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Abstract—Musical onset detection is a key component in any
beat tracking system. Existing onset detection methods are based
on temporal/spectral analysis, or methods that integrate temporal
and spectral information together with statistical estimation and
machine learning models. In this paper, we propose a method
to localize onset components in music by using the S-transform,
and thus, the method is purely based on temporal/spectral data.
Unlike the other methods based on temporal/spectral data, which
usually rely short time Fourier transform (STFT), our method
enables effective isolation of crucial frequency subbands due to
the frequency dependent resolution of S-transform. Moreover,
numerical results show, even with less computationally intensive
steps, the proposed method can closely resemble the perfor-
mance of more resource intensive statistical estimation based
approaches.

Index Terms—Onset detection, beat tracking, music, S-
transform, time frequency representation

I. INTRODUCTION

When a human hears music, an action which is almost
subconscious is the rhythmic tapping of the foot. These taps
are consistent with the beat of the music and is measured
in beats-per-minute (bpm). The process of detecting beat
locations in a music is called beat tracking. Beat tracking is
a vital step in many studio and live music applications: for
example, when a DJ should perform beat matching to play
two songs successively. Beat matching is the adjustment of
the tempo of one or multiple songs so that their beat locations
overlap each other when played simultaneously. The same
applies for an audio engineer whenever two instrument tracks
are to be played in unison. In this case the audio engineer
needs to know the beat locations in both tracks to create a
smooth playthrough.

Beat of a music is maintained by a rhythm instrument. A
beat usually corresponds to a rapid and unpredictable change
in the underlying music signal. Therefore, a primary step in
any beat tracking algorithm is to represent such changes, which
is referred to as the beat causing onsets (BCO). However,
isolating BCOs among others can be challenging.

Existing onset isolation (detection) algorithms, based on
temporal and spectral analysis, do not usually yield good
results when the beat of a music is not prominent. A primary
cause of this is the masking off of important BCO components.
Therefore, exploring generalized mechanisms for BCO detec-
tion in music, is important in theory, as well as in practice, and
therefore deserve investigation. Blending the existing temporal

and spectral analysis methods with statistical estimation tech-
niques yields more promising results, however, at the expense
of significant computational complexity. Integrating temporal
and spectral data of music with machine learning techniques
(e.g., neural networks) is apparently the best among others.
Such algorithms always rely on a substantial training phase in
advance, in order to yield promising results.

In this paper, we propose a method which relies on the S-
transform [1] for BCO detection. Unlike the existing methods
based on statistical estimation techniques, our method does
not rely on any a priori information of the underlying mu-
sic. Moreover, unlike the state-of-the art machine learning
algorithms, the proposed method does not require a training
dataset. The proposed algorithm can be considered as a grace-
ful trade-off between the performance and the computational
complexity and resources required.

The choice of the S-transform, among other time-frequency
representations (TFR), is motivated by the following:

1) The beat causing onsets are usually created by instru-
ments with relatively lower frequencies [2],

2) S-transform provides a good concentration at lower
frequencies [1].

3) S-Transform uses a frequency-dependent window dila-
tion, which results a frequency-dependent resolution [1].

The first two points enable one to extract the power of
rhythm instruments effectively. The last point plays a key role
in the sense that, unlike the STFT, S-transform is not required
to know the window size a priori. This facilitates, irrespective
of the underlying frequencies of the rhythm instruments, a
general implementation of proposed algorithms.

The rest of the paper is organized as follows. In Section II,
we give a literature overview. Section III discusses our pro-
posed algorithms for BCO detection. In Section VII, numerical
results are presented. Section VIII concludes the paper.

II. LITERATURE

Several works have been investigated on BCO detection in
music [3]–[23]. These can be split into methods based on
temporal/spectral analysis, and more sophisticated methods
which blend temporal/spectral data together with statistical
estimation techniques and machine learning techniques. Tem-
poral and spectral analysis methods generate a time series,
usually called the onset envelope function (OEF), which con-
tains information of the locations of BCOs. The OEF is then
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used to compute the underlying bpm [5]. Methods based on
statistical estimation and machine learning techniques rely on
more resources, in addition to the pure temporal and spectral
data, for locating BCOs, e.g., a priori information of the
underlying music, training data sets [16, § 4].

