
ar
X

iv
:1

80
9.

09
43

6v
1

 [
cs

.I
T

]
 2

5
Se

p
20

18
1

Memory Management in Successive-Cancellation

based Decoders for Multi-Kernel Polar Codes
Valerio Bioglio, Carlo Condo, Ingmar Land

Mathematical and Algorithmic Sciences Lab

Huawei Technologies France SASU

Email: {valerio.bioglio,carlo.condo,ingmar.land}@huawei.com

Abstract—Multi-kernel polar codes have recently been pro-
posed to construct polar codes of lengths different from powers
of two. Decoder implementations for multi-kernel polar codes
need to account for this feature, that becomes critical in mem-
ory management. We propose an efficient, generalized mem-
ory management framework for implementation of successive-
cancellation decoding of multi-kernel polar codes. It can be used
on many types of hardware architectures and different flavors
of SC decoding algorithms. We illustrate the proposed solution
for small kernel sizes, and give complexity estimates for various
kernel combinations and code lengths.

Index Terms—Polar Codes, Successive Cancellation Decoding,

Decoder Architectures.

Topic Designation–A. Communication Systems, 1. Mod-

ulation and Coding.

I. INTRODUCTION

Polar codes [1] are a family of error correcting codes with

capacity-achieving property over various classes of channels,

providing excellent error rate performance for practical code

lengths [2]. The construction of polar codes is based on the

polarization effect of the Kronecker powers of the binary

2 × 2 kernel matrix T2 =

(

1 0
1 1

)

. A major drawback of

this construction is the restriction of achievable block lengths

to powers of 2. Puncturing and shortening techniques can

be used to adjust the code length, at the cost of a reduced

bit polarization [3]. To overcome this limitation, multi-kernel

polar codes have been introduced in [4]. By mixing binary

kernels of different sizes in the construction of the code, these

codes prove that many block lengths can be achieved while

keeping the polarization effect.

Many software and hardware implementations of polar code

decoders have been proposed in literature. While software

guarantees a higher degree of flexibility in terms of data

structures, fast software decoders have to rely on efficient

memory management [5], [6]. The importance of smart mem-

ory usage is even more evident in hardware implementations,

where memory accounts for the majority of area occupation

and power consumption, and heavily impacts decoder speed

[7]–[9]. The memory structure first proposed in [10] for purely

binary polar codes, and widely adopted in SC-based decoders

[11], relies on the observation that memory requirements

decrease as the decoding stage increases. We show how this

trend continues in multi-kernel polar codes, proposing an

efficient memory structure for SC-based polar decoders, and

G12 =









































1 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0
1 0 1 0 0 0 1 0 1 0 0 0
0 1 1 0 0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1 0 1 1









































Fig. 1: Transformation matrix G12 = T2 ⊗ T2 ⊗ T3.

providing functions for the evaluation of the overall memory

requirements. This structure supports the decoding of codes

constructed with any combination of kernel sizes, making

it an ideal framework for multi-kernel decoder hardware

implementations [12].

II. MULTI-KERNEL POLAR CODES

Multi-kernel polar codes generalize the construction of polar

codes by mixing binary kernels of different sizes. Similarly to

polar codes, an (N,K) multi-kernel polar code is completely

defined by a N ×N transformation matrix GN and a frozen

set F , with |F| = N−K . Transformation matrix has the form

GN = Tp1 ⊗ Tp2 · · · ⊗ Tps
, (1)

where Tpi
is a pi× pi binary matrix, i = 1, 2, . . . , s, denoting

a polarizing kernel of size pi, and N = p1 ·p2 · . . . ·ps. Binary

kernels of different sizes can be found in [13]. Transformation

matrix G12 = T2 ⊗ T2 ⊗ T3 is shown in Figure 1, where

T2 =

(

1 0
1 1

)

