthanded notation ALr := AL(xr, λr) where r is the iteration counter.

Define a penalty matrix as

Υ = diag{[β1, · · · , βM]} � 0. (69)

Then the D-GPDA is described in the following table.

24

Algorithm 1. The D-GPDA Algorithm

(S1). Assign each node i ∈ N with a parameter βi > 0; Assign each edge (ij) ∈ E
with a parameter σij > 0;
(S2). At iteration r = −1, initialize λ−1 = 0 and x−1 = 0;
(S3). At iteration r = 0, set λ0 and x0 using the following:

∇f(x−1) + (2∆ + Υ2)x0 = 0, λ0 = Σ2Fx0; (70)

Equivalently x0 can be written as:

x0
i =

(
2
∑
j:j∼i

σ2
ij + β2

i

)−1

∇fi(0)/M, ∀ i ∈ [M]; (71)

(S4). At each iteration r + 1, r ≥ 0, update variables by:

xr+1 = arg min
x
〈∇f(xr) + F Tλr, x− xr〉 (72a)

+
1

2
‖ΣFx‖2 +

1

2
‖ΣB(x− xr)‖2 +

1

2
‖Υ(x− xr)‖2

λr+1 = λr + Σ2Fxr+1. (72b)

We note that each iteration of the D-GPDA performs a gradient descent type step on the AL function,
followed by taking a step of dual gradient ascent (with a stepsize matrix Σ2 � 0). The term 1

2‖ΣB(x−xr)‖2
used in (72a) is a network proximal term that regularizes the x update using network structure, and its
presence is critical to ensure separability and distributed implementation (see Remark 4.3 below).

The D-GPDA is closely related to many classical primal-dual methods, such as the Uzawa method [48]
(which has been recently utilized to solve linearly constrained convex problems [49]), and the proximal
method of multipliers (prox-MM) [50, 51]. The latter method has been first developed by Rockafellar
in [50], in which a proximal term has been added to the AL in order to make it strongly convex in
each iteration. However, the theoretical results derived for Prox-MM in [50, 51] are only valid for convex
problems. It is also important to note that when the matrices Σ and Υ are specialized as multiples of
identity matrices, that is, when Σ = σIM and Υ = κIM for some σ, κ > 0, then the D-GPDA reduces to
the Prox-GPDA algorithm briefly discussed in our earlier work [15, Section 5], for solving a general linearly
constrained problem.

4.2 The xFILTER Algorithm

Despite the fact that D-GPDA is conceptually simple, we will show shortly that it is only optimal for special
network classes with small diameter [or large gap function ξ(G)], such as the complete/star networks (see
Table 1 and our detailed analysis in Section 6). Intuitively, the issue is that having the network proximal
term imposes very heavy regularization, enforcing the new iterates to be close to the old ones. This causes
slow information propagation over the network.

In this section, we present a near-optimal algorithm that can achieve the lower bounds derived in
Section 3 for a number of different graphs (up to some polylog factor in the problem dimension). To
motivate our algorithm design, observe that the communication lower bound O(1/

√
ξ(G)× L̄/ε) in Section

3 can be decomposed into the product two parts, O(1/
√
ξ(G)) and O(L̄/ε), corresponding roughly to the

25

communication efficiency and the computational complexity, respectively. Such a product form motivates
us to separate the computation and communication tasks, and design a double loop algorithm to achieve
the desired lower bound.

Our proposed algorithm is based on a novel approximate filtering -then- predict and tracking (xFILTER)
strategy, which properly combines the modern first-order optimization methods and the classical polynomial
filtering techniques. It is a “double-loop” algorithm, where in the outer loop local gradients are computed
to extract information from local functions, while in the inner loop some filtering techniques are used to
facilitate efficient information propagation. Please see Algorithm 1 for the detailed description, from the
system perspective. It is important to note that the algorithm contains an outer loop (S3)–(S4) and an
inner loop (S2), indexed by r and q, respectively. Further, the local gradient evaluation only appears in
the outer loop step (S3).

To understand the algorithm, we note that one important task of each agent is to update its local vari-
able so that it is close to the average 1

M

∑M
i=1 xi. Let us use di to denote a local variable that approximates

the above average. At the beginning of the algorithm, di is just a rough estimate of the average, so we
have di = 1

M

∑
j xj + ei, where ei is the deviation from the true average, and it can be viewed as some

kind of “estimation noise”. To gradually remove such a noise, in step S1) we resort to the so-called graph
based joint bilateral filtering used for image denoising [52, 53], which can be formulated as the following
regularized least squares problem:

xr+1
∗ := arg min

x∈RM

1

2
‖x− dr‖2Υ2 +

1

2
x>F>Σ2Fx, (73)

where dr is the noisy signal, F is a penalty high pass filter related to the graph structure (in our case,
F is the adjacency matrix), and Σ2 is a regularization parameter. Its solution, denoted as xr+1

∗ as given
below, will be close to the “unfiltered” signal dr, while having reduced high frequency components, or high
fluctuations across the components:

Rxr+1
∗ = dr, with R := Υ−2F>Σ2F + IM . (74)

It is important to note that if xr+1
∗ indeed achieves consensus, then by (11) we have F>Σ2Fxr+1

∗ = 0,
implying xr+1

∗ = dr, which says dr should “track” xr+1
∗ .

Unfortunately, the system (74) cannot be precisely solved in a distributed manner, because inverting
R destroys its pattern about the network structure embedded in the product F>Σ2F . More specifically,
F>Σ2F is the weighted graph Laplacian matrix whose (i, j)th entry is nonzero if and only if node i, j are
connected, but (Υ−2F>Σ2F + IM)−1 is a dense matrix without such a property. Therefore in S2), we use
a degree-Q Chebyshev polynomial to approximate xr+1

∗ . The output, denoted as xr+1, stays in a Krylov
space span{dr, Rdr, · · · , RQdr}. Specifically, at each iteration, the only step that requires communication
is the operation Ru, which is given by

(Ruq−1)[i] = (Υ−2F>Σ2Fuq−1)[i] + dq−1[i] (75)

=
1

β2
i

∑
j:j∼i

σ2
ij(uq−1[j]− dr[i]) + uq−1[i], ∀ i,

so this step can be done distributedly, via one round of local message exchange.
After completing Q > 0 such Chebyshev iterations (77) (C-iteration for short), the obtained solution

26

xr+1 will be an approximate solution to the system 74, with a residual error vector εr+1 as given below

Rxr+1 = dr +Rεr+1, with εr+1 := xr+1 − xr+1
∗ . (76)

Up to this point, the filtering technique we have discussed aims at removing the “non-consensus” parts
from a vector d = [d1, · · · , dN]T . However, recall that the goal of distributed optimization is not only
to achieve consensus, but also to optimize the objective function

∑
i fi(xi). Therefore, a prediction step

(S3) is performed to incorporate the most up-to-date local gradient ∇fi(xi). Then a tracking step (S4) is
performed to update d. Ideally, one would like the new dr+1

i to have the following three properties: 1) It
is close to the previous dri ; 2) it takes into consideration the new local gradient information offered by the
“predicted” x̃r+1

i ; 3) it is a “low frequency” signal, meaning dr+1
i and dr+1

j are relatively close, for all i 6= j.
Taking a closer look at the “tracking” step, we can see that all three components are included: It adds to
the previous dr the differences of the last two predictions, and it removes some non-consensus components
among the local variables. The detailed algorithm is given in the Algorithm 2.

To end this subsection, we emphasize that, the use of the polynomial Chebyshev filtering requires Q
vector communications steps every time that (S2) is performed. However, such a filtering step is critical
to make the proposed algorithm achieve performance lower bounds predicted in Section 3. Intuitively,
it helps to accelerate information propagation across the network. Indeed, as will be shown shortly, the
number Q in (S2) is directly related to properties of the underlying graph. It is also somewhat surprising
that the inner problem (73) is not required to be solved with increased accuracy. On the contrary, only a
fixed number of filtering steps are needed.

Algorithm 2. The xFILTER Algorithm

(S1) [Initialization]. Assign each node i ∈ N with βi > 0; Assign each edge (ij) ∈ E with
σij > 0; Initialize x−1 = 0, d−1 = −Υ−2∇f(x−1) and x̃−1 = x−1 − Υ−2∇f(x−1). Compute R
by (74);
(S2) [Filtering]. At iteration r + 1, r ≥ −1: For a fixed constant Q > 0, run the following
C-iterations (with parameters {αq, τ})

u0 = xr, u1 = (I − τR)u0 + τdr, (77)

uq = αq(I − τR)uq−1 + (1− αq)uq−2 + ταqd
r, q = 2, · · · , Q;

Set xr+1 = uQ;
(S3) [Prediction]. Compute x̃r+1 by:

x̃r+1 = xr+1 −Υ−2∇f(xr+1); (78)

(S4) [Tracking]. Compute dr+1 by:

dr+1 = dr + (x̃r+1 − x̃r)−Υ−2F>Σ2Fxr+1. (79)

Set r = r + 1, go to (S2).

27

4.3 Discussion

In this subsection, we establish some key connections between the two algorithms discussed so far, and
provide some additional remarks.

First, we provide an important interpretation of the xFILTER strategy, which will help us subsequently
provide an unified analysis framework for both D-GPDA and xFILTER. First, similarly as in the D-GPDA
algorithm, let us introduce an auxiliary variable λr ∈ RE , which is updated as follows:

λr+1 = λr + Σ2Fxr+1. (80)

Suppose λ−1 = 0, then according to (79) and (78) we have the following relationship

d0 := −Υ−2∇f(x−1) + (x0 −Υ−2∇f(x0)− (x−1 −Υ−2∇f(x−1)))−Υ−2F Tλ0

= x0 −Υ−2∇f(x0)−Υ−2F Tλ0.

By using the induction argument, we can show that for all r ≥ 0, the following holds

dr := xr −Υ−2∇f(xr)−Υ−2F Tλr. (81)

Combining (74) and (81), we obtain the following useful alternative expressions of (74) and (76):

Υ−2
(
∇f(xr)+F>(λr + Σ2Fxr+1

∗)
)

+(xr+1
∗ − xr) = 0 (82a)

Υ−2
(
∇f(xr)+F>(λr + Σ2Fxr+1)

)
+(xr+1− xr) = Rεr+1. (82b)

Using (82a), it is clear that xr+1
∗ can be equivalently written as the optimal solution of the following

problem:

xr+1
∗ = argmin

x
〈∇f(xr) + F Tλr, x− xr〉+

1

2
‖ΣFx‖2 +

1

2
‖Υ(x− xr)‖2. (83)

The relations (80) and (83) together show that D-GPDA and xFILTER are closely related. However,
we note that when comparing (83) with (72a), one key difference is that the network proximal term
1
2‖ΣB(x− xr)‖2 used in D-GPDA is no longer used in xFILTER.