Temporal analysis methods split the signal into frequency
bands, for which amplitude envelopes are calculated and
summed to obtain an OEF [3], [4]. Spectral analysis meth-
ods take into account, the change in spectral energy. These
methods usually compute some form of a time-frequency
representation (TFR), where the STFT is most common [3],
[5], [10], [21], [22]. Different scaling methods such as the Mel
[5], [6] and the square root [7] are used to avoid low amplitude
components from being masked off. Either the summation [5],
[7], the median [6], or the mean [8] is computed of the first
order difference for each time bin to obtain an OEF.

A common limitation of the spectral analysis methods men-
tioned above is the poor detection of BCOs if the rhythm is less
pronounced. This is due to masking off of BCO components
of interest, or because spectral changes constituting to BCOs
have not been identified accurately. This is the case in most
classical, opera, soft pop and instrumental music [23]. In
addition, the designs can be very sensitive to the algorithm
parameters, e.g., window length [24].

The authors of [25] presents a comparison between several
onset detection methods which were submitted to the ISMIR
2006 competition [26]. The methods discussed include the
works presented by [4], [8], [20], [21] and several others.
The authors show that the method proposed by [20], which
maneuvers temporal/spectral data, together with statistical
estimation techniques, outperforms other methods by a con-
siderable margin.

Methods such as [16]–[19] uses a machine learning based
approach where there is no computation of an OEF. Based
on recent results of ISMIR [26], the research conducted
in [17]–[19] appears to be the best among others. However,
for machine learning algorithms, usually the existence of a
reasonable training data set is necessary to achieve better
accuracies.

III. PROPOSED METHOD, AN OVERVIEW

The proposed method is based on the discrete S-
transform [1, § III]. Moreover, the overall method is divided
into two sections;

1) Onset envelopes by band spitting.
2) Onset envelope isolation.
Recall that the existing methods rely on a single STFT-TFR

followed by an associated onset envelope for beat detection.
Intuitively, to get the benefits of frequency dependent reso-
lution of S-transform, it is suggestive to split the TFR into
several bands and to process different subbands separately [3],
[4], [20]. Such a splitting and a processing can avoid or at least
minimize the masking off and suppression of desired BCO
information from undesired spectral information. Thus, we
first consider a band splitting followed by an onset envelope
computation for each band (Figure 1). Note that, of the
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Fig. 1. Black diagrams of Proposed Method.

several onset envelopes present, the beat information may be
encoded in some, depending on the rhythm instrument used.
The challenge is then to pick the ‘best’ one that encodes the
BCOs of the underlying music. This is the second stage of our
proposed method, in particular the onset envelope isolation,
see Figure 1.

In the sequel, we discuss in more detail, the computation of
onset envelopes by band splitting [cf. § IV] and onset envelope
isolation [cf. § V].

IV. ONSET ENVELOPES BY BAND SPITTING

Let us first outline the proposed algorithm for onset en-
velope computation. We assume that the musical excerpt is
provided in mono format.

Algorithm 1

Input:
• Mono audio file, {x[n]}N−1

n=0 .
• Downsamling factor D, a positive even integer.
• Subband size, K such that b(N − 1)/Dc = 2QK−1 for

some positive integer Q.
Steps:

1) Downsamling:

y[n] = x[nD], n = 0, . . . ,M − 1,

where M = 1 + b(N − 1)/Dc.
2) Compute M -Discrete Fourier Transform {Y [k]}M−1

k=0 of
{y[n]}M−1

n=0 , where

Y [k] =
1

M

M−1∑
n=0

y[n] exp

(
−j2πnk

M

)
.

3) Compute Discrete S-Transform matrix F ∈ C(M/2)×M ,
whose (p, n)-th element is given by:



F [p, n] =



M−1∑
m=0

Y [m+ n] exp

(
j2πmp

N
− 2π2m2

n2

)
,

if n 6= 0

1

M

M−1∑
m=0

y[m], otherwise,

where n = 0, . . . ,M−1 and p = 0, . . . ,M/2−1. Define
S ∈ R(M/2)×M

+ as follows:

S(p, n) = |F (p, n)|, ∀p, n.

4) Split S by rows,

S = [ST
1 ST

2 · · · ST
Q]T,

with Si ∈ RK×M representing i-th block of S.
5) For each block Si, compute the mean (over rows) ri ∈

RM , i.e.,
ri = K−1ST

i 1,

where 1 ∈ RK is a K-vecor with all ones.
Output:
• Onset envelopes: return ri ∈ RM associated with sub-

band i, i = 1, . . . , Q.

