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Abstract

Principal components analysis (PCA) has been proved 
to be a useful tool for many computer vision and signal 
processing problems. One drawback of traditional PCA is 
that they are based on least squares estimation techniques 
and hence fail to account for “outliers” which are com-
monly occurred in realistic training sets. To make PCA 
more robust to real-world problems such as image recon-
struction addressed in this paper, we develop a two-step 
algorithm that can eliminate the outliers on both frame 
level and pixel level through the LASSO and RPCA sepa-
rately. With LASSO optimization method, we may obtain 
sparse projected coefficients of the original image into 
the basis image space. According to the sparsity of these 
coefficients, sample outliers can be recognized automati-
cally. Then, with the use of robust M-estimation, the in-
fluence of intra-sample outliers may be overwhelmed to 
great extent. Additionally, due to orthogonality of the 
principal components, the soft-threshold estimation can 
be applied to the LASSO to alleviate the computational 
costs, hence make our robust PCA method more applica-
ble to large scale problems. An experiment on object im-
age reconstruction is used to illustrate the advantage of 
our proposed technique over standard PCA. 

1. Introduction 

Principal Component Analysis (PCA) [1], like several 
other linear learning models and techniques, replace a set 
of p measured variables by a small set of derived vari-

ables. It has been widely used for the representation of 
high dimensional data such as appearance, shape, motion, 
et al. [2][3] in computer vision literature. Learned PCA 
representations have proven useful for solving problems 
such as image recognition, tracking, and background 
modeling [4][5][6]. Typically, PCA is posed as a problem 
of alternated least squares (ALS) estimation. Unfortu-
nately, it is commonly known that least-squares tech-
niques perform badly in many situations due to the statis-

tical outliers [7], which can arbitrarily bias the solution. 
To improve the robustness of the estimation processes, 
many works had been done in the statistics and neural 
networks [7][8]. In the past few years, robust estimation 
problem has also received enough attention in computer 
vision community. Recently, the theory of Robust Sub-
space Learning (RSL) has been developed in literature [5]. 
The RSL method solves the linear regression problem 
within a continuous optimization framework based on 
robust M-estimation. The RSL can be directly applied to 
PCA, referred to as RPCA. For face image data training, 
RPCA has obtained the robustness on pixel level, com-
paring to the frame level robustness achieved by the sta-
tistical physics approach [8].  

The dimension reduction achieved by PCA is espe-
cially useful if the components can be readily interpreted. 
A frequently used informal approach is to ignore all 
loadings smaller than some threshold absolute value, ef-
fectively treating them as zero. This can be misleading [9]. 
A more formal way of making some if the loadings zero 
is to restrict the allowable loadings to a small set of val-
ues, for example -1, 0, 1. Vines [10] introduced simple 
component analysis as an alternative of this method. 
Jollife et al. [11] developed a new technique called SCoT-
LASSO (Simplified Component Technique-LASSO) 
from the LASSO theory (Least Absolute Shrinkage and 
Selection Operator) [12], which is widely used for multi-
ple regression. The SCoTLASSO method makes the 
shrinkage of the loadings more reliable and simple and it 
has achieved great success for the interpretation of the 
principal components.  

  In this article, we introduce a new framework, 
which share an idea central to both De la Torre’s [5] and 
Jollife’s work [11], to robustly extract the principal com-
ponents. For illustrative purpose and without loss of gen-
erality, we will focus on appearance-based, image recon-
struction problem, and show how our method can be used 
for the robust eigenspace representation. The main idea is 
that we firstly present an alternative approach to the 
sparse eigenspace projection using LASSO in order to 
achieve the robustness on frame level. Then with the 
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frame-level outliers kicked out, we will use the RPCA 
method, which can achieve the robustness on pixel level, 
to determine the basis images. The main contribution here 
is our modification of LASSO and the introduction of 
soft-threshold estimation into the numerical implementa-
tion.  

The following section reviews some related work on 
RPCA and LASSO. Section 3 develops a sparse subspace 
projection framework. Some theories and the numerical 
realization of our algorithm are described in detail in sec-
tion 4. In Section 5, some experimental results are pro-
vided to illustrate how this technique can be used to solve 
the robust object representation problem.  