We have the following additional remarks on the proposed algorithms.

Remark 4.1 (Parameters) It is important to note that in both Alg. 1 and 2, in the update of the primal
and dual variables, some “matrix parameters” are used instead of scalar ones. In particular, the matrix Υ2

is used as the primal “proximal parameter”, while Σ2 is used as the “dual stepsize”. Using these matrices
ensures that we can appropriately design parameters for each node/link, which is one key ingredient in
ensuring the optimal rate.

Remark 4.2 (Initialization) The initialization steps in (S2) and (S3) of Alg. 1 can be done in a
distributed manner. Each node i only requires to know the neighbors’ σ2

ij’s in order to update x0
i . Once x0

is updated, λ0 can be updated by using:

λ0
ij = σ2

ij(x
0
i − x0

j), ∀ (i, j) ∈ E.

28

Remark 4.3 (Distributed Implementation and Algorithm Classes) To see how the D-GPDA can
be executed distributedly, we write down the optimality condition of (72a). For notational simplicity, define:

H := BTΣ2B + Υ2. (84)

Then we have

∇f(xr) + F Tλr + F TΣ2Fxr+1 +H(xr+1 − xr) = 0. (85)

Rearranging, and using property (22), we have

∇f(xr) + F Tλr + (2∆ + Υ2)xr+1 −Hxr = 0.

Subtracting the same equation from the rth iteration, and use the fact that F T (λr−λr−1) = F TΣ2Fxr, we
have

xr+1 = xr −
(
2∆ + Υ2

)−1
(
∇f(xr)−∇f(xr−1) + (F TΣ2F −H)xr +Hxr−1

)
. (86)

According to the above update rule, each node i can distributedly implement (86) by performing the following

xr+1
i = xri −

1

2
∑

j:j∼i σ
2
ij + β2

i

(
1

M
(∇fi(xri)−∇fi(xr−1

i)) (87)

− 2
∑
j:j∼i

σ2
ijx

r
j − β2

i x
r
i + β2

i x
r−1
i +

∑
j:j∼i

σ2
ij(x

r−1
j + xr−1

i)

)
.

It is also easy to see that the Chebyshev iteration in xFILTER can be implemented distributedly, since
the R matrix defined in (74) preserves the network structure. To see how we can compute the dr vector
distributedly, we first note that d−1 = −Υ−2∇f(0). Then suppose we know dr−1, by combining (79) and
(78) we have

dr = dr−1 + (xr − xr−1)−Υ−2(∇f(xr)−∇f(xr−1))−Υ−2F TΣ2Fxr.

Therefore each dri can be updated as

dri = dr−1
i + (xri − xr−1

i)− 1

Mβ2
i

(∇fi(xri)−∇fi(xr−1
i)) +

∑
j:j∼i

σ2
ij

β2
i

(xri − xrj). (88)

Combining the above expression with the expression in (75) for computing Rdr, it is clear that all the
computation only involves in local communication and local gradient computation.

These observations also suggest that for a general choice of parameter matrix Σ2 � 0, both D-GPDA
and xFILTER are in class A. Further, if Σ2 is a multiple of identity matrix (i.e., there exists σ2 > 0 such
that Σ2 = σ2IE), then the computations in (87) and (88) only involve the sum of neighboring iterates,
therefore both algorithms belong to class A′ as well.

29

5 The Convergence Rate Analysis

In this section we provide the analysis steps of the convergence rate of the D-GPDA and xFILTER. All
the proofs of the results can be found in the appendix. Note that we use the primal-dual representation
discussed in Section 4.3 for xFILTER, so that it can be analyzed together with the D-GPDA.
Step 1. We first analyze the dynamics of the dual variable.

Lemma 5.1 Suppose that f(x) is in class PML . Then for all r ≥ 0, the iterates of D-GPDA satisfy

‖λr+1 − λr‖2Σ−2 ≤ 2κ

(
‖Υ−1L(xr − xr−1)‖2

M2
+ ‖wr+1‖2H

)
. (89)

Further, for all r ≥ 0, the iterates of xFILTER satisfy

‖λr+1 − λr‖2Σ−2 ≤ κ̃
(

3

M2
‖Υ−1L(xr − xr−1)‖2 + 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2

)
. (90)

In the above we have defined the following

κ :=
1

λmin(ΣFH−1F TΣ)
, κ̃ :=

1

λmin(ΣFΥ−2F TΣ)
=

1

λmin(LG)
(91a)

wr+1 := (xr+1 − xr)− (xr − xr−1). (91b)

Step 2. In this step we analyze the dynamics of the AL.

Lemma 5.2 Suppose that f(x) is in class PML . Then for all r ≥ 0, the iterates of D-GPDA satisfy

ALr+1 − ALr ≤ −1

2
‖xr+1 − xr‖2∆+2Υ2−L/M

+ κ

(
2

M2
‖Υ−1L(xr − xr−1)‖2 + 2‖wr+1‖2H

)
. (92)

Further, for all r ≥ 0, the iterates of xFILTER satisfy

ALr+1 − ALr ≤ −1

2
‖xr+1 − xr‖2

Υ2R− L
M

+ 〈Υ2Rεr+1, xr+1 − xr〉 (93)

+ κ̃

(
3

M2
‖Υ−1L(xr − xr−1)‖2 + 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2

)
.

Before moving forward, we provide bounds for the important parameters κ and κ̃. From (91a) we can
express κ as

κ =
1

λmin(ΣFΥ−1 (Υ−1BTΣ2BΥ−1 + I)−1 Υ−1F TΣ)

=
1

λmin((Υ−1BTΣ2BΥ−1 + I)−1 LG)

(23)
=

1

λmin ((−LG + 2Υ−1∆Υ−1 + I)−1LG)
. (94)

30

Similar derivation applies for κ̃. In summary we have

κ ≤ λmax(2Υ−1∆Υ−1 + I)

λmin(LG)
, κ̃ =

1

λmin(LG)
. (95)

Step 3. In this step, we analyze the error sequences {εr+1} generated by the xFILTER. First we have
the following well-known result on the behavior of the Chebyshev iteration; see, e.g., [54, Chapter 6]
and [55, Theorem 1, Chapter 7].

Lemma 5.3 Consider using the Chebyshev iteration (77) to solve Rx = dr. Define xr+1
∗ = R−1dr, with

R := Υ−2(F TΣ2F + Υ2). (96)

Define the following constants:

ξ(R) :=
λmin(R)

λmax(R)
≤ 1, ξ(Υ2) :=

λmin(Υ2)

λmax(Υ2)
≤ 1, θ(R) := λmin(R) + λmax(R). (97)

Choose the following parameters:

τ =
2

θ(R)
, α1 = 2, αt+1 =

4

4− ρ2
0αt

, ρ0 =
1− ξ(R)

1 + ξ(R)
.

Then for any η ∈ (0, 1), in order to achieve the following accuracy

‖uQ − xr+1
∗ ‖2Υ2 ≤ η‖u0 − xr+1

∗ ‖2Υ2 , (98)

it requires the following number of iterations

Q ≥ −1

4
ln(η/4)

√
1/ξ(R).

Recall that in Algorithm 2 the initial and final solutions for the Chebyshev iteration are assigned to xr

and xr+1, respectively. Define ε̃r := u0 − xr+1
∗ , we have

Rxr = Ru0 = R(u0 − xr+1
∗) +Rxr+1

∗ := Rε̃r + dr, ∀ r ≥ −1.

Plugging in the definition of dr in (81), we obtain

Rε̃r = Rxr + Υ−2(∇f(xr) + F Tλr −Υ2xr). (99)

Using the definition of εr+1 in (82b), and the fact that R is invertible, we obtain the following key rela-
tionship

εr+1 − ε̃r = xr+1 − xr, ∀ r ≥ −1. (100)

Recall that εr+1 := xr+1 − xr+1
∗ , and xr+1 = uQ, xr = u0, then (98) implies

‖εr+1‖2Υ2 ≤ η‖ε̃r‖2Υ2 . (101)

31

By combining Lemma 5.3, (100) and (101), the following result provides some essential relationships
between the error sequences {εr+1} incurred by running finite number of C-iterations, with the outer-loop
iterations {xr+1}.

Lemma 5.4 Choose the inner iteration of xFILTER as

Q = −1

4
ln

(
θ2

16 + 128M max{λmax(Υ2R), 1}

)√
1/ξ(R). (102)

where θ := ξ(Υ2R)ξ(Υ2)×min{1, λmin(Υ2)}. Then we have the following inequalities

‖Υ2Rεr+1‖2 ≤ 1

16M
‖xr+1 − xr‖2Υ2R, (103a)

‖εr+1‖2Υ2R ≤
1

16M
‖xr+1 − xr‖2Υ2R, (103b)

‖ΥRεr+1‖2 ≤ 1

16M
‖xr+1 − xr‖2Υ2R, (103c)

〈Υ2Rεr+1, xr+1− xr〉 ≤ 3

16
‖xr+1 − xr‖2Υ2R, (103d)

〈Υ2Rεr, xr+1− xr〉 ≤ 1

8
‖xr − xr−1‖2Υ2R +

1

16
‖xr+1 − xr‖2Υ2R. (103e)

5.1 Proof of Lemma 5.4

Proof. Let us choose

η = θ2/(4 + 32M max{λmax(Υ2R), 1}). (104)

Then from Lemma 5.3, it is clear that if Q satisfies (102), then

‖εr+1‖2Υ2 ≤ η‖ε̃r‖2Υ2 . (105)

Note that Υ2R = F>Σ2F + Υ2 � 0, then it follows that

‖Υ2Rεr+1‖2 ≤ λmax(RΥ2Υ2R)

λmin(Υ2)
‖εr+1‖2Υ2

(101)

≤ ηλmax(RΥ2Υ2R)

λmin(Υ2)
‖ε̃r‖2Υ2 ≤

ηλmax(RΥ2Υ2R)λmax(Υ2)

λmin(Υ2)
‖ε̃r‖2

≤ ηλmax(RΥ2Υ2R)λmax(Υ2)

λmin(RΥ2Υ2R)λmin(Υ2)
‖Υ2Rε̃r‖2 ≤ ηθ−2‖Υ2Rε̃r‖2.

Using the above relation, we can then obtain the following

‖Υ2Rεr+1‖2 ≤ 2ηθ
−2

(‖Υ2Rεr+1‖2 + ‖Υ2R(εr+1 − ε̃r)‖2)

(100)

≤ 2ηθ−2(‖Υ2Rεr+1‖2 + ‖Υ2R(xr+1 − xr)‖2).

Therefore, we obtain

‖Υ2Rεr+1‖2 ≤ 2ηθ−2/(1− 2ηθ−2)‖Υ2R(xr+1 − xr)‖2.