, T3 =





1 1 1
1 0 1
0 1 1



 (2)

and the recursive structure of the matrix is highlighted. The

frozen set F indicates the N−K bits to be frozen in the code

construction, and can generally be designed according to bit

reliabilities [4] or minimum distance [14]. Finally, the encoder

is defined by x = u ·GN , mapping the input vector u ∈ F2
N

to the codeword x ∈ F2
N , where ui = 0 for i ∈ F , and ui,

http://arxiv.org/abs/1809.09436v1

2

u0

u1

u2

u3

u4

u5

u6

u

T3

T3

T2

T2

T2

T2

T2

T2

T2

T2

x0

x1

x2

x3

x4

x5

x6

x

L2,0

L2,1

L2,2

L2,3

L2,4

L2,5

L2,6

L

L3,0

L3,1

L3,2

L3,3

L3,4

L3,5

L3,6

L

L1,0

L1,1

L1,2

L1,3

L1,4

L1,5

L1,6

L

u3,0

u3,1

u3,2

u3,3

u3,4

u3,5

u3,6

u

u2,0

u2,1

u2,2

u2,3

u2,4

u2,5

u2,6

u

u1,0

u1,1

u1,2

u1,3

u1,4

u1,5

u1,6

u
u7

u8

u9

u10

u11

T3

T3

T2

T2

T2

T2

T2

T2

x7

x8

x9

x10

x11

L2,7

L2,8

L2,9

L2,10

L2,11

L3,7

L3,8

L3,9

L3,10

L3,11

L1,7

L1,8

L1,9

L1,10

L1,11

u3,7

u3,8

u3,9

u3,10

u3,11

u2,7

u2,8

u2,9

u2,10

u2,11

u1,7

u1,8

u1,9

u1,10

u1,11

P1P2P3
Stage 1Stage 2Stage 3

Fig. 2: Tanner graph defined by G12 = T2 ⊗ T2 ⊗ T3.

i /∈ F , stores the information bits. We recall the set I = Fc

to be termed as information set.

The structure of multi-kernel polar codes can be better

understood through the Tanner graph of the code; this consists

of various pi × pi blocks Bpi
, corresponding to the different

Tpi
kernels used in the construction of the transformation

matrix, connecting input vector and codeword. Each of the

s stages composing the graph is formed by Ni = N/pi
kernel blocks Bpi

, performing the operations involving kernel

Tpi
. Permutations Pi between stages are described in [4]; an

example of Tanner graph for a G12 is given in Figure 2.

Multi-kernel polar codes can be decoded through successive

cancellation (SC) decoding on the Tanner graph of the code,

where log-likelihood ratios (LLRs) [15] are passed from the

right to the left, while partial sums (PSs) based on hard

decisions on the decoded bits are passed from the left to

the right. LLRs and PSs are calculated in the kernel blocks,

depicted as

Bp

u0, l0
u1, l1 ...

up−1, lp−1

x0, L0

x1, L1...
xp−1, Lp−1

Blocks in the same column belong to the same stage and can

perform decoding operations in parallel. Roughly speaking,

Li and li represent the LLRs of the partial sums ui and xi

respectively. However, PSs are calculated on the basis of the

previously decoded bit, hence they may not match with the

connected LLRs. We indicate with Li,(j−1)pi
, . . . , Li,jpi−1

and ui,(j−1)pi
, . . . , ui,jpi−1 the LLRs and PSs input of the

j-th block of stage i respectively, with j ≤ Ni = N/pi.
LLRs L1,0, . . . , L1,N−1 correspond to channel LLRs, while

us,0, . . . , us,N−1 correspond to the decoded bits. An example

of this labeling is given in Figure 2.

Given the binary input vector u = (u0, u1, . . . , up−1),
corresponding to the partial sums calculated from the decoded

bits, the output vector x = (x0, x1, . . . , xp−1) is calculated as

x = u · Tp. If we call T i
p the i-th column of the kernel matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22step

Fig. 3: Data flow graph of the SC decoder for the multi-kernel

polar code defined by G12 = T2 ⊗ T2 ⊗ T3. Circles represent

LLR updates, squares represent PS updates.

