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Abstract—In this paper, we present a sparse neural network
decoder (SNND) of polar codes based on belief propagation (BP)
and deep learning. At first, the conventional factor graph of polar
BP decoding is converted to the bipartite Tanner graph similar to
low-density parity-check (LDPC) codes. Then the Tanner graph
is unfolded and translated into the graphical representation of
deep neural network (DNN). The complex sum-product algorithm
(SPA) is modified to min-sum (MS) approximation with low
complexity. We dramatically reduce the number of weight by
using single weight to parameterize the networks. Optimized
by the training techniques of deep learning, proposed SNND
achieves comparative decoding performance of SPA and obtains
about 0.5 dB gain over MS decoding on (128, 64) and (256, 128)
codes. Moreover, 60% complexity reduction is achieved and the
decoding latency is significantly lower than the conventional polar
BP.

Index Terms—Polar codes, belief propagation, deep learning,
neural networks, sparse graphs.

I. INTRODUCTION

Deep neural network (DNN) and deep learning techniques
show promising performance in vast variety of tasks. In
quantum information, DNN is utilized to decode stabilizer
code [1] through encoding the probability distribution of
errors. The authors in [2] discuss the possibility of applying
DNN to channel equalization and decoding. Recurrent neural
network (RNN) is adopted to detect data sequences [3] in
communication systems.

On the other side, polar codes [4] are regarded as a promi-
nent breakthrough in channel coding because of their capacity-
achieving property. Now polar codes have been selected as
the error-correcting codes of the enhanced mobile broadband
(eMBB) control channels for the 5th generation (5G) wireless
communication systems. With the advanced deep learning
libraries and high performance hardware, many efforts have
been made to develop a neural network decoder (NND) that
can adaptively decode polar codes under different channel
conditions. The authors in [5] exploit naive dense neural
network to decode very short polar codes. It shows that NND
trained by all possible codewords leads to near maximum a
posteriori (MAP) performance. But the complexity is pro-
hibitive due to the exponential nature of binary codewords.
To alleviate the enormous complexity of long polar codes, [6]
partitions the polar encoding graph into small blocks and train
them individually. Although the degradation of partitioning is

negligible, the overall decoding complexity is still high. To
overcome these issues, in [7], trainable weights are assigned
to the edges of belief propagation (BP) factor graph and then
the iterative BP decoding is converted into DNN. The method
requires much lower complexity and less parameters compared
to [5, 6], which is feasible for long polar codes. However, the
decoding latency is long since the depth of NND is determined
by iteration number and code length.

In this work, we propose a sparse neural network decoder
(SNND) for polar codes with high parallelism, low latency
and low complexity. Inspired by [8], our SNND is constructed
from the bipartite Tanner graph of polar codes in [9]. The sum-
product algorithm (SPA) is replaced by min-sum (MS) approx-
imation to reduce complexity. After the network is trained by
deep learning techniques, SNND achieves the equal bit error
rate (BER) performance with SPA decoding. Moreover, the
decoding latency is about 1/log2N of the conventional polar
BP [10] due to the fully parallel structure.

The remainder of this paper is organized as below. Polar
codes and BP decoding are briefly introduced in Section II.
Section III describes how to construct the sparse trellis of
SNND. Then the corresponding decoding process and model
training methodology are given in detail. The experiment re-
sults in Section IV demonstrate the improvements of proposed
SNND over various code lengths. The latency and complexity
analysis is also given. Section V concludes this paper.

II. PRELIMINARIES

A. Polar Codes

Polar codes have proven to be capable of achieving the
capacity of symmetric channel [4]. The encoder of an (N,K)
polar code assigns K information bits and the other (N −K)
bits to the reliable and unreliable positions of the N -bit
codeword uN , respectively. Those bits in unreliable positions
are referred as frozen bits and usually fixed to zeros. Then, the
N -bit transmitted codeword xN can be obtained according to
xN = uNGN , where GN is the generator matrix and satisfies
GN = F⊗n. Note that F⊗n is the n-th Kronecker power of
F =

[
1 0
1 1

]
and n = log2N .