32

Plugging the definition of η in (104), we have

‖Υ2Rεr+1‖2 ≤ λmax(Υ2R)2ηθ−2/(1− 2ηθ−2)‖xr+1 − xr‖2Υ2R

(104)

≤ 1/(16M)‖xr+1 − xr‖2Υ2R, ∀ r ≥ −1.

To obtain the second inequality, notice that

‖εr+1‖2Υ2R ≤ θ
−1η‖ε̃r‖2Υ2R ≤ θ

−2η‖ε̃r‖2Υ2R (106)

where the last inequality is due to the fact that θ ≤ 1. Then repeating the above derivation we can obtain
the desired result. The third inequality in (103) can be derived in a similar way, and the last two in (103)
can be obtained by using Cauchy-Swartz inequality. Q.E.D.

Clearly, using the Chebyshev iteration is one critical step that ensures fast reduction of the error {εr+1}.
In particular, to achieve constant reduction of error, the total number of required Chebyshev iteration is
proportional to

√
1/ξ(R), rather than 1/ξ(R) in conventional iterative scheme such as the Richardson’s

iteration [54]. Such a choice enables the final bound to be dependent on
√

1/ξ(G), rather than 1/ξ(G).
Step 4. Let us construct the following potential functions (parameterized by constants c, c̃ > 0)

Pc(x
r+1, xr, λr+1) := ALr+1 +

2κ

M2
‖Υ−1L(xr+1 − xr)‖2

+
c

2

(
‖ΣFxr+1‖2 + ‖xr+1 − xr‖2H+L/M

)
. (107a)

P̃c̃(x
r+1, xr, λr+1) := ALr+1 +

3κ̃

M2
‖Υ−1L(xr+1 − xr)‖2 (107b)

+
3κ̃

8
‖xr+1 − xr‖2Υ2R +

c̃

2

(
‖ΣFxr+1‖2 + ‖xr+1 − xr‖2

Υ2+ Υ2R
4

+ L
M

)
.

For notational simplicity we will denote them as P r+1 and P̃ r+1, respectively. In the following we show
that when the algorithm parameters are chosen properly, the potential functions will decrease along the
iterations.

Lemma 5.5 Suppose that f(x) is in class PML , and that the parameters of D-GPDA are chosen as below

c = max{6κ, 1}, Υ2 � LΥ−2L

M2
, (108a)

1

2

(
∆ + Υ2

)
− L

M
− 4κ

M2
LΥ−2L− 2cL

M
� 0. (108b)

Then for all r ≥ 0, we have

P r − P r+1 ≥ 1

4
‖xr+1 − xr‖2∆+Υ2 + κ‖wr+1‖2H . (109)

Lemma 5.6 Suppose that f(x) is in class PML , Q is chosen according to (102), and the rest of the param-
eters of xFILTER are chosen as below

33

c̃ = 8κ̃ =
8

λmin(ΣFΥ−2F TΣ)
, Υ2 � LΥ−2L

M2
, (110a)

(1/4− 3κ̃− c̃)Υ2R− (1 + 2c̃)L/M − 6κ̃

M2
LΥ−2L � 0. (110b)

Then for all r ≥ 0, we have

P̃ r − P̃ r+1 ≥ 1

8
‖xr+1 − xr‖2Υ2R + κ̃‖wr+1‖2Υ2 . (111)

Step 5. Next we show the lower and upper boundedness of the potential function.

Lemma 5.7 Suppose that f(x) is in class PML and the parameters are chosen according to (108). Then
the iterates generated by D-GPDA satisfy

P r+1 ≥ f > −∞, ∀ r > 0, (112a)

P 0 ≤ f(x0) +
2

M
dT0 L

−1d0, (112b)

where d0 is defined in (48).
Similarly, for xFILTER the function P̃ r+1 has the same expression as in (112a), and

P̃ 0 ≤ f(x0) +
5

M
dT0 L

−1d0. (113)

Step 6. We are ready to derive the final bounds for the convergence rate of the proposed algorithms.

Theorem 5.1 Suppose that f(x) is in class PML and the parameters are chosen according to (108). Let T
denote an iteration index in which D-GPDA satisfies

e(T) := min
r∈[T]

∥∥∥∥1/M
M∑
i=1

∇fi(xri)
∥∥∥∥2

+ ‖ΣFxr‖2 ≤ ε. (114)

Then we have the following bound for the error:

ε ≤ C1 ×
C2

T
, with C1 := 8

(
f(x0)− f +

2

M
dT0 L

−1d0

)
C2 := 4

∑
(i,j):i∼j

σ2
ij +

M∑
i=1

β2
i + 4. (115)

Similarly, for xFILTER when the parameters are chosen according to (110) and (102), the same equation

ε ≤ C̃1 ×
C̃2

Tr
(116)

34

holds true (with Tr denoting the total number of outer iterations), with the following constants

C̃1 := f(x0)− f +
5

M
dT0 L

−1d0 (117a)

C̃2 := 128

(
M∑
i=1

β2
i + 3 +

1

32κ̃

)
. (117b)

We note that one key difference between the two rates is that, the constant C2 for D-GPDA depends
explicitly on σe’s, while its counterpart for xFILTER depends on 1/κ̃ instead. Further, for xFILTER, the
constant κ̃ in (95) only depends on λmin(LG), while for D-GPDA κ is further dependent on λmax(Υ−1∆Υ−1).
These properties will be leveraged later when choosing algorithm parameters to ensure that optimal rates
for different problems and networks are obtained.

6 Rate Bounds and Tightness

In this section we provide explicit choices of various parameters, and discuss the tightness of the resulting
bounds for D-GPDA and xFILTER.

6.1 Parameter Selection and Rate Bounds for D-GPDA

Let us pick the following parameters for D-GPDA

σ2
ij =

β2
√
LiLj√
didj

, Υ2 = β2L, β2 =
80 max{λmax(W), 1}
min{λmin(LG), 1}M

. (118)

It follows that the following relations hold

∆ = β2W, β2
i = β2Li, ∀ i, κ

(95)

≤ 1 + 2λmax(W)

min{λmin(L̃), 1}
. (119)

In the above definitions, we have defined W ∈ RM as a diagonal matrix with

[W]ii =

√
Li√
di

∑
q:q∼i

√
Lq√
dq
,

and that

[LG]ij =

∑

q:q∼i
1√
dqdi

if i = j

− 1√
didj

if (ij) ∈ E , i 6= j

0 otherwise.

(120)

Note that when di = dj , ∀ i, j, we have LG = L. We have the following result.

Theorem 6.1 Consider using D-GPDA to solve problems in class (PML ,NM
D), using parameters in (118).

Then the condition (108b) will be satisfied. Further, to achieve e(T) ≤ ε, it requires at most the following

35

number of iterations

T ≤ 8

ε

(
f(x0)− f +

2

M
‖d0‖2L−1

)
× C2 (121)

where C2 is given by [with W and L̃ defined in (120)]

C2 ≤
320 max{λmax(W), 1}

min{λmin(LG), 1}
∑

(i,j):i∼j

(√
LiLj√
didjM

+
L̄

4

)
+ 4. (122)

Proof. For D-GPDA, use the parameters in (118), we have

c ≤ 6 + 12λmax(W)

min{λmin(LG), 1}
, Υ2 =

80 max{λmax(W), 1}
min{λmin(LG), 1}M

L.

Therefore to ensure condition (108b), it suffices to ensure the following

40 max{λmax(W), 1}
min{λmin(LG), 1}M

L− (4 + 8λmax(W))

M80 max{λmax(W), 1}
L− 1

M
L− 6 + 12λmax(W)

min{λmin(LG), 1}
2

M
L � 0. (123)

It is easy to check that this inequality will be satisfied using the above choice of parameters. Using these
choices, we can obtain the desired expression for C2. Q.E.D.

6.2 Parameter Selection and Rate Bounds for xFILTER

First, recall that we have defined the matrix L̃ and L̂ as follows [see the definition in (25)]

L̃ = L−1/2P−1/2F TKFP−1/2L−1/2,

L̂ = L−1/2F TKFL−1/2.

Below we will provide two different choices of parameters.
Choice I. We will focus on a class of graphs such that there exists an absolute constant k > 0 such that
the following holds (i.e., the degrees of the nodes are not quite different from their averages):

kP � d̄IM . (124)

The above condition says that the degrees of the nodes are not quite different from their averages. For
example the following graphs satisfy (124): Complete graph (k = 1), star graph (k = 2), grid graph (k = 2),
cubic graph (k = 1), path graph (k = 2), and any regular graph (k = 1).

For the class of graphs satisfy (124), let us pick the parameters for xFILTER as follows

Σ2 =
48× 96k∑
i diλmin(L̃)

K, Υ2 =
96k∑
i di

P 1/2LP 1/2. (125)

36

Using the above choice, we have

β2
i =

96Lidik∑
i di

(126)

and that the matrix Υ satisfies the following

Υ2 =
96k∑
i di

P 1/2LP 1/2 � 96

M
L. (127)

Plugging these choices to the generalized Laplacian LG in (23) we obtain

LG = Υ−1F TΣ2FΥ−1

=
48

λmin(L̃)
L−1/2P−1/2F TKFP−1/2L−1/2 =

48

λmin(L̃)
L̃. (128)

Therefore by (95) we have

κ̃ =
λmin(L̃)

48λmin(L̃)
=

1

48
. (129)

Also in this case we have

R = Υ−2F TΣ2F + I =
48

λmin(L̃)
P−1/2L−1P−1/2F TKF + I.

By noting that the matrix P−1/2L−1P−1/2F TKF and L̃ has the same set of eigenvalues, we obtain

λmax(R) ≤

(
48λmax(L̃)

λmin(L̃)
+ 1

)
≤ 50

ξ(L̃)
, λmin(R) = 1, (130a)

ξ(R) ≥ 1/

(
48λmax(L̃)

λmin(L̃)
+ 1

)
≥ ξ(L̃)

50
. (130b)

Choice II. For general graphs not necessarily satisfying (124), let us pick the parameters for xFILTER as
follows

Σ2 =
48× 96

Mλmin(L̂)
K, Υ2 =

96

M
L. (131)

Using the above choice, we have

β2
i =

96Li
M

. (132)

We have that

LG = Υ−1F TΣ2FΥ−1 =
48

λmin(L̂)
L−1/2F TKFL−1/2 =

48

λmin(L̂)
L̂. (133)

37

Therefore by (95) we have

κ̃ =
λmin(L̂)

48λmin(L̂)
=

1

48
. (134)

Also in this case we have

R = Υ−2F TΣ2F + I =
48

λmin(L̂)
L−1F TKF + I.