2. Related works 

2.1 Energy Function and RPCA 

Let },,2,1,{ niRx m
i be a given set of sample 

vectors from a m -dimension variable 
x , nm

i RxX )(  , n  is the number of samples. In 

the case of standard PCA, we will consider that the data is 
zero mean. What PCA does, when based on correlation 

matrix, is to find linear functions xp '
1 , xp '

2 , , xpl
'

which successfully maximum sample variance subject to 

lPP I' , ],,,[ 21 lpppP . The derived variable xpk
' is

the k th principal component (PC), for convenience pur-

pose we just refer '
kp  as the k th PC in the context. In 

the statistics community, a widely used method for calcu-
lating the principal components is to formulates PCA as 
the least-squares estimation of the basis P that minimize 
the following energy function:             
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, where 2

2
' iii xPPxe  is the reconstruction error of 

ix .It is obviously known that the energy function (1) is 

not linear to P , thus may not be efficiently minimized. 
Alternatively, we can make the linear coefficients explicit 
and minimize 
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In this case, EM algorithm can be used to estimate 
both P  and C  [13]. 

The standard eigenspace techniques mentioned above 
for estimating principal components are not robust to out-
liers that are common in training data [4]. This happens 
because the energy functions are derived from the 
least-squares framework. Since 1990s, more and more 
attention has been paid to the robustness of PCA in com-

puter vision. Based on the previous work on robust PCA, 
De la Torre and Black [5] exploit the relationship be-
tween outlier process and the robust statistics, and formu-
late the RPCA as the following M-Estimation:            

n
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, where  is the robust mean vector, is some spe-

cially chosen robust loss function [14]. This robust 
framework has achieved pixel level robustness in their 
background modeling experiments [5]. 

2.2 The LASSO Approach in PCA 

Traditional PCA methods find an eigenspace that mini-
mizes the projective reconstruction residual sum of X .
However, if m  is large or the PCs are highly correlated, 
then the variances of the components estimates may be 
unacceptably high. Standard methods for addressing this 
difficulty include ridge regression and particularly in 
cases where a more parsimonious model is desired, subset 
selection. As an alternative to standard ridge regression 
and subset selection techniques, Tibshirani [12] proposed 
the LASSO, which minimizes the residual sum of squares 

under a constraint on the 1L -norm of the loading vector. 
Jollife’s [11] apply the LASSO theory to PCA and de-
veloped the so called SCoTLASSO, in which components 
were estimated by successively maximize 

ss pRp ' , subject 

to 
m

j
sjs tp

1

, where 'XXR  is the covariance matrix 

of data matrix X . As stated earlier, the LASSO fits are 
usually very sparse, hence very helpful to the interpreta-
tion of PCs.  

3. A Modified LASSO PCA  

Given a set of images, the eigenspace image recon-
struction approaches construct a small set of basis images 
that characterize the majority of the variation in the train-
ing set and can be used to approximate any of the sample 
images. The sample images are always contaminated by 
the so called outliers. Generally, there are two kinds of 
outliers: sample outliers and intra-sample outliers. The 
sample outliers contaminate the entire sample images, and 
can be regarded as outliers on frame level. The in-
tra-sample outliers, however, only affect some pixels in 
an image sample, thus can be regarded as outliers on pixel 
level. A common case of image reconstruction problem 
always involves both kinds of outliers. As mentioned in 
section 2, the intra-sample outliers can be solved by the 
RPCA method. Now, we will develop a LASSO-Based 
PCA to deal with sample outliers. 
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3.1 Choice of The 1L  Constrains  

 The traditional LASSO-Based PCA constrain the 1L
norm of sp . Here, we describe PCA as the following 

least-square estimation under the constrains of the 1L
norm of ic :
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The constraint value it determines the approximation 

accuracy and can thus be viewed as a model-selection 
parameter. We know that c  is a l  dimension vector, 
and it is easy to tell that nl . Generally n (the num-
ber of the sample images) is far less than m  (the pixels 
numbers of one sample image), so we get ml ,
which means the variables of the constrains in  (4) are 
reduced dramatically comparing to that of traditional 
LASSO-based PCA [11]and is possible to be applicable to 
large scale problems like image reconstruction.  