Algorithm starts with a sampled musical excerpt denoted
by the sequence {x[n]}N−1

n=0 . Note that, the smaller N or
the duration T of the musical excerpt is, the lesser the
computational burden of the algorithm. Therefore, the duration
T can be chosen intelligently for efficient implementation of
the algorithm. Note that, the tempo of a music can usually
range from 60 bpm to 240 bpm [27]. Therefore, T can be on
the order of few seconds to extract useful beat information.
For example, even in the worst-case, i.e., when the musical
excerpt is of 60 bpm, a T = 4 second musical excerpt can be
used to capture 4 beats for further processing.

The downsampling factor D also plays a key role for
efficient implementation of the algorithm [cf. step (1)]. In
other words, the larger D is, the smaller M , and therefore,
the lesser computational burden of the algorithm [cf. step (2),
(3)]. A better choice for D can be argued by considering the
frequencies of rhythm instruments. Note that the frequencies of
rhythm instruments’ typically range from 32Hz to 512Hz [28].
Thus, sampling is to be done at a rate no smaller than 1024Hz
to avoid aliasing. Therefore, for a musical excerpt sampled at
a rate fs = 44100Hz [28], D = 40 corresponds to a sampling
frequency 1102.5Hz (≥ 1024Hz) and M = 4410 samples in
a T = 4 s period.

The idea of band splitting is essentially to extract the
potentials of S-transform in a frequency dependent resolution.
Thus, the choice of K is to be such that it is large enough
to hold a sufficient spectral energy concentration to emphasize
BCO s (if any). On the other hand, K should be small enough
to minimize the masking off of important BCO information (if
any) from spectral contents within the subband itself. Numer-
ical experiences suggest that a K on the order of 200 for a

ST
Q
...

ST
2

ST
1f = 0 Hz

551.25 Hz

p = 0

M/2

t = 0 T
n = 0 M

Fig. 2. Splitting of discrete S-transform matrix S ∈ R(M/2)×M

T = 4 s period, or in other words, a subband width on the
order of 50Hz is a good choice. Note that the subbands are
indexed by 1, . . . , Q for simplicity.

A concise depiction of our considered TFR, in particular, the
absolute discrete S-transform matrix S ∈ R(M/2)×M is shown
in Figure 2, together with the considered splitting. Note that
the TFR is plotted only for the range 0Hz ≤ f ≤ 551.25Hz
and 0 s ≤ t ≤ T s, because the upper frequency band
551.25Hz < f ≤ 1102.5Hz is just a repetition of S.

After having determined S and its splitting [cf. step (3),
(4)], step (5) computes the onset envelopes of each subband.
The output of the algorithm is the onset envelopes for each
subband, which is used by the onset envelope isolation stage.

V. ONSET ENVELOP ISOLATION

Given onset envelopes ri ∈ RM , i = 1, . . . , Q, the task
of the isolation stage is to choose one envelope that can
potentially encode the BCO information. To this end, the key
idea is to associate each ri, with a real number bi, so that,
the bigger bi is, the higher the likeliness of ri carrying BCO
information. Let us first outline the algorithm.

Algorithm 2

Input:
• Onset envelopes: ri ∈ RM , i = 1, . . . , Q.
• Local maxima (peak) separation np.
• Threshold steps H .
• Isolation accuracy level ε > 0.

Steps:
For each i ∈ {1, . . . , Q},
1) Normalization: compute r̃i as r̃i = ri/||ri||∞, where
|| · ||∞ is the `∞ norm.

2) Upper envelope computation: Determine the upper enve-
lope ui ∈ RM by using cubic spline interpolation over
local maxima of r̃i separated by at least np samples [29,
§ IV].

3) Centering: Compute r̂i as

r̂i = [r̃i − (1Tui/M)1]+,

where 1 ∈ RM is a M -vector with all ones and [x]+, is
the projection of x onto RM

+
1.

1That is the vector obtained by taking the nonnegative part of each
component of x and replacing each negative component with 0.



4) Thresholding and clustering: Divide equally, the
range Hi = [0,max(r̂i)] into H segments indexed
by {1, . . . ,H}.

For each segment j ∈ {1, . . . ,H}
a) Let threshold h = lj , the lower level of segment j.
b) Let I = {k | (r̂i)k ≥ h}, the set of indexes whose

associated components are larger than or equal to
the threshold h.

c) Determine the set partition {Im}Mi
m=1 of I such

that, Im ∩Im̄ = ∅ ∀m, m̄ and the elements of any
set are consecative.

d) Let {Īm}Mi
m=1 be the ordered sequence, where Im

is of mean of the elements of Im.
e) Define cij ∈ RMi−1 as follows:

cij = [I12, I23, . . . , I(Mi−2)(Mi−1), I(Mi−1)(Mi)]
T,

where Imn = In − Im and let vij =
(1Tcij)/||cij ||2.

