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Abstract—In this paper, we propose a joint indoor localization
and navigation algorithm to enable a swarm of unmanned aerial
vehicles (UAVs) to deploy in a specific spatial formation in indoor
environments. In the envisioned scenario, we consider a static
user acting as a central unit whose main task is to acquire all
the UAV measurements carrying position-dependent information
and to estimate the UAV positions when there is no existing
infrastructure for positioning. Subsequently, the user exploits
the estimated positions as inputs for the navigation control with
the aim of deploying the UAVs in a desired formation in space
(formation shaping). The user plans the trajectory of each UAV
in real time, guaranteeing a safe navigation in the presence
of obstacles. The proposed algorithm guides the UAVs to their
desired final locations with good accuracy.

Index Terms—Anchor-free localization, UAV network,
formation shaping control.

I. INTRODUCTION

In the last couple of decades, multi-agent networks have
often been studied especially in the robotic and control
research fields [1], [2]. Initially, the interest was generated
by military applications because autonomous agents, able to
operate without a pilot, represent a valid alternative to human
soldiers in high-risk missions [3]. In this context, trajectory
optimization and motion control have been analyzed for
unmanned aerial vehicles (UAVs), unmanned ground vehicles
(UGVs), and autonomous underwater vehicles (AUVs),
together with their capability of formation shaping and
maintenance [4], [5]. Another broad domain of applications
has been in space exploration, where the autonomy and
flexibility of the agents play crucial roles [6].

Recently, the idea of using swarms or fleets of autonomous
vehicles (AVs) with hundreds of agents has been put forth
because of the necessity of enhancing the robustness in
completing assigned tasks to AVs. Further, such fleets permit
to allocate different tasks to different sub-swarms: for example,
the encirclement of an obstacle by a group of AVs and the
arrival at the base by another [7]. This work has opened
research on intelligent agents for outdoor civil applications,
such as delivery, logistic, precision agriculture, emergency or
post-disaster events [8]–[10].

In our previous work [11], the UAVs fly outdoors and their
mission is to navigate in a way that maximizes the capability
of localizing a target. Going a step forward, one could easily
imagine a setting where the UAVs enter a building with harsh
propagation conditions, with many obstacles and a drastically
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Fig. 1: An indoor application scenario using a user-centric
network of UAVs.

reduced space for maneuvering. Indoor environments provide
many challenges from scientific and engineering points of view
because the UAVs do not have access for localization by a
global reference system, such as by satellites (GPS) or by an
ad-hoc positioning infrastructure (anchor nodes). Therefore,
in addition to their traditional navigation tasks, they must
perform anchor-free localization based on inter-UAV relative
measurements [12]. This, in turn, will require superior sensing
and communication capabilities than those needed in outdoor
applications.

In an anchor-free scenario, the UAVs have to measure some
inter-UAV position-dependent quantities, such as distances and
angles, and then, communicate them to other UAVs or to a
central node (if it exists). The latter will be responsible for
processing the received data and for inferring the positions of
all the UAVs of the network. In this regard, several anchor-free
localization algorithms have been proposed in the literature,
as, for example, the ones described in [13] and the references
therein.

While addressing the problems of localization and
navigation, physical and dynamical constraints must be taken
into account. The UAVs are expected to be lightweight, the
hardware on board cannot be complex (low complexity), and
the necessary computations have to be fast. For example, the
interval between the instant in which the current position is
estimated and the next position is reached should be kept as
short as possible (low latency). Obviously, satisfying these
requirements may come at the expense of a lower localization
and formation accuracy, and, thus, it is important to analyze the
trade-off between the technological issues and the attainable
performance.