3.2 Some Interpretations  

As is known that LASSO will make the estimated pa-
rameters sparse. We will tell that the sparsity of the output 

ic  in constrained programming problem (4) can be 

helpful to the recognition of sample outlier images. In the 
following we give some detailed description. As is known 

that ic  is the projection coordinates of the i th sample 

image into the linear space spanned by the basis images. 
From section2.1 we know that the PCs successively 
maximize the sample variance and the first few PCs may 
obtain the majority of the variance. Meanwhile  the 
variance of sample images is introduced, to some extent, 
by the sample outliers. Thus, to an outlier image, all the 

components of its ic  are close to zero except the first 

few ones and the shrinkage of ic  via LASSO can be 

very helpful to interpret the relationship between original 
sample images and the basis images. Through this 
shrinkage, according the extent of sparsity, we can easily 
extract the sample outlier images from the training image 
sequence. Now, we give an example to illustrate the 
above conclusion. Figure1 shows a set of synthetic im-
ages, from appearance, it is easy to tell that the last image 
is an outlier sample. Calculation shows that the first 2 
PCs obtain 72.3% of the total sample variance Table 1 .
By solving problem (4) without the constrains, we give 

the estimation of each ic  in table 2, from which it can 

be observed that the last 4 components of 6̂c  is very 

close to zero while 51
ˆ~ˆ cc  do not have such property. 

Through the LASSO, those components are close to zero 
can be forced to be exactly zero, and outlier can be easily 

exposed according to the sparsity of iĉ , as described pre-

cisely in section 4 and 5 a little later.  

Fig.1 A set of synthetic images with last one as a sam-
ple outlier 

Table1 Proportion to the total variance obtained from 
the first 6,,1(i  PCs.

First 1 First 2 First 3 First 4 First 5 First 6
48.9% 72.3% 85.6% 93.4% 100% 100%

Table2. Components of each iĉ , obtained by solving (4) 

without constrains 

iĉ

-0.0904
-0.2612
0.1205
-0.0175
0.0026
0.0000

-0.1435
-0.1034
-0.1074
0.0837
-0.0169
0.0000

-0.1573
-0.0074
-0.1146 
-0.0796
0.0338
0.0000

-0.1638
0.1559
0.0341
-0.0244
-0.0783
0.0000

-0.1596
0.1928
0.0745
0.0378
0.0592
0.0000

0.7146
0.0234
-0.0071
-0.0001
-0.0004
-0.0000

On the other hand, in the SCoTLASSO framework, the 
mechanism of sparsity is somewhat different. Here, the 

components of sp  are forced to be vanished. Through 

this kind of shrinkage, it may be possible for us to inter-
pret some relationship among the pixels, but so far we do 
not know weather this relationship is helpful to the ex-
traction of the outliers. 

3.3 Outline of Our Reconstruction Algorithm 

Generally, in actual image reconstruction problems, the 
sample outliers and intra-sample outliers always co-exist. 
In Theory, the RPCA framework is robust to both kinds of 
outliers. However, some threshold values in this frame-
work are hard to be determined in the co-exist situation. 
Here, for the purpose of reconstructing sample images 
robustly and practically, we now develop a two-step re-
construction algorithm:  

Step1: Find out the sample outliers via 
M-LASSO-PCA;  

Step2:  With the sample outliers kicked out, RPCA is 
applied to deal with intra-sample outliers and robustly 
reconstruct the sample images.  

The outline of our algorithm is very clear. The key 
problems left are the numerical implementation issues.  
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4. Computational Issues  

So far, many numerical algorithms have been presented 
for the LASSO and LASSO-based PCA [11] [12][15]. For 
the problem issued in this paper, we find out that the 
soft-threshold estimator [15] and the projected gradient 
approach [16] works well because programming (3) and 
(4) is always under the condition that lPP I' . Now we 

will describe our method in details. 

4.1 Soft-Threshold Estimation(STE) 

For the purpose of introducing STE into 
M-LASSO-PCA, we firstly present two theorems (The 
proofs are elided due to the limit of the pages). 
Theorem 1:  Suppose that  and P  are known in 

(3), iii ecPx , mje ji ,,1, are zero-mean 

i.i.d., is a convex function, then ),0( 2
liii INcc

in distribution, where c  is the M-estimator of ic ,

i is some constant determined by  function and ie .