By noting that the matrix L−1F TKF and L̂ has the same set of eigenvalues, we obtain

λmax(R) ≤

(
48λmax(L̂)

λmin(L̂)
+ 1

)
≤ 50

ξ(L̂)
, λmin(R) = 1, (135a)

ξ(R) ≥ 1/

(
48λmax(L̂)

λmin(L̂)
+ 1

)
≥ ξ(L̂)

50
. (135b)

Remark 6.1 (Choices of Parameters) The main difference between the above two choices of parameters
is whether Υ2 is scaled with the degree matrix or not. The resulting bounds are also dependent on the spectral
gap for L̃ and L̂, one inversely scaled with the degree matrix, and the other does not. Note that the spectral
gap of L̃ and L̂ may not be the same. For example for a star graph with Li = Lj, ξ(L̂) = O(1/M) but

ξ(L̃) = O(1). Therefore one has to be careful in choosing these parameters so that ξ(R) is made as large
as possible.

Additionally, since we are mainly interested in choosing the optimal parameters so that the resulting
rate bounds will be optimal in their dependency on problem parameters, the absolute constants in the above
parameter choices have not been optimized.

The following result is a direct consequence of the second part of Theorem 5.1.

Theorem 6.2 Consider using xFILTER to solve problems in class (PML ,NM
D), then the following holds.

Case I. Further restricting NM
D to a subclass satisfying (124). If parameters in (125) is used, then the

condition (110b) will be satisfied. Further, to achieve e(T) ≤ ε, it requires at most the following number
of iterations (where T denotes the total iterations of the xFILTER algorithm)

T ≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2

× 1

4
ln

(
16 + 128M max{λmax(Υ2R), 1}

θ2

)√
1/ξ(R)

≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2

× 1

4
ln

(
502(MLmax/Lmin)4 × (16 + 128M max{50× 96kLmax, 1})

ξ3(L̃)×min{1, 962k2L2
min/M

2}

)√
50/ξ(L̃) (136)

38

where C̃2 is given by

C̃2 ≤ 128

(
96k∑M
i=1 di

M∑
i=1

diLi + 19

)
. (137)

Case II. Suppose parameters in (131) are used. Then the condition (110b) will be satisfied. Further, to
achieve e(T) ≤ ε, it requires at most the following number of iterations

T ≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2

× 1

4
ln

(
502(Lmax/Lmin)4 × (16 + 128M max{50× 96Lmax/M, 1})

ξ3(L̃)×min{1, 962L2
min/M

2}

)√
50/ξ(L̃) (138)

where C̃2 is given by

C̃2 ≤ 128

(
96

M

M∑
i=1

Li + 19

)
. (139)

We note that compared with the results in Theorem 5.1, the additional multiplicative term in (136)
accounts for the Chebyshev iterations that are needed for every iteration t. It is interesting to observe
that comparing with the previous result, the constant C̃2 in (137) is independent on any graph parameters.
Such a desirable property turns out to be crucial for obtaining tight rate bounds.

6.3 Tightness of the Upper Rate Bounds

In this section, we present some tightness results of the upper rate bounds for our proposed D-GPDA and
xFILTER. In particular, we compare the expressions derived in Theorem 6.1 – 6.2, and the lower bounds
derived in Section 3, over different kinds of graphs and for different problems. We will mainly focus on the
case with uniform Lipschitz constants, i.e., Li = U, ∀ i. WE will briefly discuss the case of non-uniform
Lipschitz constants at the end of this section.

First, we consider the problem class PMU with the following properties:

L1 = L2 = · · ·LM =
1

M

M∑
i=1

Li := U, L = UIM . (140)

It follows that in this case L̃ = L, and L̂ = P 1/2LP 1/2. Let us first make some useful observations.

Remark 6.2 Let us specialize the parameter choices for D-GPDA algorithm in (118) and derive the bounds
for C2 in (122) for two special graphs.
Complete graph. For complete graphs we have di = dj = M − 1, ∀ i, j, which implies that LG = L, so
λmin(LG) = M/(M − 1). Because Li = Li = U, ∀ i, j, we have W = IM . Therefore using the expression
(122) we obtain the following:

Ccomp
2 ≤ 400U + 4. (141)

39

Cycle graph. For cycle graph we have di = dj = 2,∀ i, j, which implies that LG = L, and λmin(LG) ≥
1/M2. Because Li = Li = U, ∀ i, j, we have W = IM . Therefore using the expression (122) we obtain the
following:

Ccycle
2 ≤ 240UM2 + 4. (142)

It is clear that for cycle graph whose diameter is in O(M), the rate bounds is very large.

Remark 6.3 Let us specialize the parameter choices for xFILTER algorithm in (125) and derive the bounds

for C̃2 × 1/

√
ξ(L̃) in (137) for the following special graphs. Note that because uniform Li’s are assumed,

we have L̃ = L.
Complete graph. Complete graphs satisfy (124) with k = 1. It also satisfies λmin(L̃) = M/(M − 1) ≥ 1.
Therefore using the expression (137) we obtain the following:

C̃comp
2 × 1√

ξ(L̃)
≤ 12500U + 2560. (143)

Grid graph. Grid graphs satisfy (124) with k = 2. It also satisfies λmin(L̃) ≥ 1/M . Therefore using the
expression (137) we obtain the following:

C̃grid
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×

√
M. (144)

Star graph. Star graphs satisfy (124) with k = 2. It also has ξ(L̃) = 1/2. Therefore using the expression
(137) we obtain the following:

C̃star
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×

√
2. (145)

Geometric graph. For geometric graphs which place the nodes uniformly in [0, 1]2 and connect any two
nodes separated by a distance less than a radius R ∈ (0, 1). Then if the connectivity radius R satisfies [47]

R = Ω

(√
log1+ε(M)/M

)
, for any ε > 0, (146)

then with high probability

ξ(L̃) = O
(

log(M)

M

)
. (147)

Further, from the proof of [56, Lemma 10], for any ε and c > 0, if

R = Ω

(√
log1+ε(M)/(Mπ)

)
(148)

40

then with probability at least 1− 2/M c−1, the following holds

log1+εM −
√

2c logM ≤ di ≤ log1+εM +
√

2c logM, ∀ i. (149)

This means that (124) is satisfied (with k = 1) with high probability (also see discussion at the end of [47,
Section V]). Therefore using the expression (122) we obtain the following:

C̃geometric
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×O

(√
M√

log(M)

)
. (150)

Cycle/Path graph. Cycle/path graphs satisfy (124) with k = 2. We also have λmin(L̃) ≥ 1/M2 (see the
discussion in Sec. 2.3). Therefore using the expression (137) we obtain the following:

C̃cycle
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×M. (151)

From the above comparison, it is clear that the rate bounds for xFILTER is about O(M) times better
than the D-GPDA for the path/cycle graph.

We also note that for the xFILTER algorithm, the fact that Li = U, ∀ i implies that the matrix Σ2

given in (125) is a multiple of identity matrix. Therefore by Remark 4.3, we can conclude that in this case
xFILTER belongs to both A and A′.

Now we are ready to present our tightness analysis on D-GPDA and xFILTER.

Theorem 6.3 We have the following tightness results.
(1) Let D = 1 and consider the class (PMU ,NM

D). Then D-GPDA is an optimal algorithm, and its conver-
gence rate in (121) is tight (up to a universal constant).
(2) Let D = M − 1 and consider the class (PMU ,NM

D). Then xFILTER is an optimal algorithm, and its
convergence rate in (136) is tight (up to a polylog factor).
(3) More generally, consider the problem class PMU , and a subclass of NM

D satisfying (124). Then the
convergence rate in (136) is tight (up to a polylog factor).

Proof. We divide the proof into different cases.
Case 1). The network class is a complete graph with M nodes. Using the parameters in (118), C2 is given
by (141), and we have that Σ2 = 80U

(M−1)M IE . Note that the following holds

‖Fx‖2 =
∑

(i,j):i∼j

‖xi − xj‖2.

If (114) holds, then Theorem 5.1 and Theorem 6.1 imply

T ≤ 8
(
f(0)− f +

2

MU
‖d0‖2

)
× 400U + 4

ε
.

41

For complete graph it is easy to check that ξ(G) ≥ 1. Using the definition in (18), we also have

h∗T = min
r∈[T]

∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥2

+
U

M2
‖Axr‖2

≤ min
r∈[T]

∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥2

+
1

80
‖ΣAxr‖2 ≤ e(T) ≤ ε.

By comparing the lower bound derived in Lemma 3.2, we conclude that the above rate bound is tight
(up to some universal constants).
Case 2). The network class is a path graph with M = D + 1. From Section 2.3 we have

ξ(G) ≥ 1

M2
. (152)

Further we note that condition (124) satisfies with k = 2. We have

L̃ = P−1/2F TFP−1/2 = L. (153)

Therefore we conclude that

ξ(L̃) ≥ ξ(G) ≥ 1

M2
. (154)

Applying the above estimate to (125), we can choose

Σ2 =
4608U

4(M − 2)λmin(L̃)
IE , Υ2 =

96U

4(M − 2)
P. (155)

Using these choices, again we will have

ξ(R)
(130)

≥ ξ(L̃)

50

(154)

≥ 1

50M2
. (156)

Using these constants, and note D ≤M , we have

h∗Tr = min
r∈[Tr]

∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2

≤ min
r∈[Tr]

∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥2

+
U

λmin(L)M
‖Fxr‖2

(155)

≤ min
r∈[Tr]

∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥2

+
1

2304
‖ΣFxr‖2 ≤ e(Tr),

where in the first inequality we have used P � IM . Similarly as in the previous case, suppose e(Tr) ≤ ε,

42

then according to Theorem 6.2 we have

ε ≤
(
f(0)− inf

x
f(x) + ‖d0‖2

5

MU
IM

)
× 128(96U + 19)

Tr
.

Recall that for xFILTER, Tr represents the number of times the dual update (80) is performed. Between
two dual updates Q primal iterations are performed, where the precise number is given in (102). According
to (156) we have √

1/ξ(R) ≤ 13M. (157)

Overall, the total number of iterations required is given by

T ≤ 1

ε

(
f(x0)− f +

5

MU
‖d0‖2

)
× 128(96U + 19)

× 1

4
ln

(
502M10 × (16 + 128M max{50× 192U, 1})

min{1, 962 × 4U2/M2}

)
× 13M. (158)

This implies that the lower bound obtained in Theorem 3.1 is tight up to some universal constant and a
ploylog factor in M , and the bound-achieving algorithm in class A is the xFILTER.
Case 3). The proof follows similar steps are in the previous case. When Li = Lj , ∀ i 6= j, and when (124)
is satisfied, it is easy to verify that the following holds

h∗Tr ≤ e(Tr), and L̃ = L. (159)

To bound the total number of iteration required to achieve h∗Tr ≤ ε, note that when (124) is satisfied, we
can apply the bound (136) in Theorem 6.2 and obtain

T ≤ 1

ε

(
f(x0)− f +

5

MU
‖d0‖2

)
× 128 (96kU + 19)

× 1

4
ln

(
502M4 × (16 + 128M max{50× 96kU, 1})

ξ3(G)×min{1, 962k2U2/M2}

)√
50/ξ(G). (160)

Comparing with the lower bound obtained in Theorem 3.1, it is clear that apart from the multiplicative
ln(·) term, the remaining bound is in the same order as the lower bound given in (58). Q.E.D.

