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ABSTRACT
The brain’s spontaneous fluctuations measured by functional
magnetic resonance imaging during rest cluster into recurrent
activity patterns known as resting-state networks (RSNs).
The spatial organization of RSNs in health and disease has
been immensely investigated by conventional correlational
analyses of fMRI time series. Recent findings of time-
resolved analyses have provided evidence of reoccurring
activation patterns that are accessible at instantaneous time
points enabling the dynamic characterization of RSNs. We
have proposed a method to recover spatially and tempo-
rally overlapping RSNs, which we named innovation-driven
co-activation patterns (iCAPs), to study the dynamic en-
gagement of RSNs unconstrained by the slow hemodynamic
response. The iCAPs are extracted by temporal clustering
of sparse innovation signals recovered from Total Activa-
tion (TA) framework, which is cast as a variational problem
with sparsity-promoting spatial and temporal priors for fMRI
data deconvolution. The temporal prior uses the inverse of
the hemodynamic response function as a general differential
operator and exploits sparsity of the innovation signals. In
this work, we perform a quantitative analysis to assess the
stability of iCAPs recovered from a group of patients with
mood disorders and healthy volunteers.

Index Terms— resting-state fMRI, deconvolution, mood
disorders, total activation, innovation-driven co-activation
patterns

1. INTRODUCTION

The blood-oxygen-level-dependent (BOLD) functional mag-
netic resonance imaging (fMRI) enables to measure the brain
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activity non-invasively by using the (de)oxygen concentration
in the brain as an endogenous contrast agent [1]. As a result
of neurovascular coupling, which accounts for the changes
in blood volume, blood flow, and oxygen consumption in the
vessels, the BOLD signal can be used to infer neuronal ac-
tivity. A temporal model for neurovascular coupling, which
relates neuronal activity to measured BOLD signal, was pro-
posed by Buxton et al. through a non-linear differential sys-
tem [2], whose simplified form, hemodynamic response func-
tion (HRF), allows for linear, time-invariant analysis [3–5].

During task fMRI, the conventional analyses rely on the
timing information of the experimental paradigm, which is
known a priori to the experiment. However, during resting-
state fMRI, building a temporal fMRI model is challenging
since there is no explicit task. Several static and dynamic
methods have been proposed to extract information from the
rs-fMRI data [6, 7]. The recent findings of dynamic fMRI
analyses suggested recurring activation patterns; i.e., resting-
state networks (RSNs), could be accessible at instantaneous
time points in fMRI [8, 9]. We have proposed Total Activa-
tion (TA) framework based on a generative temporal fMRI
model that represents activity-related signals as convolution
of block-like activity-inducing signals and hemodynamic re-
sponse function. TA is cast as an optimization problem with
fMRI-tailored temporal and spatial regularization terms to de-
noise the fMRI signal and recover the underlying activity-
inducing signals even in the absence of a task [10]. The
deconvolved signal; i.e., block-like activity-inducing signals
whose derivatives are sparse innovation signals, mimic neu-
ronal activity. Furthermore, temporal clustering of the sparse
innovation signals led to spatially and temporally overlap-
ping resting-state networks, innovation-driven co-activation
patterns (iCAPs) [11]. These activation patterns constitute the
building blocks of rs-fMRI, where the activation of pattern at
each time instance is represented as specific combination of
iCAPs.

In this work, we evaluate the stability and inter-subject
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spatial variability of iCAPs in a group of participants with
mood disorders and healthy individuals.

2. METHODS

2.1. fMRI signal model

The forward model for the measured BOLD signal, x(i, t), of
ith voxel can be expressed as convolution of system response;
i.e., hemodynamic response function (HRF), and a block-like
signal representing the neuronal activity

y(i, t) = x(i, t) + ε(i, t) = u(i, t) ∗ h(t) + ε(i, t), (1)

where h(t) is the HRF, ε ∼ N (0, σ2
i ) is Gaussian noise,

u(i, t) =
∑

k ck(i)b(t/ak − tk), is the block-like activity-
inducing signal with weights c and step function b(t).