Theorem 2 Suppose that  and P  are known in (4)

then the estimation of the i th project coefficients vector 

ic  is equivalent to the following constrained least square 

estimation:    
m

j

l

s
sijsjji

i cpxCPE
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1
4 )(
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1
),,,(:min  (5) 

ii tcts
1

..
Suppose that , P  and ic  has been estimated as 

ˆ , P̂ and 0
ic  in (4) (without the consideration of con-

strains) by some method, since quadratic function 2x  is 
convex, with the above theorem ( m is very large and we 
approximately present that ),0(~ 20

liii Ncc I ), it is 

easy to get an asymptotic optimal solution iĉ  for the 

constrained programming problem (4) using the so called 
“soft-threshold” estimator [15]. According to STE, the 

LASSO estimate of iĉ has the form: 

lsccsignc isisisi ,,1),,0max()(ˆ 00

, where the constant i  is chosen so that 
ii tc

1

ˆ .

4.2 Some Implementation Details 

4.2.1 Determination of ˆ , P̂ and 0
ic . Now, we start our 

numerical implementation from the calculation 

of ˆ , P̂ and 0
ic , which is the optimal solution to a stan-

dard PCA problem (4) ( without the consideration of 
those constrains ). From some well known conclusions 

[1], we get that 
n

i
ix

n 1

1ˆ and P̂  is formed by the 

first l  dominant eigenvectors of covariance ma-

trix ')ˆX)(ˆX(R and
ii xPc '0 ˆ . In our paper, we 

determine P̂ using the singular value decomposition(SVD) 
method which is much more efficient than directly calcu-
lating the eigenvectors of R .

4.2.2 Implementation of STE. The key issue of the 

soft-threshold estimation is to find out i . Let-

ting )( 0
isic be the positive part of )( 0

isic , and 

0

1

0ˆ
ii tc . We first note that  
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lii bb1

are the ordered values of 
00
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0
100 iliii taaa  and it is easy to show that:  

        iisii ttasK 0:max0

, from this we may calculate 
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K
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4.2.3 Projected Gradient Approach for RPCA. There 
are two kinds of commonly used numerical implementa-
tion for RPCA: iteratively reweighted least squares (IRLS) 
and gradient descent (GD). In this paper, we choose the 
GD method as our candidate algorithm. Here, the biggest 
challenge during the gradient decent process is to make 
sure that P  remain an orthogonal matrix. This difficulty 
is solved by applying the projected gradient approach to 
the calculating of the partial derivation of ),,,(4 CPE
respecting to P ( see [16] for more detailed description ). 
The learning “rules” for updating P , C and succes-

sively are given as follows: 
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1 , 2 , 3  are step size , they can be some constants or 

estimated by the local quadratic approximation, as de-
scribed in [5]. Here, we choose the Geman-McClure error 

function 
22

2

),(
x

x
x as the robust function, where 

“scale” parameter controls the convexity of the func-
tion and can be determined through Median Absolute De-
viation (MAD) [4]. The initial value 

for 0P , 0C and 0 can be chosen via SVD method satis-

fying that lPP I0'0 )( .

5. Experimental Results 

In this section, we will illustrate the application of 
M-LASSO-PCA and RPCA to extract outliers in a set of 
sample images and reconstruct the images robustly. First 
we introduce the concept of SOC (sample outlier coeffi-
cient) that will be used in our experiment.

Definition Let i be the count of the zero components 

of iĉ , then we define the proportion 
)ˆdim( i

i
i

c
 as 

the sample outlier coefficient (SOC). 
  From the process of soft-threshold estimation we know 

that iĉ  is determined by the model-selection parameter 

it , thus 
i
 is a function of it . Generally, it  is chosen 

to be less than and very close to 0
it , as an alternative we 

may fix the proportion 1
0
i

i

t

t
, ni ,,1 . In this 

situation, we also write the determined SOC 
i
 as )(i

.

We may compare the SOC with some threshold value T
to determine whether an image is an sample outlier or not. 
In our experiment, we choose 5.0T .

Figure 2(a) shows a collection of 9 images( 128128 ,
gray level) from the Columbia object image li-
brary(http://www1.cs.columbia.edu/CAVE/research/softli
b/), among which seven are belonging to the duck class 
and the rest two are belonging to the coke-tin class. In 
common sense the two coke-tin images are viewed to be 
sample outliers. Meanwhile, the first duck image is also 
contaminated by some obvious intra-sample outliers. 

Fig.2 (b) shows the 9 ( here we choose 9nl ) basis 
images obtained from standard PCA. Table 3 lists the 

projected coefficients iĉ  ( ni ,,1 ) estimated by 

M-LASSO-PCA and their corresponding i . Through 

the comparison of i  with T , we can automatically 

recognize that the 4th and the 9th image are sample out-
liers, just as we can see through our eyes ( Fig.2(c) ). 