Remark 6.4 (Optimal Number of Gradient Evaluations) It is important to note that the “outer”
iteration of the xFILTER required to achieve ε-local solution scales with O(U/ε), which is independent of
the network size. Because local gradient evaluation is only performed in the outer iterations, the above fact
suggests that the total number of gradient evaluation required is also in this order, which is optimal because
it is the same as what is needed for the centralized gradient descent.

Remark 6.5 (Performance Gap Between D-GPDA and xFILTER) If we apply D-GPDA to the
path or cycle graph, then according to Remark 6.2, the corresponding C2, as well as the final upper bound,
will be in O(M2U), which is O(M) worse than the lower bound. Intuitively, this phenomenon happens
because of the following: in order to decompose the entire problem into the individual nodes, the x-update
(72a) has to create a proximal term that matches the quadratic penalty ‖ΣAx‖2. But such an additional

43

term forces the variables to stay close to their previous iteration. In contrast, xFILTER circumvents the
above difficulty by leaving the quadratic penalty intact, but instead using a few fast and decomposable
iterations to approximately solve the resulting problem.

Remark 6.6 (An Alternative Bound) For problems and graphs in (PMU ,NM
D) without additional con-

ditions, it can be verified that the second choice of the parameters (131) gives the following convergence
rates [cf. (138)]

T = Õ

((
f(0)− inf

x
f(x) + ‖d0‖2

5

MU
IM
)
× U

ε
× 1√

ξ(P 1/2LP 1/2)

)
, (161)

where the notation Õ denotes O with a multiplicative ploylog factor. The above rate is proportional to
the square root of the eigengap for the matrix P 1/2LP 1/2, which is the unnormalized Laplacian matrix for
graph G.

Remark 6.7 (Non-uniform Lipschitz Constants) We comment that for the general case Li 6= Lj,
∀ i, j, we can use similar steps to verify that the bound (138) derived in Theorem 6.2 is optimal, in the
sense that they achieve the lower bound (65) predicted in Corollary 3.2.

7 Numerical Results

This section presents numerical examples to show the effectiveness of the proposed algorithms. Two kinds
of problems are considered, distributed binary classification and distributed neural networks training. We
use the former one to demonstrate the behavior and scalability of our algorithm and use the latter one to
show the practical performance.

7.1 Simulation Setup

In our simulations, all algorithms are implemented in MATLAB R2017a for binary classification problem
and implemented in Python 3.6 for training neural networks, running on a computer node with two 12-core
Intel Haswell processors and 128 GB of memory (unless otherwise specified). Both synthetic and real data
are used for performance comparison. For synthetic data, the feature vector is randomly generated with
standard normal distribution with zero mean and unit variance. The label vector is randomly generated
with uniformly distributed pseudorandom integers taking the values {−1, 1}. For real data, we use the
breast cancer dataset 1 for binary classification and MNIST2 for training neural network. The breast cancer
dataset contains a total of 569 samples each with 30 real positive features. The MNIST dataset contains
a total of 60,000 handwritten digits, each with a 28× 28 gray scale image and a label from ten categories.

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
2http://yann.lecun.com/exdb/mnist/

44

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://yann.lecun.com/exdb/mnist/

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p
ti
m

a
lit

y
 G

a
p
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 6: M = 5, B = 200,K = 10

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p
ti
m

a
lit

y
 G

a
p
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 7: M = 10, B = 200,K = 10

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p

ti
m

al
it

y
 G

ap
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 8: M = 20, B = 200,K = 10

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p

ti
m

al
it

y
 G

ap
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 9: M = 20, B = 50,K = 10

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p
ti
m

a
lit

y
 G

a
p
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 10: M = 20, B = 100,K = 10

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p

ti
m

al
it

y
 G

ap
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 11: M = 20, B = 400,K = 10

7.2 Distributed Binary Classification

We consider a non-convex distributed binary classification problem [57]. The global consensus problem (2)
can be expressed as follows:

min
x∈RSM

f(x) :=
1

M

M∑
i=1

fi(xi), s.t. xi = xj ,∀ (i, j) ∈ E .

And each component function fi is expressed by

fi(xi) =
1

B

B∑
j=1

log
(
1 + exp(−yijxTi vij)

)
+

S∑
s=1

λαx2
i,s

1 + αx2
i,s

.

Here vij ∈ RS denotes the feature vector with dimension S, yij ∈ {1,−1} denotes the label for the jth date
point in ith agent, and there are total B data points for each agent. Unless otherwise noted, the graph E
used in our simulation is generated using the random geometric graph and the graph parameter Ra is set
to 0.5. The regularization parameter is set to λ = 0.001, α = 1.

To compare the convergence performance of the proposed algorithms, we randomly generated MB data
points with dimension K and distribute them into M nodes, i.e. each node contains B data points with K
features. Then we compare the proposed xFILTER and D-GPDA with the distributed subgradient (DSG)
method [4], the Push-sum algorithm [58], and the NEXT algorithm [13]. The parameters for NEXT are

45

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p

ti
m

al
it

y
 G

ap
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 12: M = 10, B = 20,K = 5

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p

ti
m

al
it

y
 G

ap
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 13: M = 10, B = 20,K = 10

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p

ti
m

al
it

y
 G

ap
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 14: M = 10, B = 20,K = 20

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p
ti

m
al

it
y
 G

ap
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 15: M = 50, B = 2000,K = 10

0 2000 4000 6000 8000 10000

Number of Communication Rounds

10
-30

10
-20

10
-10

10
0

O
p
ti

m
al

it
y
 G

ap
 h

*

xFILTER (outer)

xFILTER (total)

D-GPDA

NEXT

DSG

Push-sum

Figure 16: M = 10, B = 56,K = 30

chosen as τ = 1, α[0] = 0.1 and µ = 0.01 as suggested by [13], while the parameters for xFILTER are
chosen based on (125).

Simulation results on synthetic data for different M,B,K averaged over 30 realizations are investigated
and shown in Fig. 6 to Fig. 15, where the x-axis denotes the total rounds of communications required, and
the y-axis denotes the quality measure (18) proposed in Section 2. Note that the curves xFILTER (outer)
included in these figures show the number of communication rounds required for xFILTER to perform the
“outer” iterations (which is equivalent to r in Algorithm 2, since in each outer iteration only one round
of communication is required in Step S3). The performance evaluated on real data is also characterized
in Fig. 16, in which we choose M = 10, B = 56, and K = 30. These results show that the proposed
algorithms perform well in all parameter settings compared with existing methods.

We further note that these figures also show (rough) comparison about computation efficiency of dif-
ferent algorithms. Specifically, for D-GPDA, DSG and Push Sum (resp. NEXT), the total rounds of
communication is the same as (resp. twice as) the total number of gradient evaluations per node. In
contrast, the total rounds of communication in the outer loop of xFILTER is the same as the local gradient
evaluations. Therefore, the comparison between xFILTER (outer) and other algorithms in Fig. 8 to Fig.
15 shows the relative computational efficiency of these algorithms. Clearly, xFILTER has a significant

46

0 50 100 150

number of nodes

0

0.5

1

1.5

2

2.5

3
n

u
m

b
e

r
o

f
c
o

m
m

u
n

ic
a

ti
o

n
 r

o
u

n
d

s 10
5

xFILTER

NEXT

(a) B = 10,K = 10, ε = 10−10

10 20 30 40 50

number of nodes

0

1

2

3

4

5

6

7

n
u

m
b

e
r

o
f

c
o

m
m

u
n

ic
a

ti
o

n
 r

o
u

n
d

s

10
4

xFILTER

NEXT

(b) B = 200,K = 10, ε = 10−15

Figure 17: Comparison of NEXT and xFILTER over path graphs with increasing number of nodes (M ∈ [10, 150] in (a) and M ∈ [5, 50]
in (b)). Each point in the figure represents the total number of communication needed to reach h∗T ≤ ε.

Table 2: Optimality gap after 200 rounds of communications (B = 200,K = 10)

number of nodes M D-GPDA xFILTER

10 3.96× 10−4 2.50× 10−11

20 5.45× 10−4 1.92× 10−9

30 1.20× 10−4 4.71× 10−11

40 2.95× 10−4 4.07× 10−10

50 3.88× 10−4 8.47× 10−11

advantage over the rest of the algorithms.
Further, we compare the scalability performance of the proposed algorithms with increased network

dimension M , and the results are shown in Fig. 17, Table 2 and Table 3. In particular, in Fig. 17 we
compare the total communication rounds required for NEXT and the xFILTER for reaching h∗T ≤ 10−10

and h∗T ≤ 10−15, over path graphs with increasing number of nodes. Overall, we see that the xFILTER
performs reasonably fast.

We do want to point out that although for the unconstrained problems that we have tested, our proposed
algorithms compare relatively favorably with NEXT, NEXT can in fact handle a larger class of problems
because it is designed for nonsmooth and constrained nonconvex problems. Further, for all the algorithms
we have used, we did not tune the parameters: For xFILTER and D-GPDA, we use the theoretical upper
bound suggested in Theorem 5.1, and for NEXT we use the parameters suggested in the paper [13]. For
all our tested problems and algorithms, it is possible to fine-tune the stepsizes to make them faster, but
since this paper is mostly on the theoretical properties of rate optimal algorithms, we choose not to go
down that path.

7.3 Distributed Neural Network Training

In our second experiment, we present some numerical results under a more realistic setting. We consider
training a neural network model for fitting the MNIST data set. The dataset is first randomly partitioned

47

Table 3: Optimality gap after 1000 rounds of communications (B = 200,K = 10)

number of nodes M D-GPDA xFILTER

10 8.24× 10−13 1.93× 10−33

20 9.41× 10−12 1.43× 10−32

30 2.09× 10−13 2.26× 10−32

40 1.52× 10−11 4.19× 10−33

50 2.30× 10−10 6.48× 10−33

0 1000 2000 3000 4000 5000

Iteration Number

0

5

10

15

20

25

C
at

eg
o
ri

ca
l

C
ro

ss
-E

n
tr

o
p
y
 L

o
ss

xFILTER (outer)

xFILTER (total)

DSG

(a) Training Loss

0 1000 2000 3000 4000 5000

Iteration Number

0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 A

cc
u
ra

cy

xFILTER (outer)

xFILTER (total)

DSG

(b) Training Accuracy

Figure 18: Comparison of DSG and xFILTER over path graphs on distributed training neural networks; Plot (a) shows the dynamic
of the categorical cross-entropy loss, and plot (b) shows the training classification accuracy. The parameters are chosen based on their
best practical performance through grid search. The curves xFILTER (outer) and xFILTER (total) again represent the number of outer
iteration, and the total number of iterations required for xFILTER.

into 10 subsets, and then gets distributed over 10 machines. A fully connected neural network with one
hidden layer is used in the experiment. The number of neurons for the hidden layer and the output
layer are set as 128 and 10, respectively. The initial weights for the neural network are drawn from a
truncated normal distribution centered at zero with variance scaled with the number of input units. The
algorithms are written in Python, and the communication protocol is implemented using the Message
Passing Interface (MPI). The empirical performance of the xFILTER is evaluated and compared with the
DSG algorithm [59]. Fig. 18 shows that, compared with DSG, the proposed algorithm achieves better
communication and computation efficiency, and has improved classification accuracy.