Tp, the update rule for the PSs can be written as

xi = u · T i
p. (3)

The vector x corresponds to the partial sums calculated by the

kernel Tp, that will be used as input for the LLRs calculations

of other blocks. This update rule is performed from left to

right, and can be used also for the encoding.

Output LLRs l0, . . . , lp−1 are calculated sequentially using

the input LLRs L0, . . . , Lp−1 coming from the previous stage

and the PSs corresponding to the previously decoded bit, i.e.,

li = fp
i (L0, . . . , Lp−1, u0, . . . , ui−1), (4)

with l0 = fp
0 (L0, . . . , Lp−1). This update is performed from

the right to the left, and corresponds to the successive can-

cellation principle. Rules for the derivation of LLR update

functions for arbitrary binary kernels can be found in [16].

III. MEMORY MANAGEMENT

Similarly to polar codes, it is possible to describe the SC

decoding process of a multi-kernel polar code using a data flow

graph, depicted in Figure 3 for the code generated by G12.

The data flow graph represents memory dependencies arising

during the decoding, where circles and squares represent

memory needed to store LLRs and PSs, respectively, and

black circles represent channel LLRs. In particular, circles

and squares identify the need for new memory allocation,

while horizontal lines determine the number of time steps for

which the values need to be stored. Thick lines represent LLR

updates, while dotted lines identify operations involving partial

sums, i.e. LLR updates when they merge with thick lines and

PSs updates when they connect squares. The study of the data

flow graph highlights the strong dependencies among data,

along with a repetitive structure in the LLR update functions,

and gives a precise order in the scheduling of the decoding

operations. In general, the hardest constraint for the LLR

update functions is given by the calculation of the necessary

PSs. The memory usage patterns observed in Figure 3 can be

3

found for code of any length, and can be exploited to develop

a memory management framework as follows.

A. Memory Structure

The memory structures for a generic SC decoder for the

multi-kernel polar code defined by G12 is presented in Fig-

ure 4, along with memory dependencies. We call Λ, Π and Υ
the data structures used to respectively store LLRs, PSs and

decoded bits. We define as Q the number of bits assigned to the

representation of each internal LLR, while a partial sum and a

decoded bit are, by definition, single-bit values. The proposed

memory structure relies on the observation made in in [10]

that memory requirements for polar codes decoding decrease

as the stage index increases; we show that this phenomenon

can be extended to multi-kernel polar codes.

The memory structure of multi-kernel polar codes decoder

depends on the order of the kernels defining the transformation

matrix GN = Tp1⊗. . .⊗Tps
, where s is the number of stages,

i.e., the number of factors in the Kronecker product. LLRs

can be stored in s+ 1 Q-bits vectors Λ0, . . . ,Λs of different

lengths, i.e. with a different number of elements. The length

of vector Λs is always 1, and stores the LLR of the currently

decoded bit. The length of vector Λi is given by the product

of the last s− i kernel sizes, i.e., Λi has pi+1 · . . . · ps entries.

PSs are stored in s binary matrices Π1, . . . ,Πs of different

width and depth, depending on the decoding stage. The width

of Πi is given by the size of kernel pi, while its depth is given

by the product of the last s − i kernel sizes, i.e., is given by

pi+1 · . . . · ps, similarly to LLR vectors. The first matrix Πs

is an exception, since it has width ps − 1. This is due to the

fact that the last column of Πs would be updated during the

PS update phase of the decoding of the last bit. Since the PS

update is executed right after the bit estimation, we skip this

last PS update and we do not need to store the last column of

Πs. Finally, the decoded bits are stored in the binary vector

Υ of length N .