2.2. Total activation

Total activation (TA) is cast as a spatiotemporal regulariza-
tion problem to recover the underlying block-like activity-
inducing signals by promoting the sparsity of their temporal
derivatives; i.e, innovation signals, while ensuring spatially
coherent activation. The general form of TA can be formu-
lated with temporal and spatial regularization terms specifi-
cally tailored for fMRI signal model as

x̃ = argmin
x

1

2
‖y − x‖2F +RT (x) +RS(x). (2)

The temporal regularization term, RT , uses a generalized to-
tal variation framework [12] and can be expressed as

RT (x) =

V∑

i=1

λ1(i) ||ΔL {x(i, ·)}||1 , (3)

where ΔL = ΔΔHRF is the generalized derivative opera-
tor representing the inverse of HRF obtained through Balloon
model, ΔHRF , combined with a first-order derivative opera-
tor Δ, and V is the number of voxels.

A possible spatial regularization term exploits a prede-
fined brain parcellation with �(2,1)-norm

RS(x) =
N∑

t=1

λ2(t) ||ΔLap {x(·, t)}||(2,1) . (4)

where ΔLap is the Laplacian operator, N is the number of
time points [10, 13].

The regularization formulation in equation (2) induces
sparsity of the innovation signals; i.e., derivative of activtiy-
inducing signals Δ {u} in the temporal domain, and pro-
motes coherent activation within the regions of a predefined
structural atlas through �(2,1)-norm. Generalized forward-
backward splitting algorithm can be used to solve the regu-
larization problem in temporal and space domains [14].
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Fig. 1: The spatial stability of iCAPs. We performed 10 folds
k-means clustering and computed the average similarity using
cosine distance metric and standard deviation between each
matching pair of cluster centroids; i.e., there are in total 45
pairs for 10 folds.

2.3. Innovation-driven co-activation patterns

The innovations represent brief moments of transient acti-
vations and carries the same information as the block-like
activity-inducing signals. In order to recover coherent acti-
vation patterns that share the same innovation signals across
subjects, the innovation signals were temporally concatenated
and fed into temporal k-means clustering [11].

2.4. Spatial variability of iCAPs

First, we ran the k-means algorithm (k=20) using cosine dis-
tance as the similarity measure for 10 folds. We used 50 ran-
dom k-means initializations where the minimum cost solu-
tion was picked as the most stable solution. We matched the
group centroids between 10 solutions using Hungarian algo-
rithm, and evaluated the similarity across folds. Then, instead
of using cluster centroids, we evaluated the inter-subject sim-
ilarity of iCAPs. We picked the best k-means solution and
computed the subject-specific iCAPs, and measured the co-
sine similarity between each subject iCAP and group iCAP.
Further, we drove a summary score per iCAP. We thresholded
and created a binary mask for each subject-specific iCAP (z-
score≥1), and calculated the average percent overlap within
the group iCAP divided by the average percent overlap out-
side of the group iCAP. This measure is expected to be higher
(>> 1) when inter-subject spatial variability of that iCAP is
low.
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Fig. 2: The inter-subject variability. Using the best k-means
solution performed on the whole dataset, we computed the
cosine distance between subject-specific iCAPs and group
iCAP. A subcortical network (iCAP 12, amygdala network)
provided lowest score, however, there were no significant dif-
ferences between the groups.