Fig.3 (a) shows the original images with the sample 
outliers eliminated. Fig. 3(b) ~ (d) illustrate the recon-
struction results of frame 1 using standard PCA and 
RPCA( by minimizing (3) ) separately. The difference 
between the RPCA results (c) and (d) lies in that the for-
mer uses the fig. 2 (a) as training set while the latter uses 
fig.3 (a) as training set. For our experiment 200 times of 
iterations is enough to guarantee the convergence of the 
learning rules in 4.2.3. It is apparent to see, from the three 
result images, that M-LASSO_PCA+RPCA is much more 
robust to outliers than the standard PCA or pure RPCA. 

                     (a)       

                     (b)

(c)
Fig. 2 (a) Original images (b) Basis images by n PCA 
(c) Outlier images. 

Table3 Project coefficients estimated by 
M-LASSO-PCA

iĉ

0.129    
0.149  
-0.004   
0.0666   
0.027   
0.017    
0       
0
0

0.141   
0.108 
-0.006 
0.001 
-0.032   
-0.041   
-0.009    
0.        
0

0.147    
0.028     
0   
-0.054   
-0.031   
0.024    
0.008   
-0.014    
0

-0.475    
0   
-0.119    
0        
0        
0        
0        
0        
0

0.148   
-0.008   
0   
-0.063   
0.002    
0.013    
0.001    
0.024    
0

0.142   
-0.039   
0   
-0.047   
0.048   
-0.027   
0   
-0.007   
0

0.128   
-0.110   
0.003    
0.030   
-0.001   
0.016   
-0.033   
0       
0

0.112   
-0.127   
0.002    
0.066   
-0.002   
-0.009   
0.026    
0       
0

-0.471   
0.000    
0.121    
0       
0       
0       
0       
0       
0

1

ˆ
ic

0.396    0.341 0.309 0.595 0.264    0.312 0.328 0.352 0.592 

1

0ˆ
ic

0.440 0.379     
        

0.343 0.661 0.293 0.346 0.365 0.392 0.658 

i

0.33 0.22 0.22 0.78 0.22 0.33 0.22 0.22 0.67 

                    (a)

         
            (b)        (c)       (d)
Fig. 3  (a) Duck image set with sample outliers elimi-

Proceedings of the Seventh IEEE Workshop on Applications of Computer Vision (WACV/MOTION’05) 
0-7695-2271-8/05 $ 20.00 IEEE 



nated;  (b) Reconstructed image (frame 1) using 
standard PCA on set (a) in fig. 3; (c) Reconstructed 
image (frame 1) from RPCA on set (a) in fig. 2; (d) 
Reconstruction image (frame1) from RPCA on image 
set (a) in fig. 3. 

In this image reconstruction experiment, there are 2 
sample outliers out of 9 sample images. A natural exten-
sion of our experiment is to increase the number of sam-
ple outliers and observe how the SOC changes. Here, we 
still use image set formed by 9 samples from toy duck 
class and coke-tin class and let the number of coke-tin 
samples increase from 1 to 8, or equally saying the 
coke-tin Class Proportion (CP) increase from 0.11 to 0.89. 
For the purpose of convenience, we make frame 9 always 
be the coke-tin image. Figure 4 is the function graph of 

)9.0(9
 taking coke-tin CP as variance. From this figure 

we can see when the coke-tin CP is less than 0.5, which 
means coke-tin images are sample outliers, the corre-
sponding )9.0(9

 is larger than 5.0T  and vice versa. 

This promising experimental result shows that our 
M-LASSO-PCA is a general method for the detection of 
sample outliers in a given image set.

   
Fig. 4 Plot of the relationship between )9.0(9

 and 

coke-tin Class Proportion. 

6. Conclusion 

In this paper, we address the problem of robust image 
reconstruction and present an algorithm that can effi-
ciently overwhelm the influence of both the sample out-
liers and the intra-sample outliers to the reconstruction 
results. To our point of view, in the common case where 
both kinds of outliers co-exist, it is more reliable to deal 
with them separately, as we have done through LASSO 
and robust M-estimation, instead of using some single 
algorithm such as RPCA. Our two-step algorithm works 
well in real-word experiment and the reconstruction re-
sults are quite satisfying.

Some further research work will be carried out to apply 
our image reconstruction algorithm to the image matching 
problems such as human face recognition.
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