B. Belief Propagation Decoding

BP is one of the commonly used message passing algo-
rithms for polar decoding. The BP algorithm decodes polar
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codes through iteratively processing the log-likelihood ratios
(LLRs) over the factor graph of any (N,K) polar code. Unlike
the fully parallel Tanner graph of LDPC codes, the factor graph
of polar decoding is based BP decoder for Reed-Muller (RM)
codes. In this case, the factor graph consists of n = log2N
stages and (n+1)N nodes in total. Fig. 1 illustrates the factor
graph of (8, 4) polar code.

Fig. 1. Factor graph of (8,4) polar code with A = {4, 6, 7, 8} [9].

C. LDPC-like Polar Decoder

The polar BP decoder is generally constructed based the
generator matrix GN , which has a similar trellis structure with
its encoding factor graph. However, this causes inefficiencies
for polar decoding since the number of stages is determined
by the code length. Moreover, the multiple-stage architecture
of polar decoder results in longer latency compared with the
fully parallel scheduling of LDPC-like BP decoding.

(a) Dense (b) Sparse

Fig. 2. LDPC-like Tanner graphs [9] for (8,4) polar code with A =
{4, 6, 7, 8}.

To overcome the aforementioned problems, the parity-check
matrix H of polar codes can be constructed from the cor-
responding generator matrix GN in [11]. The conventional
polar BP factor graph is then converted to the LDPC-like
bipartite graph (see Fig. 2(a)) consisting of variable nodes
(VNs) and check nodes (CNs). But the dense graph rep-
resentation involved with many circles has demonstrated to
show poor performance over additive white Gaussian noise
(AWGN) channel [9]. Pruning methods for polar factor graph
are consequently proposed in [9] to perform efficient polar
decoding with LDPC-like manner. The sparse graph after using
pruning techniques is shown as Fig. 2(b). For more details, we
refer the readers to [9, 11].

III. PROPOSED SPARSE NEURAL NETWORK DECODER

A. Trellis Construction of Sparse Neural Network Decoder

The trellis of proposed SNND is constructed based on the
sparse polar Tanner graph in [9]. More specifically, proposed
SNND is a deep feed-forward neural network similar to the
structure of [8]. The nodes of each hidden layer represent
corresponding edges in the Tanner graph.

H =


0 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0

 (1)

The trellis construction of (8,4) polar SNND is given as
an example. The conventional factor graph associated with
generator matrix G8 = F⊗3 is first converted into the LDPC-
like Tanner graph (see Fig. 2(a)) consisting of VNs and CNs
[11]. Then we use the pruning techniques of [9] to reduce
the number of edges, converting the dense graph into a sparse
Tanner graph (see Fig. 2(b)). The resulting parity-check matrix
H is shown in Eq. (1). Note that the sparse Tanner graph is
slightly different from LDPC codes since a portion of edges
from VNs to CNs are not removed [9] (black VN in Fig. 2(b)).

Next, the bipartite sparse Tanner graph is unfolded and
converted into the feed-forward neural network in Fig. 3.
Assume that we have an (N,K) polar code on sparse Tanner
graph with total E edges, Nv VNs, and T iterations in the
sparse Tanner graph. The associated SNND has 2T hidden
layers. For the input layer with Nv nodes, the initial LLRs
of received channel output are fed into the last N nodes. The
number of nodes in each hidden layer equals to the edges E
and each hidden node denotes the soft message propagated
over corresponding edge. The final Nv outputs are activated
by the sigmoid function.