Note that despite the fact that some global parameters (such as the Lipschitz constants) are unknown,
the rules provided in (125) or (131) still can help us roughly estimate a set of good parameters. For
example, we choose the following parameters

Σ2 =
σ∑

i diλmin(L̃)
, Υ2 =

βP∑
i di

, (162)

and tune the parameter β and σ by searching from the set {0.1, 0.2, 0.5, 1, 2, 5, · · · , 100, 200, 500}. Based
on the best practical performance over 10 runs, we choose β = 100 and σ = 20 for xFILTER and α = 0.1
for DSG.

48

M
2

ǫ

1

ǫ

M

ǫ

M

ǫ
logM M

2

ǫ

D-GPDA

xFILTER

lower bound

computation

communication

centralized GD

0

(# of gradient evaluation)

Figure 19: Graphical comparison of various bounds analyzed in this work, illustrated over a
path graph with M nodes.

8 Conclusion and Future Works

This paper represents the first work that investigates the performance of optimal first-order non-convex
algorithms for distributed information processing and optimization problems. We first set our scope by
defining the problem, network, and algorithm classes (P,N ,A) that are under consideration. We then
provide a lower complexity bound that characterizes the worst case performance for any first-order dis-
tributed algorithm in class A, and finally propose and analyze two algorithms that are capable of (nearly)
achieving the lower bound in various settings. The various bounds discussed in the work is illustrated in
Fig. 19 through a M -node path graph as an example.

To the best of our knowledge, the proposed algorithms are the first and the only available distributed
non-convex algorithms in class A that can optimally reduce both the size of the gradient and the consensus
error for (P,N), and achieving the (near) optimal rate performance for problem/network classes (P,N).
However, they still require some global information to initialize the parameters, so it will be of interest to
design global information free algorithms that only require local structures to set parameters (just like in
the convex case, see discussions in [60]). It will also be desirable to merge the inner Chebyshev iteration
with the outer dual update to design a single-loop algorithm, and to extend the proposed algorithms to
problems with nonsmooth regularizers and constraints.

9 Appendix

9.1 Proof of Lemma 5.1

Proof. First we show that for all r ≥ −1 the following holds for D-GPDA

∇f(xr) + F Tλr + F TΣ2Fxr+1 +H(xr+1 − xr) = 0. (163)

Note that for the initialization (70) we have

∇f(x−1) + (2∆ + Υ2)x0 = ∇f(x−1) + (F TΣ2F +H)x0 = 0.

49

Setting x−1 = 0, λ−1 = 0 and using (70), we obtain

∇f(0) + F Tλ−1 + F TΣ2Fx0 +H(x0 − x−1) = 0. (164)

Further, the optimality condition of the x update (72a) suggests that (163) holds for all r ≥ 0, therefore
(163) is proved.

Second, by using (163) and the y update (72b), we obtain

F Tλr+1 = −∇f(xr)−H(xr+1 − xr), ∀ r ≥ −1. (165)

Then subtracting the previous iteration leads to

F T (λr+1 − λr) = −(∇f(xr)−∇f(xr−1))−Hwr+1, ∀ r ≥ 0.

Note that the matrix H � 0, Σ2 � 0, then we have

H−1/2(ΣF)TΣ−1(λr+1 − λr) = −H−1/2(∇f(xr)−∇f(xr−1))−H1/2wr+1. (166)

Then using the fact that
Σ−1(λr+1 − λr) = ΣFxr+1 ∈ col(ΣF),

we can square both sides and obtain the following

λmin(ΣFH−1F TΣ)‖Σ−1(λr+1 − λr)‖2

≤ 2‖H−1/2(∇f(xr)−∇f(xr−1))‖2 + 2(wr+1)THwr+1

≤ 2‖Υ−1(∇f(xr)−∇f(xr−1))‖2 + 2(wr+1)THwr+1

(20)

≤ 2

M2
‖Υ−1L(xr − xr−1)‖2 + 2‖wr+1‖2H , ∀ r ≥ 0. (167)

This concludes the proof of the first part.
To show the second part, note that according to (82b), xr+1 generated by xFILTER is given by (for all

r ≥ −1)

∇f(xr) + F T (λr + Σ2Fxr+1) + Υ2(xr+1 − xr) = Υ2Rεr+1. (168)

Then use the same analysis steps as in the first part, we arrive at the desired result. Q.E.D.

50

9.2 Proof of Lemma 5.2

Proof. Using the Lipschitz gradient assumption (20), we have

AL(xr+1, λr)− AL(xr, λr) ≤ 〈∇f(xr) + fTλr + F TΣ2Fxr, xr+1 − xr〉

+
1

2M
‖xr+1 − xr‖2L +

1

2
‖ΣF (xr+1 − xr)‖2

= 〈∇f(xr) + F Tλr +ATΣ2Fxr+1, xr+1 − xr〉

+ 〈H(xr+1 − xr), xr+1 − xr〉+
1

2M
‖xr+1 − xr‖2L

+
1

2
‖ΣF (xr+1 − xr)‖2 − ‖xr+1 − xr‖H+FT Σ2F

(163),(22)

≤ −(xr+1 − xr)T
(

∆

2
− L

2M
+ Υ2

)
(xr+1 − xr). (169)

Using the update rule of the dual variable, and combine the above inequality, we obtain

ALr+1 − ALr ≤ −1

2
‖xr+1 − xr‖2∆+2Υ2−L/M + 〈λr+1 − λr, Axr+1〉

= −1

2
‖xr+1 − xr‖2∆+2Υ2−L/M + ‖Σ−1(λr+1 − λr)‖2

Combined with Lemma 5.1 we complete the first part.
The second part follows similar steps. The modifications are that H is replaced by Υ2, and that there

is an additional error term in the optimality condition; cf. (82b). Q.E.D.

9.3 Proof of Lemma 5.5 and Lemma 5.6

Proof. Using the optimality condition (163), we have

〈F Tλr+1 +∇f(xr) +H(xr+1 − xr), xr+1 − x〉 = 0, ∀ r ≥ −1

This implies that for all r ≥ 0

〈F T (λr+1 − λr) +∇f(xr)−∇f(xr−1) +Hwr+1, xr+1 − xr〉 = 0.

It follows that

1

2
‖ΣFxr+1‖2 +

1

2
‖xr+1 − xr‖2H ≤

1

2
‖ΣFxr‖2 +

1

2
‖xr − xr−1‖H −

1

2
‖wr+1‖2H (170)

+
1

2M
‖xr+1 − xr‖2L +

1

2M
‖xr − xr−1‖2L, ∀ r ≥ 0.

Then combining Lemma 5.2 and (170), for all r ≥ 0 we have

P r+1 − P r ≤ −
(c

2
− 2κ

)
‖wr+1‖2H

− 1

2
(xr+1 − xr)T

(
∆ + 2Υ2 − L

M
− 4κ

M2
LΥ−2L− 2cL

M

)
(xr+1 − xr).

51

Therefore, in order to make the potential function decrease, we need to follow (108).
To show a similar result for the xFILTER, consider the following optimality condition derived from

(168)

〈F Tλr+1 +∇f(xr) + Υ2(xr+1 − xr)−Υ2Rεr+1, xr+1 − x〉 = 0, ∀ x.

Following similar steps as in (170), and use (103), we have

1

2
‖ΣFxr+1‖2 +

1

2
‖xr+1 − xr‖2Υ2 ≤

1

2
‖ΣFxr‖2 +

1

2
‖xr − xr−1‖Υ2 −

1

2
‖wr+1‖2Υ2 (171)

+ 1/(2M)‖xr+1 − xr‖2L + 1/(2M)‖xr − xr−1‖2L
+ 1/4‖xr+1 − xr‖2Υ2R + 1/4‖xr − xr−1‖2Υ2R, ∀ r ≥ −1.

Then combining Lemma 5.2, (170), and the estimate of the size of ε in (103), we have

P̃ r+1 − P̃ r ≤ −1

2
(xr+1 − xr)TV (xr+1 − xr)−

(
c̃

2
− 3κ̃

)
‖wr+1‖2Υ2 .

with

V :=

(
Υ2R− (1 + 2c̃)

L

M
− 6κ̃

M2
LΥ−2L− Υ2R(24κ̃+ 6 + 16c̃)

16

)
.

Therefore in order to make the potential function decrease, we need to follow (110). Q.E.D.

9.4 Proof of Lemma 5.7

Proof. For D-GPDA, we can express the AL as (for all r ≥ 0)

ALr+1 − f(xr+1) = 〈λr+1,Σ−2(λr+1 − λr)〉+
1

2
‖ΣFxr+1‖2

=
1

2

(
‖Σ−1λr+1‖2−‖Σ−1λr‖2+ ‖Σ−1(λr+1 − λr)‖2 + ‖ΣFxr+1‖2

)
.

Since infx f(x) = f is lower bounded, let us define

ÂL
r+1

:= ALr+1 − f, f̂(x) := f(x)− f ≥ 0, P̂ r+1:= P r+1 − f.

Therefore, summing over r = −1 · · · , T , we obtain

T∑
r=−1

ÂL
r+1

=
1

2

(
‖Σ−1λT+1‖2 − ‖Σ−1λ−1‖2

)
+

T∑
r=−1

(
f̂(xr+1) +

1

2
‖ΣFxr+1‖2 +

1

2
‖Σ−1(λr+1 − λr)‖2

)
.