B. Memory Update

Algorithm 1 SC Algorithm

1: Initialize Λ,Π,Υ
2: for i = 0 . . . N − 1 do

3: LLR update

4: ui calculation

5: PS update

6: end for

7: return u

Algorithm 1 depicts the logical flow of operations required

by SC decoding. In this Section, we follow its schedule and

first describe the update operations for the LLRs, then for the

decoded bits u, and finally for the PSs. The memory update

operations are performed by the kernel block. LLR vector Λ0

is initially filled with the N LLRs extracted from the received

symbols, while the rest of the memory is initialized to zero;

we recall that the LLRs have to be permuted according to P1

before the insertion in Λ0. According to the SC algorithm, bits

Λ0(0)

Λ0(1)

Λ0(2)

Λ0(3)

Λ0(4)

Λ0(5)

Λ0(6)

Λ0(7)

Λ1(0)

Λ1(1)

Λ1(2)

Λ1(3)

Λ1(4)

Λ1(5)

Λ2(0)

Λ2(1)

Λ2(2)

Π1(0,0)Π1

Λ2

Λ3

Λ1

Λ3(0)

LLRs

PSs

Λ0(8)

Λ0(9)

Λ0(10)

Λ0(11)

Π1(1,0)

Π1(2,0)

Π1(3,0)

Π1(4,0)

Π1(5,0)

Π2(0,0)Π2(0,1)

Π2(1,0)Π2(1,1)

Π2(2,0)Π2(2,1)Π3(0,0)Π3(0,1)

Π3

Π2

Λ0

Fig. 4: Memory structure for G12 = T2⊗T2⊗T3. White dots

represent LLR updates, black dots represent PS updates. Red

lines represent B2 blocks, blue lines represent B3 blocks.

are decoded sequentially, hence some of the memory structures

are updated at every bit estimation; this update process is

illustrated for the decoding of generic input bit ui.

LLR update:

The update function (4) to be used in this phase depends on the

index i of the decoded bit ui, and it is selected using the mixed

radix representation of i based on the kernels composing the

transformation matrix of the code.

In a base p radix system, positive integers are represented

as a finite sequence of digits smaller than p. A mixed radix

system is a non-standard positional numeral system, generaliz-

ing classic radix system, in which the numerical base depends

on the digit position. A well known example of a mixed radix

numeral system is the one used to measure time in hours,

minutes and seconds. We use the sequence 〈p1, . . . ps〉 of the

sizes of the kernels constructing the transformation matrix

as the base of a finite mixed radix system representing the

index i of the decoded bit ui. According to this representation,

any integer i < N can be expressed as a vector of s digits

i = b
(i)
1 . . . b

(i)
s , with 0 ≤ b

(i)
j < pj and

i = b(i)s +
s−1
∑

j=1

b
(i)
j · (pj+1 · . . . · ps). (5)

The mixed radix representation of the decoded bits indices for

G12 = T2 ⊗ T2 ⊗ T3 is given by:

i 0 1 2 3 4 5 6 7 8 9 10 11

b
(i)
1 0 0 0 0 0 0 1 1 1 1 1 1

b
(i)
2 0 0 0 1 1 1 0 0 0 1 1 1

b
(i)
3 0 1 2 0 1 2 0 1 2 0 1 2

The update of LLR vectors proceeds from right to left in

Figure 4. Starting from Λ1, all the vectors are updated using

the previous LLR vector and the present PS matrix as input; in

general, vector Λj is updated using vector Λj−1 and the partial

4

sums stored in Πj . The LLR update rule to be used in the

update of Λj is selected using the mixed radix representation

of i, and more precisely the LLR update rule f
pj

b
(i)
j

is used.

This method is an extension of the method proposed in [10]

for the scheduling of f and g functions in the decoding of

polar codes. Each entry Λj(k) of the LLR vector is calculated

as

Λj(k) = f
pj

b
(i)
j

(Λj−1(k · pj), . . . ,Λj−1((k + 1) · pj − 1),

Πj(k, 0), . . . ,Πj(k, b
(i)
j)).