In this paper, we study a network of multiple UAVs and



a central user that can either be a drone, a mobile device,
or a terrestrial vehicle, operating in indoor environments (see
Fig. 1). The goal of the network is twofold: first, the UAVs
should be localized with respect to the user (infrastructure-less
localization) and, subsequently, they should deploy according
to a desired topology (formation shape) and guidance by
the user. The system is centralized: all the computational
load is handled by the user, and in this way the UAVs can
save their energy and complete parallel tasks while waiting
for the navigation commands. Further, we suppose that all
the UAVs are able of exchanging distance or angle-of-arrival
(AOA) measurements with all the other UAVs in the network
and also with the user. The accuracy of such measurements
clearly depends on the technology available on board. For
example, for distance estimation, the ultrawide bandwidth
(UWB) technology provides higher performance with respect
to what can be obtained by received signal strength (RSS)
measurements [14], [15]. Likewise, the availability of antenna
array measurements permits to achieve much more precise
AOA estimates than those obtained from power observations.
In [16]–[18], it is shown how AOA information can be
extrapolated from RSS data by exploiting the possibility
of pointing the UAV’s sensor antenna in different spatial
directions using UAV rotations and by searching for the RSS
peak. Here, we chose to work with simple sensors and studied
the achievable localization and formation accuracy based on
their measurements.

The paper is organized as follows. Section II illustrates
the problem, Sec. III describes the characterization of the
relative localization error, Sec. IV presents the approach used
for the control of the UAVs, Sec. V describes the results
and, finally, Sec. VI draws conclusions and discusses possible
future extensions.

II. PROBLEM STATEMENT

In this paper, we aim at studying how to navigate UAVs
in forming a network with a desired topology with respect
to a static user in indoor environments where GPS signals
are not available and in the absence of an ad-hoc positioning
infrastructure. A possible application is the deployment of an
autonomous team of UAVs acting as radio “flying eyes” and
helping a rescuer (user) in completing his/her job, for example,
by enhancing his/her capability for sensing the surrounding
environment, see Fig. 1.

The network is composed of a single user and N UAVs. The
UAVs are equipped with radio sensors and exchange ranging
or bearing (AOA) measurements with each other and with
the user. The user acts as the center of the network and as
a (centralized) processing unit. More specifically, it performs
two high-level tasks: the first is the relative localization of
all the UAVs that compose the network with respect to itself
(namely T1 in Fig. 2); and the second is the computation of
control signals for UAV navigation (namely T2 in Fig. 2).
To do this, the user collects all the measurements from the
UAVs and estimates their relative positions with respect to
an arbitrary selected coordinate system. Then, it evaluates the
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Fig. 2: The user’s block-diagram for joint localization and
navigation.

distance to be travelled by each UAV to attain the desired
formation and sends back the navigation commands to each
UAV at each time instant.

To formalize the problem, we indicate with

θ
(k) =

[

(

x(k)
)T

,
(

y(k)
)T

]T

(1)

the actual position of all the UAVs composing the network at
time instant k (state vector), where

x(k) =
[

x(k)
1 , . . . , x(k)

i , . . . , x(k)
N

]T

, (2)

y(k) =
[

y(k)1 , . . . , y(k)i , . . . , y(k)N

]T

(3)

are their x and y Cartesian coordinates, respectively.
For notation simplicity, we consider a two-dimensional
scenario – the extension to a three-dimensional setting is
straightforward. We assume that the user is located at the

origin of the coordinate system (defined below), i.e., p
(k)
0 =

[

x(k)
0 , y(k)0

]T

= [0, 0]T.

The locations of the UAVs with respect to the user are
unknown. Based on the exchanged measurements between
the UAVs, such positions can be inferred by considering
a coordinate system with the x-axis defined by a baseline

centered at the user position, i.e., b(k) =
[

p
(k)
0 , p̂(k)

1

]T

with

p̂
(k)
1 =

[

d̂(k)1 , 0
]T

being the position of the first UAV. The

y-axis is obtained by rotating the x-axis counterclockwise by
an angle of π/2.

In the sequel, we denote with Nr and Nu the number of
UAVs whose positions are known and unknown, respectively.
In our case, Nr = 1 and Nu = N − 1. The user estimates
the corresponding 2Nu unknown parameters and stacks their
values in

θ̂
(k) =

[

(

x̂(k)
)T

,
(

ŷ(k)
)T

]T

= θ
(k) + ω

(k), (4)

where x̂(k) and ŷ(k) are the vectors with the estimated x and
y coordinates, and ω(k) is the position estimation error.