Using the initialization λ−1 = 0, then the above sum is lower bounded by zero. This fact implies that the
sum of P̂ r+1 is also lower bounded by zero (note, the remaining terms in the potential function are all

52

nonnegative)

T∑
r=0

P̂ r+1 ≥ 0, ∀ T > 0,

Note that if the parameters of the system are chosen according to (108), then P r+1 is nonincreasing, which
implies that its shifted version P̂ r+1 is also nonincreasing. Combined with the nonnegativity of the sum
of the shifted potential function, we can conclude that

P̂ r+1 ≥ 0, and P r+1 ≥ inf f(x), ∀ r ≥ 0. (172)

Next we compute P 0. By using (22), we have

P 0 = AL0 +
2κ

M2
‖Υ−1Lx0‖2 +

c

2

(
‖x0‖22∆+Υ2+L/M

)
(173)

AL0 ≤ f(x0) + 2‖ΣFx0‖2

x0 (70)
= (2∆ + Υ2)−1 1

M
[∇f1(0); · · · ;∇fM (0)]

= (2∆ + Υ2)−1 1

M
d0 (174)

where in the last equality we have used the definition of d0 in (48). Use the above relations, we have

P 0 ≤ f(x0) + (x0)TZx0 (175)

with the matrix Z defined as

Z =
2κ

M2
LΥ−2L+

c(2∆ + Υ2 + L/M)

2
+ 2FΣ2F � 4c(2∆ + Υ2)

where the last inequality follows from our choice of parameters in (108b), and the fact c ≥ 1. Note that

4c‖x0‖22∆+Υ2 ≤
4c

M2
dT0 (2∆ + Υ2)−1(2∆ + Υ2)(2∆ + Υ2)−1d0

=
4c

M2
dT0 (2∆ + Υ2)−1d0 ≤

2

M
dT0 L

−1d0 (176)

where the last inequality comes from the choice of the parameters (108b), which implies that 2∆+Υ2 � 2LcM .
These constants combined with (173) shows the desired result.

For xFILTER, the proof for the lower boundedness is the same. To bound the size of P̃ 0, first note
that we again have

ALr+1 − f(xr+1) =
1

2

(
‖Σ−1λr+1‖2−‖Σ−1λr‖2+ ‖Σ−1(λr+1 − λr)‖2 + ‖ΣFxr+1‖2

)
.

By letting r = −1, and use the fact that x−1 = 0 and λ−1 = 0, we obtain

AL0 − f(x0) =
1

2

(
2‖Σ−1λ0‖2 + ‖ΣFx0‖2

)
=

3

2
‖Σ−1λ0‖2. (177)

53

Then we have

P̃ 0 = AL0 +
3κ̃

M2
‖Υ−1Lx0‖2 +

3

8
κ̃‖x0‖2Υ2R

+
c̃

2

(
‖ΣFx0‖2 + ‖x0‖2Υ2+Υ2R/4+L/M

)
, (178)

AL0 ≤ f(x0) + 2‖ΣFx0‖2, x−1 = 0, λ−1 = 0, (179)

x0 (82b)
= R−1Υ−2∇f(0)− ε0, ε̃−1 (99)

= R−1Υ−2∇f(0). (180)

Use the above relation, we have

P̃ 0 ≤ f(x0) + (x0)T Z̃x0 (181)

with the matrix Z defined as

Z̃ =
3κ̃

M2
LΥ−2L+

(
3

8
κ̃+ c̃

)
Υ2R+

c̃L

2M
+ 2FΣ2F � 3Υ2R

where the last inequality follows from our choice of parameters in (110b). Therefore we have

(x0)T Z̃x0 ≤ 3(x0)TΥ2Rx0

≤ 3(∇f(0)−Υ2Rε0)TR−1Υ−2(∇f(0)−Υ2Rε0)

(i)

≤ 6(∇f(0))TR−1Υ−2∇f(0) + 6(ε0)TΥ2Rε0

≤ 3M(∇f(0))TL−1∇f(0) +
3

8M
‖x0‖2Υ2R (182)

where in (i) we have used the Cauchy-Swartz inequality; the last inequality uses (103), the choice of the
parameters (110b) (which implies Υ2R ≥ 4L/M). The above series of inequalities imply that

2‖x0‖2Υ2R ≤
(

3− 3

8M

)
‖x0‖2Υ2R ≤ 3M(∇f(0))TL−1∇f(0).

Therefore overall we have

(x0)T Z̃x0 ≤ 3(x0)TΥ2Rx0 ≤ 5M(∇f(0))TL−1∇f(0). (183)

Finally, by observing 1
M2d

T
0 d0 = ‖∇f(0)‖2, the desired result is obtained. Q.E.D.

9.5 Proof of Theorem 5.1

Proof. To show the first part, we consider the optimality condition (165), and multiply both sides of it
by the all one vector, and use the fact that 1TAT = 0 to obtain

1T∇f(xr) + 1TH(xr+1 − xr) = 0, ∀ r ≥ −1.

54

Squaring both sides and rearranging terms, we have∥∥∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥∥∥2

≤ (xr+1 − xr)TH11TH(xr+1 − xr)

≤ (xr+1 − xr)TH(xr+1 − xr)× 1TH1

≤ ‖xr+1 − xr‖2H ×
(

4
∑

(i,j)i∼j

σ2
ij +

M∑
i=1

β2
i

)
, ∀ r ≥ −1.

Combining with (109), we obtain, for all r ≥ 0∥∥∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥∥∥2

≤ ‖xr+1 − xr‖2H

(
4
∑
e∈E

σ2
e +

M∑
i=1

β2
i

)

≤ 8
(
P r − P r+1

)(
4
∑
e∈E

σ2
e +

M∑
i=1

β2
i

)
. (184)

where in the last inequality we used 2(∆ + Υ2) � H. We then bound the consensus error. Lemma 5.1
implies

‖ΣFxr+1‖2 ≤ κ
(

2

M2
‖Υ−1L(xr − xr−1)‖2 + 2‖wr+1‖2H

)
(108a)

≤ 2κ

(
4‖wr+1‖2H +

2

M2
‖Υ−1L(xr+1 − xr)‖2

)
. (185)

Therefore

‖ΣFxr‖2 ≤ 4κ

(
4‖wr+1‖2H +

2

M2
‖Υ−1L(xr+1 − xr)‖2

)
+ 2‖ΣF (xr+1 − xr)‖2. (186)

Combining with (109), and using the fact that [cf. (108b)]

∆ + Υ2 � 8κLΥ−2L

M2
, 2∆ � FΣ2F (187)

we have

‖ΣFxr‖2 ≤ 16κ‖wr+1‖2H + 5‖xr+1 − xr‖2∆+Υ2

(109)

≤ 20(P r − P r+1). (188)

Also note that by the definition of e(T) we have

T × e(T) ≤
T∑
r=1

(
‖ΣFxr‖2 +

∥∥∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥∥∥2
)

(189)

Then combining the above with (109) and (188), and the fact that the potential function is lower bounded
by f , we obtain the desired result.

55

To show the result for xFILTER, multiply both sides of the optimality condition (168) by the all one
vector, and use the fact that F1 = 0 to obtain

1T∇f(xr) + 1TΥ2(xr+1 − xr) = 1TΥ2Rεr+1. (190)

Squaring both sides and rearranging terms we have∥∥∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥∥∥2

≤ 2(xr+1 − xr)TΥ211TΥ2(xr+1 − xr) + 2(εr+1)TΥ2R11TΥ2Rεr+1

(103)

≤ 2(xr+1 − xr)TΥ2(xr+1 − xr)× 1TΥ21 +M/(4M)‖xr+1 − xr‖2Υ2R

≤ ‖xr+1 − xr‖2Υ2R × 2

(
1 +

M∑
i=1

β2
i

)
, ∀ r ≥ −1.

where in the last inequality we have used the fact that Υ2R = Υ2 + F TΣ2F � Υ2.
To bound the consensus error, we first use (103) and obtain

‖Υ2R(εr+1 − εr)‖2 ≤ 1

4M
‖xr+1 − xr‖2Υ2R +

1

4M
‖xr − xr−1‖2Υ2R.

Similarly as the first part, we use Lemma 5.1 and obtain

‖ΣFxr+1‖2

≤ 3κ̃

(
‖xr+1 − xr‖2Υ2R

4M

+ ‖wr+1‖2Υ2 + ‖xr − xr−1‖2Υ2R
4M

+LΥ−2L
M2

)
≤ 2‖xr+1 − xr‖2Υ2R + 3κ̃‖wr+1‖2Υ2 + 2‖xr − xr−1‖2Υ2R, ∀ r ≥ 0 (191)

where the last inequality comes from (110b), that

2Υ2R � 3κ̃

(
LΥ−2L

M2
+ Υ2R

)
. (192)

By combining (191) and the following inequality

‖ΣFxr‖2 ≤ 2‖ΣF (xr+1 − xr)‖2 + 2‖ΣFxr+1‖2,

we have

‖ΣFxr‖2 ≤ 4‖xr+1 − xr‖2Υ2R+FT Σ2F + 6κ̃‖wr+1‖2Υ2 + 4‖xr − xr−1‖2Υ2R

(111)

≤ 64(P̃ r − P̃ r+1) + 64(P̃ r−1 − P̃ r), ∀ r ≥ 1

‖ΣFx0‖2 ≤ 64(P̃ 0 − P̃ 1) + 4‖x0‖2Υ2R.

56

So overall we have that

Tr∑
r=0

(∥∥∥∥ 1

M

M∑
i=1

∇fi(xri)
∥∥∥∥2

+ ‖ΣFxr‖2
)

≤ 64

(
1 +

M∑
i=1

β2
i + 1

)
Tr∑
r=1

((P̃ r − P̃ r+1) + (P̃ r−1 − P̃ r))

+ 64(P̃ 0 − P̃ 1) + 4‖x0‖2Υ2R

≤ 128

(
1 +

M∑
i=1

β2
i + 2

)
(P̃ 0 − f) + 4‖x0‖2Υ2R. (193)

where the last inequality utilizes the descent property of P̃ 0 in Lemma 5.6. Note that from (177), (178)
and use c̃ = 8κ̃ in (110a), we obtain

P̃ 0 ≥ f(x0) + κ̃‖x0‖2Υ2R. (194)

Therefore From (113) and Lemma 5.7 we have that

4‖x0‖2Υ2R ≤
4
(
P̃ 0 − f(x0)

)
κ̃

(113)

≤
4
(
f(x0) + 5

M d>0 L
−1d0 − f

)
κ̃

:=
4C̃1

κ̃
.

Combining the above two relations leads to

1

Tr

Tr∑
r=0

(∥∥∑M
i=1∇fi(xri)

M

∥∥2
+ ‖ΣFxr‖2

)

≤ 128

(
M∑
i=1

β2
i + 3 +

1

32κ̃

)
C̃1/Tr.

This completes the proof. Q.E.D.

References

[1] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized parallel stochastic gradient descent,” in Advances in
Neural Information Processing Systems, 2017.

[2] P. A. Forero, A. Cano, and G. B. Giannakis, “Distributed clustering using wireless sensor networks,” IEEE
Journal of Selected Topics in Signal Processing, vol. 5, no. 4, pp. 707–724, Aug 2011.