B. Decoding Process

Let x = (x1, ..., xN ) be the transmitted codeword with
systematic encoding [12] and y = (y1, ..., yN ) be the received
channel output. The input size of SNND is slightly larger than
N since part of VNs are not removed. The initial LLR of the
v-th node in input layer is computed as the following equation:

Lv =

 0, 1 ≤ v ≤ Nv −N,
log

P (xj = 0|yj)
P (xj = 1|yj)

, Nv −N + 1 ≤ v ≤ Nv,
(2)

where we have j = v − (Nv −N).
The standard SPA can be used to construct polar codes over

Tanner graphs as [8, 13]. But the computational complexity of
SPA is prohibitive due to the hyperbolic trigonometric function
and multiplication. [14] demonstrates that NND constructed
by MS decoding can also achieve promising performance
compared with SPA. Therefore we use the simplified MS
decoding to define the two types of basic neurons in SNND see
Fig. 3. Each neuron represents the associated edge in Tanner



One BP Iteration One BP Iteration SigmoidInput One BP Iteration

Fig. 3. Sparse neural network decoder (SNND) for (8,4) polar code with 6 hidden layers.

graph. The odd layer i only contains neurons without any
parameters. The updating function is the MS approximation:

xi,e=(c,v) =
∏

e′=(v′,c),v′ 6=v

sign(xi−1,e′) ·min(|xi−1,e′ |), (3)

where e′ = (v′, c) denotes the set of VNs v′ connected to CNs
c.

The even hidden layer i only contains neurons that assign
weights to incoming messages as follows:

xi,e=(v,c) = Lv +
∑

e′=(c′,v),c′ 6=c

wi,e,e′xi−1,e′ . (4)

The output layer squashes the final weighted soft messages
to the range [0, 1] as follows:

ov = σ(Lv +
∑

e′=(c′,v)

w2L+1,v,e′x2L,e′), (5)

where σ(x) = (1 + e−x)−1 is the sigmoid function. Note
that the sigmoid function is only applied to the output layer
during training phase. For simplicity, the feed-forward SNND
is defined as SNND-FF.

C. Optimizing with Single Weight

The decoding complexity of SNND is significantly reduced
compared to the original SPA. However, the required number
of weights is still large. For the RNNs in [14], the weights of
edges are shared within each BP iteration. Besides, the RNN
structure is easier to optimize compared to the feed-forward
counterparts. There is still some redundancy for the RNN
structure. We further reduce the required number of weights
to just one as follows:

xi,e=(v,c) = Lv +
∑

e′=(c′,v),c′ 6=c

w′xi−1,e′ , (6)

where w′ denotes the unified weight for all edges from CNs
to VNs. w′ is also applied to the final output in Eq. (5).

The optimization is easier and the optimal parameter w∗ is
given by w that results in the minimum loss:

w∗ = argmin
w′

L(x,o). (7)

D. Training of Sparse Neural Network Decoder

The cross entropy function is adopted to express the evaluate
the loss between neural network output o and the transmitted
codeword x:

L(x,o) = − 1

N

Nv∑
i=N ′

xi log(oi) + (1− xi) log(1− oi), (8)

where oi, xi denote the i-th bit of SNND outputs and the i-th
bit of transmitted codeword, respectively. The last N bits are
calculated and N ′ = Nv −N + 1.

The parameter space of SNND is determined by the total
edges in corresponding sparse Tanner graph and the iteration
number. Hence, the optimization space grows larger when
the code length and the iteration increase. A good parameter
initialization can boost the convergence of training. [15] sug-
gests to initialize the parameters with a normal distribution.
But the standard normal distribution is unable to guarantee
a quick convergence. We initialize the parameters of feed-
forward SNND to a normal distribution with mean µ = 1
and a small variance σ in the experiment while the SNND
with single weight is initialized to one.

IV. EXPERIMENT

A. Setup

The SNND is implemented on deep learning library Py-
Torch. We use mini-batch stochastic gradient descent (SGD)
with Adam [16] algorithm to optimize the neural network. The
learning rate Lr is set to 0.001. AWGN channel and binary
phase-shift keying (BPSK) modulation with SNR range 1 to
4 are considered. As in [8], the training set consists of all
zero codeword and the mini-batch size is 120 (30 samples per



SNR). The parameters are initialized with normal distribution
N ∼ (µ = 1, σ = 0.1). Zero-value messages in the SNND
will make the CN-to-VN messages in Eq. (3) to be zero, which
hinders the message propagation. To avoid this issue, the result
of sign operation for a zero value is defined as 1.