Once the UAV positions are estimated, the user provides the
control signals to attain the desired configuration of the UAVs

with respect to the user, i.e., θ∗ =
[

(x∗)T , (y∗)T
]T

, which

does not depend on time.



Finally, the formation problem can be formulated as a
minimization problem, that is,

(

θ
(k+1)

)⋆

= argmin
θ̂(k+1)∈R2N

∥θ̂(k+1) − θ
∗∥,

subject to d(k+1)
ij ≥ dS

T ∩O = ∅

∥θ̂(k+1)
i − θ̂

(k)
i ∥ = v

(5)

for i = 0, . . . , N , j ≠ i, where d(k)ij is the distance between the
ith and jth UAV at time instant k as perceived by the on-board
proximity sensors, and dS is the inter-UAV safety distance.
Moreover, T represents the set of trajectories followed by all
the UAVs and O =

⋃Nobs

i=1 Oi the set of all obstacles from
which the UAVs should keep a safety distance equal to dO.
Finally, the last constraint imposes a constant UAV speed equal
to v. Then, the control signal to be applied at the ith UAV to
satisfy (5) is

u(k+1) =
(

θ
(k+1)

)⋆

− θ̂
(k)
i , (6)

where its ith element u
(k+1)
i =

[

∆x(k+1)
i , ∆y(k+1)

i

]T

is the

spatial step to be taken by the ith UAV to lower the distance
toward the final desired position.

III. INFRASTRUCTURE-LESS LOCALIZATION

In this section, we characterize the position estimation error
in (4). In general, the relative localization uncertainty depends
on the implemented estimator. To gain an insight about the
best attainable performance, we consider the error having zero-
mean Gaussian distribution with a covariance matrix κ(k)

equal to the relative Cramér-Rao lower bound (CRLB) of the
UAV positions. In the following we derive the log-likelihood
function starting from the specific observation model and,
then, we derive the CRLB.

A. Observation model

We denote with z(k) the vector containing all the
measurements available at the user at time instant k,

z(k) =
[

. . . , z(k)ij , . . .
]T

, (7)

with i, j = 0, . . . , N and where we consider the measurement
between the (i, j)th pair of UAVs only once to not burden the
processing of measurements, i.e., j > i. The generic element
is the measurement between the ith and jth UAV given by

z(k)ij = (8)
{

h(k)
ij

(

θ(k)
)

+ v(k)ij , ranging,

p(k)ij

(

h(k)
ij

(

θ(k)
)

+ v(k)ij

)

+ (1− p(k)ij ) q(k)ij , bearing,

where p(k)ij ={1, 0}={LOS,NLOS} indicates the presence or
absence of a non line-of-sight (NLOS) propagation condition

between these UAVs, q(k)ij ∼ U (0, 2π) models the presence of

outliers due to multipath between them, and h(k)
ij

(

θ(k)
)

is a
function of the state vector, where

h(k)
ij

(

θ
(k)

)

= (9)
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d(k)ij =

√

(

∆x(k)
ij

)2
+

(

∆y(k)ij

)2
, ranging,

φ(k)
ij = arctan

(

∆y
(k)
ij

∆x
(k)
ij

)

, bearing,

with d(k)ij and φ(k)
ij being the distance and the angle between

the ith and jth UAV at time instant k, with ∆x(k)
ij = x(k)

i −x(k)
j

and ∆y(k)ij = y(k)i − y(k)j . The measurement error is indicated

with v(k)ij modeled as a zero-mean Gaussian random variable
with a standard deviation given by

σ(k)
ij =

{

σ0,r · d
(k)
ij

(

θ(k)
)

, ranging,

σ0,b, bearing,
(10)

where the ranging model is distance dependent, with σ0,r being
the ranging standard deviation at the reference distance (i.e.,
d0 = 1m) and the bearing model is considered constant
with respect to the state vector. For RSS-based ranging
observations, it is possible to model the ranging standard

deviation as σ0,r =
ln 10
10α

(

σsh +
(

1− p(k)ij

)

σb

)

, where α is

the path-loss exponent, σsh corresponds to shadowing in dB
and σb represents a bias term due to the NLOS condition.