(6)

The update operations of a vector Λj can be run in parallel to

reduce latency using up to pj+1 · . . . · ps kernel blocks.

Using the proposed LLR update algorithm, s LLR vectors,

i.e. from Λ1 to Λs, are updated for every decoded bit ui.

However, the data flow presented in Figure 3 shows that the

number of vectors to be updated actually depends on the

index i of the decoded bit. A closer look to the mixed radix

representation table suggests the reason of this scheduling:

in fact, the mixed radix representations of two consecutive

numbers differ only on the right of the position of the

rightmost nonzero element of the second number. In practice,

given i− 1 = b
(i−1)
1 . . . b

(i−1)
s , if it exists an index z such that

b
(i)
z 6= 0 and b

(i)
j = 0 for all j > z, we have that b

(i)
j = b

(i−1)
j

for all j < z. As a consequence, to decode the bit ui it is not

necessary to update the vectors Λj with indices j < z, and the

update can be run starting from Λz . Of course, for the case

i = 0 all the vectors have to be updated. This acceleration

technique is a generalization of the one proposed in [15] for

polar codes, and halves the number of vectors updates.

This property allows a further simplification of the LLR

update algorithm. We have seen that the LLR update is run

starting from Λz with z such that b
(i)
z 6= 0 and b

(i)
j = 0 for

all j > z. This means that the vector Λz is updated using

function f
pj

b
(i)
z

, while all the other vectors are updated using a

function of the form f
pj

0 . This means that it is only necessary

to find the subscript of the first LLR update function, while

the other ones all have subscript 0.

ui estimation:

If i ∈ F , i.e. it belongs to the frozen set, its value is known

to be zero, hence Υ(i) = 0. Otherwise, i.e. if i /∈ F ,

the value decoded bit is decided by hard decision on its

LLR. After the LLR update phase, the LLR of the bit ui

will be copied in Λs as explained in next paragraph. In

our implementation, negative LLRs represent the bit 1, while

positive LLRs represent the bit 0. Through hard decision, we

set Υ(i) = sgn(Λs(0))+1
2 . To sum up, we have that

Υ(i) =

{

0 if i ∈ F
sgn(Λs(0))+1

2 if i /∈ F
(7)

PS update:

PS matrices are updated in decreasing order starting from

Πs. Inside each matrix, the entries update is performed per

columns, in increasing order starting from the first column.

When the last column of a matrix is filled, a column of the

next matrix is updated. Similarly to LLRs, the update function

depends on the mixed radix representation of index i; in

Algorithm 2 LLR update

1: n = 1
2: if i = 0 then

3: break

4: else

5: for z = s . . . 1 do

6: if i mod pz 6= 0 then

7: break

8: end if

9: i = i
pz

10: n = n · pz
11: end for

12: end if

13: b = i mod pz
14: for k = 0 . . . n− 1 do

15: Λz(k) = fpz

b (Λz−1(k · pz), . . . ,Λz−1((k + 1) · pz −
1),Πz(k, 0), . . . ,Πz(k, b))

16: end for

17: for j = z + 1 . . . z do

18: n = n · pj
19: for k = 0 . . . n− 1 do

20: Λj(k) = f
pj

0 (Λj−1(k ·pj), . . . ,Λj−1((k+1) ·pj−
1))

21: end for

22: end for

Algorithm 3 ui calculation

1: if i ∈ F then

2: Υ(i) = 0
3: else

4: Υ(i) = sgn(Λs(0))+1
2

5: end if

particular, the number of matrices to be updated is given by the

number of consecutive digits of the mixed radix representation

of i with the highest symbol admitted by the radix, counting

from the last digit.