B. Results

We train two types of SNND: SNND-FF and SNND with
single weight. Both of them are unfolded to 10 iterations,
corresponding to 20-layered neural networks. Each network
is trained for 600 epochs. Fig. 4 illustrates the trend of trained
unified weight w′ on (128, 64) and (256, 128) polar codes. The
trained optimal w∗ for (128, 64) code finally converges to 0.83
while the value of w∗ for (256, 128) code is closed to 0.82.
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Fig. 4. Evolution of trained weight w′ of SNND.

The BER performance is evaluated with four types of
decoding schemes: 1) SPA on sparse Tanner graph [9], 2) MS
algorithm on sparse Tanner graph, 3) Proposed SNND-FF, 4)
Proposed SNND with single weight. Fig. 5 illustrates the BER
results for two trained SNNDs on (128, 64) polar code. The
SNND-FF equivalent to 10 iterations achieves almost the same
performance with SPA and has an improvement of about 0.1
to 0.5 dB over MS decoding. The gap between SNND-FF and
SNND with single weight is negligible. Fig. 6 shows the BER
comparison on (256, 128) polar code. The SNNDs have about
0.15 dB gain over MS decoding and have less than 0.1 dB
performance degradation in high SNR region compared with
SPA.

We also compare the SNND with other decoding algorithms.
The scaled min-sum (SMS) and neural network decoder
(NND) in [7] are considered. The scaling factor of SMS equals
to 0.9375, which is suggested in [17]. The NND is trained
by unfolding to 10 iterations and tested with 50 iterations.
After increasing the iteration number, the SNND with single
weight w∗ can obtain better performance. Fig. 7 shows the
performance comparison for various decoding schemes with
50 iterations. The SNND with trained w∗ achieves comparative
performance with SPA and outperforms SMS and MS by about
0.1 dB and 0.4 dB, respectively. Due to pruning of some
connections, the SNND has 0.1 dB degradation compared with
polar NND in [7]. The similar results can also be observed on
(256, 128) polar code in Fig. 8.
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C. Complexity and Latency Analysis

The latency and complexity of proposed SNND are both
reduced compared to NND in [7] and the original polar
BP decoding with SMS [17]. The original polar BP [10]
will consecutively activate 2 log2 N stages during left-to-right
and right-to-left propagations, resulting a latency of 2 log2 N
time steps for each iteration. Besides, N multiplications, N
additions, and N comparisons are required for each stage.
Hence, the total complexity of one iteration is O(2N log2 N).

The complexity of SNND with single weight is determined
by corresponding H matrix. Each CN with dc incoming
messages requires 2dc comparisons to find the minimum and
2nd minimum value. 2 multiplications are needed to compute
the outgoing messages. Each VN with dv incoming messages
requires dv additions. Note that the sign operation of CNs is
omitted since its complexity is very low. SNND implements a
LDPC-like flooding pattern with high parallelism. The latency
for each iteration equals to 2, which is independent with code
length. Hence, the latency reduction is log2 N compared with
the NND [7] and original BP. Fig. 9 gives the number of three
types of operations (addition, multiplication and comparison)
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for proposed SNND with single weight and NND in [7]. The
SNND can reduce about 60% operations on the two mentioned
code lengths.

V. CONCLUSION

In this work, we propose a fully parallel neural network
decoder for polar codes. The SNND is constructed from the
sparse Tanner graph of polar codes [9]. Then the weights of
SNND are dramatically reduced to just one by using single pa-
rameter. Deep learning techniques are utilized to optimize the
networks. Compared with conventional BP, the results show
that SNND achieves competitive BER performance. Moreover,
the complexity and latency are much lower according to the
analysis. Our future work will focus on further improvements
of SNND using other decoding methods, such as [14] or [13].
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