[3] T.-H. C. H.-T. Wai and A. Scaglione, “A consensus-based decentralized algorithm for non-convex optimization
with application to dictionary learning,” in the Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, 2015.

[4] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Transactions
on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

57

[5] A. Nedic and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Transactions
on Automatic Control, vol. 60, no. 3, pp. 601–615, 2015.

[6] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for decentralized consensus
optimization,” SIAM Journal on Optimization, vol. 25, no. 2, pp. 944–966, 2014.

[7] D. Jakovetić, J. M. Moura, and J. Xavier, “Linear convergence rate of a class of distributed augmented lagrangian
algorithms,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 922–936, 2015.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via
the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1,
pp. 1–122, 2011.

[9] I. Schizas, G. Mateos, and G. Giannakis, “Distributed LMS for consensus-based in-network adaptive process-
ing,,” IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2365 – 2382, 2009.

[10] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected stochastic gradient algorithm for non-
convex optimization,” IEEE Transactions on Automatic Control, vol. 58, no. 2, pp. 391–405, 2013.

[11] M. Zhu and S. Mart́ınez, “An approximate dual subgradient algorithm for distributed non-convex constrained
optimization,” IEEE Transactions on Automatic Control, vol. 58, no. 6, pp. 1534–1539, June 2013.

[12] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of alternating direction method of multipliers
for a family of nonconvex problems,” SIAM Journal On Optimization, vol. 26, no. 1, pp. 337–364, 2016.

[13] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 2, no. 2, pp. 120–136, 2016.

[14] D. Hajinezhad and M. Hong, “Perturbed proximal primal dual algorithm for nonconvex nonsmooth optimiza-
tion,” Mathematical Programming, vol. 176, no. 1-2, pp. 207–245, July 2019.

[15] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal primal-dual algorithm for fast distributed
nonconvex optimization and learning over networks,” in the Proceedings of the 34th International Conference
on Machine Learning (ICML), 2017.

[16] D. Hajinezhad, M. Hong, and A. Garcia, “Zone: Zeroth order nonconvex multi-agent optimization over net-
works,” IEEE Transactions on Automatic Control, 2019.

[17] A. Daneshmand, G. Scutari, and F. Facchinei, “Distributed dictionary learning,” in Proceedings of the Asilomar
Conference on Signals, Systems, and Computers, Nov. 6–9, 2016.

[18] A. Daneshmand, Y. Sun, G. Scutari, and F. Facchinei, “Distributed dictionary learning over networks,” in
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, March 5-9 2017.

[19] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE Transactions on Signal Processing,
vol. 66, no. 11, pp. 2834–2848, June 2018.

[20] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning in fixed topology networks,” in Advances
in Neural Information Processing Systems, 2017.

[21] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environments–part i: Agreement at a linear
rate,” arXiv preprint arXiv:1907.01848, 2019.

[22] ——, “Distributed learning in non-convex environments–part ii: Polynomial escape from saddle-points,” arXiv
preprint arXiv:1907.01849, 2019.

[23] B. Swenson, S. Kar, H. V. Poor, and J. Moura, “Annealing for distributed global optimization,” arXiv preprint
arXiv:1903.07258, 2019.

58

[24] M. Hong, J. D. Lee, and M. Razaviyayn, “Gradient primal-dual algorithm converges to second-order stationary
solutions for nonconvex distributed optimization,” in the Proceedings of the 35th International Conference on
Machine Learning (ICML), 2018.

[25] A. Daneshmand, G. Scutari, and V. Kungurtsev, “Second-order guarantees of gradient algorithms over net-
works,” in Proceedings of the 56th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), 2018.

[26] B. Swenson, R. Murray, H. V. Poor, and S. Kar, “Distributed gradient descent: Nonconvergence to saddle points
and the stable-manifold theorem,” arXiv preprint arXiv:1908.02747, 2019.

[27] C. Duenner, A. Lucchi, M. Gargiani, A. Bian, T. Hofmann, and M. Jaggi, “A distributed second-order algorithm
you can trust,” in Proceedings of the International Conference on Machine Learning (ICML), 2018.

[28] C.-H. Fang, S. B. Kylasa, F. Roosta-Khorasani, M. W. Mahoney, and A. Grama, “Distributed second-order
convex optimization,” arXiv preprint arXiv:1807.07132, 2018.

[29] Y. Nesterov, “Smooth minimization of nonsmooth functions,” Mathematical Programming, vol. 103, pp. 127–152,
2005.

[30] ——, “A method of solving a convex programming problem with convergence rate o(1/k2),” Soviet Mathematics
Doklady, vol. 27, pp. 372–376, 1983.

[31] A. Nemirovsky and D. Yudin, “Problem complexity and method efficiency in optimization,” in Interscience
Series in Discrete Mathematics. Wiley, 1983.

[32] Y. Nesterov, Introductory lectures on convex optimization: A basic course. Springer, 2004.

[33] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM
Journal on Imgaging Science, vol. 2, no. 1, pp. 183 – 202, 2009.

[34] Y. Ouyang, Y. Chen, G. Lan, and J. E. Pasiliao, “An accelerated linearized alternating direction method of
multipliers,” SIAM Journal on Imaging Sciences, vol. 8, no. 1, pp. 644–681, 2015.

[35] P. Tseng, “On accelerated proximal gradient methods for convex-concave optimization,” 2008, preprint.

[36] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast distributed gradient methods,” IEEE Transactions on
Automatic Control, vol. 59, no. 5, pp. 1131–1146, May 2014.

[37] K. Scaman, F. Bach, S. Bubeck, Y. Lee, and L. Massoulié, “Optimal algorithms for smooth and strongly convex
distributed optimization in networks,” arXiv preprint arXiv:1702.08704, 2017.

[38] C. Uribe, S. Lee, A. Gasnikov, and A. Nedić, “Optimal algorithms for distributed optimization,” arXiv preprint
arXiv:1712.00232, 2017.

[39] K. Scaman, F. Bach, S. Bubeck, L. Massoulié, and Y. T. Lee, “Optimal algorithms for non-smooth distributed
optimization in networks,” in Advances in Neural Information Processing Systems, 2018, pp. 2740–2749.

[40] C. Cartis, N. Gould, and P. Toint, “On the complexity of steepest descent, newton’s and regularized newton’s
methods for nonconvex unconstrained optimization problems,” SIAM journal on optimization, vol. 20, no. 6,
pp. 2833–2852, 2010.

[41] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Lower bounds for finding stationary points i,” Mathematical
Programming, Jun 2019.

[42] Y. Tian, Y. Sun, B. Du, and G. Scutari, “Asy-sonata: Achieving geometric convergence for distributed asyn-
chronous optimization,” arXiv preprint arXiv:1803.10359, 2018.

[43] A. Daneshmand, Y. Sun, and G. Scutari, “Convergence rate of distributed convex and nonconvex optimization
methods with gradient tracking,” 2018, purdue University, Tech. Rep.

59

[44] X. Fu, K. Huang, N. Sidiropolous, A. M.-S. So, and M. Hong, “Scalable and optimal generalized canonical
correlation analysis via alternating optimization,” 2016, submitted to NIPS 2016.

[45] F. R. K. Chung, Spectral Graph Theory. The American Mathematical Society, 1997.

[46] S. Butler, Algebraic aspects of the normalized Laplacian. Cham: Springer International Publishing, 2016, pp.
295–315.

[47] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed optimization: Convergence
analysis and network scaling,” IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606, March
2012.

[48] H. Uzawa, “Iterative methods in concave programming,” in Studies in Linear and Nonlinear Programming.
Stanford University Press, 1958, p. 154165.

[49] A. Nedić and A. Ozdaglar, “Subgradient methods for saddle-point problems,” Journal of optimization theory
and applications, vol. 142, no. 1, pp. 205–228, 2009.

[50] R. T. Rockafellar, “Augmented lagrangians and applications of the proximal point algorithm in convex pro-
gramming,” Mathematics of operations research, vol. 1, no. 2, pp. 97–116, 1976.

[51] S. J.Wright, “Implementing proximal point methods for linear programming,” Journal of Optimization Theory
and Applications, vol. 65, no. 3, pp. 531–554, Jun 1990.

[52] D. Tian, H. Mansour, A. Knyazev, and A. Vetro, “Chebyshev and conjugate gradient filters for graph image
denoising,” in Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW),
2014.

[53] A. Gadde, S. K. Narang, and A. Ortega, “Bilateral filter: Graph spectral interpretation and extensions,” in
Proceedings of the IEEE International Conference on Image Processing.

[54] V. S. Ryaben’kii and S. V. Tsynkov, A Theoretical Introduction to Numerical Analysis. CRC Press, 2007.

[55] A. A. Samarskij and E. S. Nikolaev, Numerical Methods for Grid Equations Volume II Iterative Methods.
Springer, 1989.

[56] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE Transactions on
Information Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[57] A. Antoniadis, I. Gijbels, and M. Nikolova, “Penalized likelihood regression for generalized linear models with
non-quadratic penalties,” Annals of the Institute of Statistical Mathematics, vol. 63, no. 3, pp. 585–615, 2011.

[58] T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE Transactions on Automatic Control,
vol. 62, no. 8, pp. 3744–3757, 2017.

[59] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On distributed averaging algorithms and quantization
effects,” IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2506–2517, 2009.

[60] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via inexact consensus ADMM,”
IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 482–497, Jan 2015.

60

	1 Introduction
	1.1 Problem and motivation
	1.2 Distributed non-convex optimization
	1.3 Lower and upper rate bounds analysis
	1.4 Contribution of this work

	2 Preliminaries
	2.1 The class P, N, A
	2.2 Solution Quality Measure
	2.3 Some Useful Facts and Definitions

	3 Lower Complexity Bounds
	3.1 Path Graph (D = M-1)
	3.2 Generalization
	3.2.1 Uniform Li, Fixed D and M
	3.2.2 Non-uniform Li, Fixed N

	4 The Proposed Algorithms
	4.1 The D-GPDA Algorithm
	4.2 The xFILTER Algorithm
	4.3 Discussion

	5 The Convergence Rate Analysis
	5.1 Proof of Lemma 5.4

	6 Rate Bounds and Tightness
	6.1 Parameter Selection and Rate Bounds for D-GPDA
	6.2 Parameter Selection and Rate Bounds for xFILTER
	6.3 Tightness of the Upper Rate Bounds

	7 Numerical Results
	7.1 Simulation Setup
	7.2 Distributed Binary Classification
	7.3 Distributed Neural Network Training

	8 Conclusion and Future Works
	9 Appendix
	9.1 Proof of Lemma 5.1
	9.2 Proof of Lemma 5.2
	9.3 Proof of Lemma 5.5 and Lemma 5.6
	9.4 Proof of Lemma 5.7
	9.5 Proof of Theorem 5.1