Update always starts from the last PS matrix Πs, that is a

row vector of width ps. The value of the decoded bit ui is

copied in the column b
(i)
s of the matrix, i.e., Πs(0, b

(i)
s) =

Υ(i). When bs = ps − 1, the last column of the matrix

has been filled, and the column b
(i)
s−1 of the matrix Πs−1

is updated, otherwise the update process ends. In general, if

b
(i)
j = pj − 1 for all j > z and b

(i)
z < pz − 1, the matrices

Πs,Πs−1, . . . ,Πz are going to be updated. When the last

column of matrix Πj is filled, i.e. when b
(i)
j = pj−1, then the

column bj−1 of matrix Πj−1 has to be updated. In this case,

each row of Πj is used to update the column b
(i)
j−1 of Πj−1

as [Πj−1(k · pj , b
(i)
j−1), . . . ,Πj−1((k + 1) · pj − 1, b

(i)
j−1)] =

[Πj(k, 0), . . . ,Πj(k, pj − 1)] · Tpj
for k = 0, . . . , pj+1 · . . . ·

ps − 1. If we call T k
p the vector formed by the k-th column

of the kernel matrix Tp, the update rule for the PSs can be

rewritten as

Πj(k, b
(i)
j) = Πj

(⌊

k

pj−1

⌋

,−

)

· T c
pj

(8)

5

for k = 0, . . . , pj+1 · . . . · ps, where Πj(k,−) represents the

k-th row of Πj and c = (k mod pj+1) + 1. As an exception,

the PS update step is not executed for the last decoded bit

uN−1, since this phase would have been executed after the

decoding of the last bit and it would be pointless.

Algorithm 4 PS update

1: n = 1
2: if i = N − 1 then

3: return

4: end if

5: for j = s− 1 . . . 1 do

6: if i + 1 mod pj+1 6= 0 then

7: return

8: end if

9: i = i+1
pj+1

− 1
10: n = n · pj+1

11: b = i mod pj
12: for k = 0 . . . n− 1 do

13: c = (k mod pj+1) + 1

14: Πj(k, b) = Πj+1

(⌊

k
pj−1

⌋

,−
)

· T c
pj

15: end for

16: end for

IV. ANALYSIS AND CONCLUSIONS

The proposed memory structure allows to limit the memory

requirement of a multi-kernel polar decoder. In fact, a naı̈ve

memory management of the SC decoder for a multi-kernel

polar codes with transformation matrix GN = Tp1 ⊗ . . . ⊗
Tps

requires to store all the LLRs and the PSs depicted in

the Tanner graph of the code. As a consequence, MLLR =
N · (s + 1) LLRs and MPS = N · s PSs, with N = p1 ·
. . . ·ps, have to be stored, with space complexity O(sN). The

memory requirement is hence linearly dependent on both the

code length N and the number of kernels s.

In the proposed memory structure, every LLR vector Λi

with i ≤ 1 stores N
p1·...·pi

LLRs, while the first vector Λ0

stores the N LLRs derived from the received signals. In total,

for the proposed memory framework

MLLR
prop = N + N

p1
+ N

p1·p2
+ . . .+ 1 =

= (. . . ((p1 + 1) · p2 + 1) · . . .) · ps + 1
(9)

LLRs have to be stored. Similarly, every PS matrix Πi with

i > 1 stores N
p1·...·pi

· pi =
N

p1·...·pi−1
partial sums, while Π1

stores N
p1

· (ps − 1) PSs. Then, the total number of PSs is

MPS
prop = N

p1
· (ps − 1) + N

p1·p2
+ . . .+ ps =

= (. . . ((p1 · p2 + 1) · p3 + 1) · . . .) · ps.
(10)

By construction, we have that MPS
prop ≤ N ≤ MLLR

prop < 2N ,

hence the space complexity for both LLRs and PSs is reduced

to O(N). A comparison between the memory requirements for

the proposed memory structure and the naı̈ve one involving

only kernels of sizes 2 and 3 is presented here:

N 12 72 144 384 972

MLLR
prop 22 139 283 766 1822

MLLR 48 432 1008 3456 7776

MPS
prop 15 102 210 573 1335

MPS 36 360 864 3072 6804

The memory requirement reduction enabled by the proposed

memory structure is remarkable. This proves that multi-kernel

polar codes can be used as a valid alternative to punctured

polar codes in terms of memory complexity. Given the sim-

ilarities between polar codes and multi-kernel polar codes, it

is straightforward to apply the proposed memory structure to

list or simplified SC decoders. Finally, the proposed imple-

mentation can be easily transposed to hardware, reducing the

complexity of an ASIC or FPGA dedicated architecture.