3. RESULTS

3.1. Data Acquisition and Preprocessing

The study was conducted at the Geneva University Hospi-
tal. All participants gave informed written consent in ac-
cordance with procedures approved by the Ethics Committee
of the Geneva University Hospital. The MRI data was ac-
quired with Siemens 3T Trio scanner using 32 channel head
coil. The resting-state fMRI data were collected using 2D
gradient-echo echo-planar (EPI) sequence with the following
protocol parameters: 36 transverse slices covering the whole
brain, voxel size = 3.2×3.2×3.2 mm3, acquisition matrix =
64×64, FOV = 205 mm, TR/TE/FA = 2100 ms/30 ms/90o,
250 volumes). The total acquisition took around 8.5 mins.
The MRI data were acquired from 31 mood disorder patients
(depression score [0-33]: 13.7 ± 9.5) and 32 healthy volun-
teers (depression score [0-33]: 1.9 ± 1.8) matched for age,
gender, laterality, and level of education.

The fMRI data were preprocessed using custom MAT-
LAB code combined with SPM8 (FIL, UCL, UK) and
IBASPM toolboxes [15]. The first 10 volumes were discarded
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Fig. 3: Percent spatial overlap of iCAPs. Each subject-
specific iCAP was binarized (z-score≥1), and percent spa-
tial overlap within and outside of the group iCAP was com-
puted. All iCAPs provided high overlap (scores >>1), and
there were no differences across the groups.

for magnetization stability, and time series were detrended
for baseline, first order and low frequency drifts (cut-off:
0.008Hz). The fMRI volumes were realigned to the mean
volume and spatially smoothed with Gaussian filter (full
width half maximum=3mm). We used motion estimation to
mark the time points with excessive amount of motion (max
motion ≥ 3 mm or frame-wise displacement ≥ 0.5 mm) [16].
Marked frames were not removed as TA requires uniform
temporal sampling, therefore, we performed cubic-spline in-
terpolation to high motion frames and their one neighborhood
frames. Five healthy subjects and four patients were excluded
from further analysis, therefore, our analysis consisted twenty
seven individuals in both groups.

The structural images were coregistered to the mean func-
tional volume and segmented (NewSegment, SPM8) for the
six different MNI templates. The anatomical automatic la-
belling atlas, composed of 90 regions without the cerebellum,
was mapped onto each subject’s coregistered anatomical im-
age and further downsampled to match the functional images.
The TA analysis was run on each subject’s functional space,
and the atlas was used to guide TA’s spatial regularization.
The resulting activity-inducing and innovation signals were
normalized to MNI space using the deformation matrix in the
segmentation step.

3.2. Stability of group-level iCAPs

We have opted for 20 clusters, however, one cluster were rep-
resented only in one subject, so left out from the analysis.
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Fig. 4: The spatial localization of the dominant iCAPs. DMN and visual networks were the most dominant iCAPs with
maximum overlap across subjects within group the iCAP mask. The black circles show the outline of group iCAPs.

Fig. 1 depicts the stability of the clusters across 10 k-means
(for 10 folds we have

(
10
2

)
= 45 metrics for each cluster).

The cluster similarity measurements provide an insight on the
spatial reproducibility. Although one cluster (iCAP 13, visual
network) showed relatively low scores compared to others,
both patients and controls showed similar stability measure-
ments.

3.3. Inter-subject variability

Fig. 2 shows the average similarity between each subject’s
iCAP and the group iCAP. Again, there were no group differ-
ences in the inter-subject variability. One subcortical network
(iCAP12, amygdala network) showed lowest score compared
to others perhaps due to small amount of voxels spanned in
those networks or higher spatial variability in subcortical re-
gions.

We have further assessed the inter subject variability in
Fig. 4 using a summary score reflecting the average percent
overlap of voxels within the group iCAP and voxels outside
of the group iCAP. We have specifically found four dominant
networks of which almost all subjects contribute to the group
maps (Fig. 3, iCAPs 4–10, default-mode network (DMN), and
iCAPs 8–9, visual networks).

4. DISCUSSION

In this work, we have conducted a quantitative analysis of
the subject-specific spatial variability of iCAPs in mood dis-
order patients healthy controls. We have found reproducible
patterns in all iCAPs, of which subcortical networks showed
higher inter-subject variability. The visual networks and two
DMN showed very high spatial localization. We have not
found any differences between the groups in terms of spatial

consistency.
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