5) Define bi ∈ R as follows:

bi = max
j∈{1,...,H}

vij .

Output:
• Onset envelope isolation:

I? = {i | |1− bi| ≤ ε, i ∈ {1, . . . , Q}}.

• If I? = ∅, return an exception Isolation Failure,
Otherwise return ri? , where the partition index i? ∈ I?.

The first step is a preconditioning step, where ri is nor-
malized to yield r̃i. For an illustration, see Figure 3-(a). It is
reasonable to assume that most of the relatively lower level
amplitudes of r̃i do not carry BCO information. Therefore, we
consider only the amplitudes of r̃i above some level. More
specifically, the level is chosen to be the mean [Figure 3-(b),
dotted curve] of the upper envelope ui [Figure 3-(b), solid
curve] determined at step (2). Step (3) removes the mean
aforementioned from r̃i to yield r̂i, cf. Figure 3-(c).

Note that the upper envelope ui in step (2), computed by
using cubic spline interpolation corresponds to some local
maxima 2 of r̃i whose separation is at least np ∈ Z samples.
For example, Figure 3-(b) shows ui of r̃i in Figure 3-(a)
for np = 1.

Step (1), (2), as well as (3) of the algorithm correspond
to preconditioning of the input ri. In contrast, step (4) is the
key for envelope isolation, which capitalizes on a clustering of
components of r̂i by using a thresholding mechanism. To see
this, first suppose the range of frequencies of the underlying
rhythm instrument overlaps with subband i ∈ {1, . . . , Q}.
Thus, there is a high potential that r̂i contains nonzero
components, which correspond to the BCOs. In addition, their
neighboring components can also be nonzeros due to the
spectral leakage caused by windowing. As a result, r̂i can

2We say k ∈ Z is a local maximum of x ∈ RM whenever (x)k−1 <
(x)k < (x)k+1, where (x)k represents the k-th component of x.

resemble a sequence as shown in Figure 3-(c), where there
are clusters of nonzero components (nonzero clusters) that are
separated by clusters of zero components (zero clusters). For
example, r̂i in Figure 3-(c) has 3 nonzero clusters. Because of
the periodicity of BCOs, the ‘distance’ between consecutive
pairs of nonzero clusters should be the same. However, for
any subband ī 6= i, the characteristics of the nonzero clusters
mentioned above, do not apply. This is indeed the key to
isolate subband i from others.
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Fig. 3. Signatures of split frequency bands

Steps (4)-a to (4)-e, correspond to clustering and the
distance computation between consecutive pairs of nonzero
clusters of r̂i. First, a threshold h is given, cf. step (4)-a and
Figure 3-(c). Then components of r̂i which are greater than
or equal to h is isolated into I, cf. step (4)-b. For example,
Figure 3-(c) shows that I = {8, 9, 10, 11, 19, 20, 28, 29, 30}.
Step (4)-c partitions I into subsets {Im}Mi

m=1, where each
subset corresponds to a nonzero cluster. For example, from
Figure 3-(d), we have Mi = 3 subsets (one for each nonzero
cluster), denoted I1, I2, and I3, where I1 = {8, 9, 10, 11},
I2 = {19, 20}, and I3 = {28, 29, 30}. Step (4)-d computes
the center of gravity of each subset, denoted {Im}Mi

m=1.
Particularized to our example, we have I1 = 9.5, I2 = 19.5,
and I3 = 29, cf. Figure 3-(d). The distance between con-
secutive pairs of nonzero clusters are simply given by the
(Mi − 1)-vector [I12, I23, . . . , I(Mi−2)(Mi−1), I(Mi−1)(Mi)]

T,
cf. step (4)-e. This is illustrated in Figure 3-(d), where the
distance between nonzero cluster 1 and 2 is I12 and that of
nonzero cluster 2 and 3 is I23. Finally, recall that the ‘distance’
between consecutive pairs of nonzero clusters should be the
same if ri contains BCOs. Mathematically, this corresponds
to a larger inner product of vectors cij and 1 ∈ RMi−1.
Therefore, step (4)-e computes such inner products denoted
{vij}Dj=1 and step (5) chooses the best.

At the end of step (5), associated with each subband,
we have a real number bi which characterizes the likeliness
of ri containing BCOs. Finally, for the specified isolation
accuracy ε, isolated subband indexes are returned.