REFERENCES

[1] E. Arikan, “Channel polarization: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–
3073, July 2009.

[2] G. Liva, L. Gaudio, T. Ninacs, and T. Jerkovits, “Code design for short
blocks: A survey,” in arXiv preprint, arXiv:1610.00873, Oct. 2016.

[3] V. Bioglio, F. Gabry, and I. Land, “Low-complexity puncturing and
shortening of polar codes,” in IEEE Wireless Communications and

Networking Conference (WCNC), San Francisco, CA, USA, March
2017.

[4] F. Gabry, V. Bioglio, I. Land, and J.-C. Belfiore, “Multi-kernel
construction of polar codes,” in IEEE International Conference on

Communications (ICC), Paris, France, May 2017.
[5] B. L. Gal, C. Leroux, and C. Jego, “Software polar decoder on an

embedded processor,” in IEEE Workshop on Signal Processing Systems

(SiPS), Belfast, UK, Oct 2014.
[6] Y. Shen, C. Zhang, J. Yang, S. Zhang, and X. You, “Low-latency

software successive cancellation list polar decoder using stage-located
copy,” in IEEE International Conference on Digital Signal Processing

(DSP), Beijing, China, Oct 2016.
[7] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for

successive cancellation decoding of polar codes,” in Acoustics, Speech

and Signal Processing (ICASSP), 2011 IEEE International Conference

on, Prague, Czech Republic, May 2011.
[8] S. A. Hashemi, C. Condo, F. Ercan, and W. J. Gross, “Memory-efficient

polar decoders,” IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 7, no. 4, pp. 604–615, Dec 2017.
[9] F. Ercan, C. Condo, S. A. Hashemi, and W. J. Gross, “On error-

correction performance and implementation of polar code list decoders
for 5G,” in Allerton Conference on Communication, Control, and

Computing, Monticello, IL, USA, Oct 2017.
[10] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel

successive-cancellation decoder for polar codes,” IEEE Transactions on

Signal Processing, vol. 61, no. 2, pp. 289–299, 2013.
[11] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg,

“Hardware architecture for list successive cancellation decoding of polar
codes,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 61, no. 8, pp. 609–613, 2014.

[12] G. Coppolino, C. Condo, G. Masera, and W. J. Gross, “A multi-kernel
multi-code polar decoder architecture,” IEEE Transactions on Circuits

and Systems I: Regular Papers, pp. 1–10, 2018.
[13] N. Presman, O. Shapira, S. Litsyn, T. Etzion, and A. Vardy, “Binary

polarization kernels from code decompositions,” IEEE Transactions on

Information Theory, vol. 61, no. 5, pp. 2227–2239, May 2015.
[14] V. Bioglio, F. Gabry, I. Land, and J.-C. Belfiore, “Minimum-distance

based construction of multi-kernel polar codes,” in IEEE Global

Communications Conference (GLOBECOM), Singapore, Dec. 2017.
[15] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-

based successive cancellation list decoding of polar codes,” in IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Florence, Italy, May 2014.
[16] V. Bioglio and I. Land, “On the marginalization of polarizing kernels,”

in International Symposium on Turbo Codes & Iterative Information,
Hong Kong, December 2018.

	I Introduction
	II Multi-Kernel Polar Codes
	III Memory Management
	III-A Memory Structure
	III-B Memory Update

	IV Analysis and Conclusions
	References