Consequently, we can write the likelihood function
as f

(

z(k)|θ(k)
)

= N
(

z(k);h(k),Q(k)
)

where h(k) =
[

. . . , h(k)
ij , . . .

]T

contains the expected ranging and bearing

values and Q(k) = diag

(

. . . ,
(

σ(k)
ij

)2
, . . .

)

is the diagonal

covariance matrix. Given this observation model, the log-
likelihood function available at the user at the kth time slot
is

Λ
(

z(k)|θ(k)
)

=
N
∑

i=0

N
∑

j=0
j>i

ln f
(

z(k)ij |θ(k)
)

. (11)

In the literature, different localization algorithms have been
proposed for dealing with the absence of an ad-hoc positioning
infrastructure. To name a few, an anchor-free localization
using hop count (AFL) has been proposed in [19], maximum
likelihood and least square schemes are described in [20],
and Bayesian schemes are investigated in [13]. Surveys on
infrastructure-less positioning can be found in [12], [13].

In the rest of the paper, we consider an unbiased estimator
with a covariance matrix defined by the relative CRLB,
derived in the following section. More specifically, we model
the position estimates as in (4) with ω(k) ∼ N

(

0,κ(k)
)

,

and κ(k) = κ

(

θ̂(k−1)
)

being the corresponding CRLB

evaluated according to the previous position estimates. This
choice allows for investigation of the formation performance
in a more general way without dealing with a specific
localization algorithm, and for obtaining the maximum
achievable accuracy.



B. Anchor-free CRLB

In this section, we evaluate the anchor-free CRLB that
will be used to model the covariance matrix of the position
estimates in (4). The performance of any unbiased estimator
θ̂(k) can be bounded by the CRLB, namely κ

(

θ(k)
)

, defined
as [21]

E

{

[

θ̂
(k) − θ

(k)
][

θ̂
(k) − θ

(k)
]T
}

≽J−1
(

θ
(k)

)

= κ

(

θ
(k)

)

,

(12)
where A ≽ B means that A−B is positive semi-definite, and
J
(

θ(k)
)

is the 2Nu × 2Nu Fisher Information Matrix (FIM),
i.e.,

J
(

θ
(k)

)

= Ez(k)

{

[

∇θ(k) Λ
(

z(k)|θ(k)
)][

∇θ(k) Λ
(

z(k)|θ(k)
)]T

}

=

⎡

⎣

J
(k)
xx J

(k)
xy

(

J
(k)
xy

)T

J
(k)
yy

⎤

⎦ , (13)

with the subscripts x and y indicating the Cartesian position
coordinates of the UAVs and where the generic elements of
the sub-FIMs are [12]

[

J(k)
xx

]

mn
=

⎧

⎪

⎨

⎪

⎩

∑

i A
(k)
mi

(

∆x(k)
mi

)2
/
(

d(k)mi

)s

, m = n,

−A(k)
mn

(

∆x(k)
mn

)2
/
(

d(k)mn

)s

, m ≠ n,

[

J(k)
xy

]

mn
=

⎧

⎨

⎩

∑

i A
(k)
mi ∆x(k)

mi ∆y(k)mi /
(

d(k)mi

)s

, m = n,

−A(k)
mn ∆x(k)

mn ∆y(k)mn/
(

d(k)mn

)s

, m ≠ n,

[

J(k)
yy

]

mn
=

⎧

⎪

⎨

⎪

⎩

∑

i A
(k)
mi

(

∆y(k)mi

)2
/
(

d(k)mi

)s

, m = n,

−A(k)
mn

(

∆y(k)mn

)2
/
(

d(k)mn

)s

, m ≠ n,

(14)

where i = 0, . . . , N and m = n = 1, . . . , Nu. The exponent s
is equal to 2 in the case of ranging measurements, and s = 4
in the case of bearing. The coefficient A(k)

mi is defined by

A(k)
mi =

⎧

⎨

⎩

(1 + 2 ξ σ0,r)/
(

σ(k)
mi

)2
, ranging,

1/
(

σ2
0,b

)