Finally, a potential BPM value is computed as

BPM = d(1Tcij)c/length(cij) (1)

for some i ∈ I?, where dxc represents the rounding of x to
the nearest integer and length(y) represents the length of
vector y.

VI. COMPUTATIONAL COMPLEXITY

A vast majority of the existing methods use the STFT to
obtain a TFR. The asymptotic complexity for the STFT is
O(N logN), where N is the samples used in the underlying
FFT operations 3 [30].

The discrete S-transform, on the other hand, has an asymp-
totic complexity of O(N3) [31]. However, by exploiting struc-
tural properties, variants of discrete S-transforms, such as fast
discrete orthonormal Stockwell transform can be computed,
still in O(N logN) [31, Theorem 6.1].

VII. RESULTS

This section compares the performance of the proposed
method with the algorithms documented in [5] and [20], which
we consider as benchmarks A and B, respectively. Algorithm
in [5] can be considered to be superior among the methods
based on pure temporal/spectral analysis methods [26]. On
the other hand, the work by [20] is the best among methods
that rely on temporal/spectral data, together with statistical
estimation.

In our simulations, we consider two publicly available
datasets - the Ballroom dataset, and the Songs dataset, which
comprise of 698 and 465 song excerpts, respectively [25, § III-
B]. The tempo, genre, and style distribution of the datasets are
given by [25, § III].

Note that the sampling rate of each song excerpt is 44.1kHz.
A downsampling factor of D = 40, a subband size K = 1103,
and Q = 10 subbands are used as inputs to Algorithm 1. In
the case of Algorithm 2, we use np = 40, H = 100, and
ε = 10−3.

To exemplify the outputs of the proposed algorithms, we
fist consider an arbitrarily chosen classical music excerpt in
the Songs dataset.

Figure 4 shows the output ri, i = 1, . . . , 10 for the
considered music excerpt. Results show that r9 and r10 can
apparently isolate the BCOs.

Figure 5 shows vij versus j for each subband i, i =
1, . . . , Q. Results indicate that v10j yields values almost close
to 1 for some thresholds lj [cf. step (4)-a]. More specifi-
cally, Algorithm 2 returns I? = {10}, which corresponds to
b10 = 0.999895 [cf. step (5)]. The resulting BPM is 88 [cf. (1)],
which is identical to the ground-truth tempo.

To see the performance of the proposed algorithms on
average, we ran the algorithms separately for each data set.

As discussed in [25], we considered the same two metrics
to measure the accuracy of the system. In particular, we have

3e.g., the STFT window length.

Fig. 4. Split frequency bands ri for i = 1, . . . , 10
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Fig. 5. vij versus j for each subband i, i = 1, . . . , Q

• Accuracy 1: The percentage of tempo estimates within
4% of the ground-truth tempo.

• Accuracy 2: The percentage of tempo estimates within
4% of either the ground-truth tempo, or half, double, three
times, or one third of the ground-truth tempo.

Figure 6 depicts the results of percentage accuracies of the
proposed algorithm compared with the two benchmarks. Re-
sults show that the proposed method has a better performance
than [5]. Note that, this gain can be accomplished with the
same computational complexity, cf. § VI. Results further show
that the method proposed in [20] is superior to the proposed
method. This is not surprising, because, unlike the proposed
method, the algorithm in [20] relies on many computationally
intensive operations, e.g., filtering, comb filter operations,
discrete power spectral estimations, statistical estimation of
period and phase of underlying time series within a hidden
Markov model, among others. Therefore, results suggest that
the proposed method holds an advantage in that it is less
computationally intensive than the benchmark [20], yet with
a comparable performance.



Fig. 6. Comparison of Accuracy 1 and Accuracy 2 values for both datasets

VIII. CONCLUSIONS

In this paper, a beat causing onset (BCO) detection method
based on the S-transform has been proposed. The method
provided an advantage over the approaches that are purely
based on classic temporal/spectral analysis. The frequency
dependent window dilation used in S-transform has been the
key to yield such performances by exploiting better frequency
resolution at lower frequencies, where BCOs generally occur.
Compared to state-of-the-art algorithms, the proposed method
is less resource intensive. For example, our method does not
require any a priori information of the underlying music,
unlike the statistical estimation based approaches. Moreover,
the method does not require training datasets like in the
methods based on state-of-the-art machine learning techniques.
The result is a graceful trade-off between the performance and
the required computational burden and the resources.
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