, bearing,
(15)

where ξ = 0 when there is a model mismatch, i.e., when the

dependence of σ(k)
mi from the state vector θ(k) in (10) is not

considered in the FIM evaluation; otherwise ξ = 1.

IV. THE CONTROL LAW

The constrained minimization problem in (5) can be solved
using the projection gradient method [22]. Then the control
signal of the ith UAV is given by

u
(k+1)
i =−γP∇

θ̂
(k)
i

(

∥θ̂(k)
i − θ

∗

i ∥
)

−N
(

NTN
)−1

g, (16)
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]
Fig. 3: Infrastructure-less localization scenario.

where γ represents the spatial step, and ∇
θ̂
(k)
i

(·) is the

gradient operator with respect to the UAV’s estimated position,
and it is

∇
x̂
(k)
i

(

∥θ̂(k)
i − θ

∗

i ∥
)

= cos
(

α̂(k)
i

)

, (17)

∇
ŷ
(k)
i

(

∥θ̂(k)
i − θ

∗

i ∥
)

= sin
(

α̂(k)
i

)

, (18)

where α̂(k)
i is the angle between the estimated position of

the ith UAV and its desired position at time instant k. The

projection matrix is denoted with P = I−N
(

NTN
)−1

NT,
where I is the identity matrix and N = ∇

θ̂
(k)
i

(g) is the

gradient of the activated constraints acquired in g = [gS, gO],
where

gS = dS − dS, dS =
{

d(k)ij : d(k)ij < dS
}

, (19)

gO = dO − dO, dO =
{

l(k)i,oj
: l(k)i,oj

< dO
}

, (20)

with l(k)i,oj
being the minimum distance of the ith UAV from

the jth obstacle, indicated as oj .

V. CASE STUDY

A. Infrastructure-less localization results

In this section, we report some results on the relative
localization performance. We consider that the network of
UAVs is distributed in a circumference centered at the user
location, i.e., [0, 0]T, and with a radius of 45 meters. The x-
axis was defined by the location of the user and the actual
position of the first UAV which is [45, 0]T. The positions of
these two UAVs are considered known and they are indicated
with crosses in Figs. 3-4. All the other UAVs are in unknown
positions and they are represented by circles. The measurement
standard deviations are set to σ0,r = 0.39 in logarithmic scale
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(or, equivalently, σsh/α = 1.7 with σsh = 3.4 dB) [12] and
σ0,b = 10◦ [16]–[18].

We first calculated the CRLB matrix κ by inverting (13)
whose sub-FIM elements are expressed in (14). Then we
computed the ellipses of the localization uncertainty starting
from the CRLB matrix associated to each UAV. For example,
for the ith UAV, we have

κi =

[

[κxx (θ)]ii [κxy (θ)]ii
[κyx (θ)]ii [κyy (θ)]ii

]

. (21)

The directions of the major axes of the ellipses are the
eigenvectors of the matrix in (21), whereas their lengths
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Fig. 6: Example of navigation simulation. Top: LOS
propagation scenario; Bottom: NLOS propagation scenario;
Left: Ranging-only measurements; Right: Bearing-only
measurements.

correspond to their eigenvalues.

Figure 4 presents the results for the following three cases:
the red curves refer to ranging observations and ignorance of
how the ranging model depends on the state vector, i.e., ξ = 0;
the black curves refer to ranging observations with a perfect
knowledge of the observation model; i.e. ξ = 1; and the blue
curves are for the bearing case. As expected, in the case of
model awareness, the achievable localization results are better
in comparison to the case where the position dependence in
the ranging variance is not taken into account by the CRLB
computation.

Figure 5 displays the results in terms of RMSE as a function
of the number of UAVs. The RMSE was obtained according
to

RMSE =

√

tr (κxx (θ) + κyy (θ))

Nu
, (22)

where tr (·) is the trace operator. It is not surprising that by
increasing the number of UAVs, due to acquisition of more
information, we obtain more accurate position estimates of
the UAVs.

The localization results discussed in this section were
used as input for processing the navigation commands. In
the following, we show the achievable accuracy in network
formation when the relative CRLB is used as the variance
of the UAV position estimates as indicator of the best
performance achievable by any practical estimator.

B. Network formation results

In this section, we report the performance of the network
formation task. More specifically, we suppose that at each time
instant k, the positions of the UAVs are estimated and the
variance is fixed to the CRLB value at that time instant. Then,
the control signals are computed as the gradient of the distance
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between the estimated and the desired final UAV positions.
Navigation constraints are also included in the simulation, with
dS = 0.5m, dO = 5m, and v = 1m/s.

The simulated scenarios are reported in Fig. 6 for a circular
shape formation in LOS and NLOS environments and for
ranging and bearing measurements. In the plot, the user
is indicated with a red triangle, the UAV initial and final
positions with white and cyan squares, respectively, and the
UAV trajectories with dashed lines. Also some intermediate
UAV positions along the trajectories are displayed every 100
time slots with the aim of clarifying that the superimposed
trajectories do not coincide with collision events between the
UAVs. The obstacles are depicted as grey rectangles. The
performance is investigated in terms of RMSE averaged over
the number of UAVs, i.e.,

RMSE(k) =
1

N

N
∑

i=1

√

√

√

√

1

NMC

NMC
∑

m=1

∥θ(k)
im − θ∗

i ∥
2, (23)

with NMC being the number of Monte Carlo trials, where at
each iteration a different UAV position estimate is generated.
In Fig. 7, the red and black curves are for ranging-only
and bearing-only measurements, respectively. The dashed lines
refer to the presence of obstacles in the simulated environment.
The number of UAVs is fixed to N = 9, the number of
Monte Carlo trials to NMC = 100, and the multipath bias
to σb = 3 dB. We notice that at the last time instant, the
UAVs attain the final desired formation with an average error
of less than 2 m. As expected, the NLOS case decreases the
performance, especially for the bearing case. A comparison
of results based on ranging and bearing measurements is not
meaningful because the performance strongly depends on the
accuracy of the sensors that acquire the measurements.
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Fig. 8: RMSE as a function of the adopted sensor
accuracy. Top: ranging-only measurements; Bottom: bearing-
only measurements.

In order to gain insights about the dependence of the
performance of the proposed method on this accuracy, we
investigated the RMSE of the UAV positions as a function
of the sensor accuracy. More specifically, in Fig. 8, we
provide the RMSE performance for different choices of
the parameters, i.e., σsh, (we suppose that the path loss
coefficient is always equal to 2) and σ0,b. As expected, from
the results of the ranging case, we observe that the RSS-
based distance estimation and, consequently, the positioning
become more accurate when the standard deviation of the
shadowing decreases. For the bearing case, σ0,b = 5◦ is an
accuracy achievable with the adoption of antenna arrays whose
integration in drones is today difficult due to size and weight



constraints. Also in this case, relying on RSS measurements
can be a solution at the expense of a degradation in localization
and formation performance.

VI. CONCLUSIONS

In this paper, we investigated the performance of a user-
centric network of UAVs in formation and infrastructure-
less localization in indoor environments. The UAVs are
able to exchange measurements with all the other UAVs
of the network and communicate the collected observations
to a central node, i.e., the user. From ranging and bearing
observation models, the user is able to localize the UAVs
and to send them navigation commands with the objective
of forming a desired final topology. The results of formation
accuracy are promising and pave the way to indoor
applications using UAVs. In future work, we will consider
scenarios with dynamic users.
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