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Abstract

We propose a factorization method for structure from pla-
nar motion using a stationary perspective camera. Com-
pared with [8] for general motion, our work has three ma-
jor differences: a different measurement matrix specialized
for planar motion is formed. The measurement matrix has
a rank of at most 3, instead of 4; the measurement ma-
trix needs similar scalings, but estimation of fundamental
matrices or epipoles is not needed; we have an Euclidean
reconstruction instead of a projective reconstruction. The
camera is not required to be calibrated. A simple semi-
automatic calibration method using vanishing points and
lines is sufficient. Experimental results show that the algo-
rithm is accurate and fairly robust to noise and inaccurate
calibration.

1. Introduction
Since it was first introduced in [11], the factorization ap-
proach has been very popular for solving structure from mo-
tion (SfM) problems. It stands out among other batch pro-
cessing methods because the reconstruction can be easily
carried out through singular value decomposition (SVD).
Generally, the observation matrix is factorized as a bilinear
product of motion and shape matrices. SVD is then used to
find the factorized components, at the same time denoising
the data.

Factorization approach for SfM has been studied exten-
sively in the last decade [4]. The essence of factorization
approach lies in finding the right rank constraint, which cor-
responds to the lowest rank among all the factor matrices.
The main goal is to find a lower rank condition by exploit-
ing the special structures or constraints. Rank constraints
have been found for different camera models, or different
types of objects such as planar objects, rigid or non-rigid
objects. Another branch of study has focused on the rank
constraints for certain kinds of motion, such as linear and
planar motions.
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The study of rank constraints for certain kind of mo-
tion can be found in [2] [6] [7] [12] etc. In [2], Han et al.
study the case of linear motion with constant speed for mul-
tiple objects, and develop a method of scene reconstruction
through factorization. In [7], Quan et al. develop a method
for decomposing a 2D image into two 1D images, so that the
structure can be reconstructed from images captured under
constrained planar motion, but they restrict the image plane
to be perpendicular to the motion plane. Both of these meth-
ods have very restrictive assumptions. In [6] and [12], ma-
trices formed by displacements of feature points are shown
to have a lower rank condition with certain approximations
under constrained motion. Then iterative estimate of the
motion and depths can be carried out. Their methods can
be used to recover the motion plane, but lack the flavor of a
direct factorization without iteration. We propose a generic
factorization method for structure from planar motion under
perspective projection. A measurement matrix specialized
for planar motion is formed in order to lower the rank con-
dition. We exploit the constraint of planar motion to find
a simple scaling method instead of using the fundamental
matrix and epipoles as in [8], where the authors propose a
factorization approach for the perspective camera.

Study of planar motion is motivated by applications such
as parking lot surveillance, traffic scene analysis etc. Pla-
nar motion is arguably the most dominant type of motion in
surveillance videos, simply because most objects move on
the typically planar ground plane. In this paper, we focus on
a monocular sequence captured by a stationary perspective
camera, in which a rigid object moves on the ground plane.

Many methods for structure from planar motion have
been proposed such as [6][10][12]. Many of them need non-
linear optimizations or iterative schemes and sometimes
cannot guarantee a global optimal solution. Our method
only requires SVD and linear operations with no iterations.
Our formulation is similar to [10], where the authors con-
sider the reconstruction of perspective depths from corre-
spondences across two frames. They find quadratic equa-
tions of depths by using two facts: corresponding feature
points lie on a plane parallel to the ground plane, and the



3D displacement between them is constant for every pair of
feature points because of the rigidity constraints. But since
they only consider a pair of frames and there is no denoising
process, the method is very sensitive to noise. Our method
makes use of multiple frames and takes the factorization ap-
proach, and therefore, is more robust to noise and incorrect
calibration.

In our method, the camera does not have to be calibrated.
For an uncalibrated sequence, our method requires the es-
timation of the focal length and ground plane constraints
(GPC), so that the motion plane is known. In our exper-
iment, we use vanishing points and line [3][5][13] to find
the GPC.

The rest of the paper is organized as follows. Section
2 first gives a derivation and detailed description of our
method, followed by comparisons with the factorization
method for general motion. Section 3 explains the neces-
sary preprocessing steps for an uncalibrated sequence, then
gives both quantitative and qualitative analysis on the ex-
perimental results. Section 4 concludes the paper.

2. Problem formulation
In this section, we derive the factorization method for struc-
ture from planar motion and present the detailed algorithm.
Then we compare our method with the factorization method
for general motion under perspective projection.

In our work, the camera is not necessarily calibrated.
The calibration and ground plane constraints can be es-
timated through a number of ways. In the next section,
we show a simple semi-automatic calibration scheme using
vanishing points and line. Once the calibration and GPC
is estimated, a matrix is constructed from the observations,
which after properly scaling has a rank of at most 3.

2.1. Derivation of our method
Consider the selection of CCS and WCS in Figure 1, where
the x-y plane in WCS lies on the ground plane. In this pa-
per, we focus on the typical case that the image plane is not
parallel to the ground plane.

Figure 1: Selection of world coordinate and camera coordi-
nate systems. O is the camera center.

In CCS, denote the direction of x- y- and z-axis of WCS
asgx, gy andgz respectively, and the origin of WCS asg0.
f is the focus. As mentioned above, all those vectors can be
estimated.

Suppose a pointp is the image of a pointP in the 3D
space. Its representation ispc = (x, y, f)T in the CCS.
ThenPc = λ(x, y, f)T , whereλ is the perspective depth.
Its representation in WCS is,
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According to our assumption, the only unknown in the
above equation isλ. Here are some key observations about
the factorization method. If the feature points are from a
rigid object moving on the ground plane, then each of them
will move on a plane parallel to the ground plane, and hence
its z-coordinates in WCS will remain constant across all
frames. Because of rigid motion, its x- and y-coordinates
in WCS will take a 2D Euclidean Transform. Note in [10],
similar constraints are used, but they only consider two
frames and the algorithm is more sensitive to noise.

Suppose we have an image sequence from a stationary
perspective camera, in which a rigid object moves on the
ground. N visible image points on the object have been
tracked over M frames. We will use factorization to estimate
the structure of the vehicle.

Denoteλit the perspective depth of pointi in frame t.
And from Eq. 1, all points should satisfy
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s should be the same for all points across all frames.
Then if we form a matrix from thex andy components of
P ti

w , and using the fact that they take a 2D Euclidean trans-
form, we will have

W ≡

















λ11u11 λ12u12 ... λ1Nu1N

λ11v11 λ12v12 ... λ1Nv1N

... ... ...

... ... ...
λM1uM1 λM2uM2 ... λMNuMN

λM1vM1 λM2vM2 ... λMNvMN

















=













r1

11
r1

12
t1x

r1

21
r1

22
t1y

...
rM
11

rM
12

tMx
rM
21

rM
22

tMy

















x1 x2 ... xN

y1 y2 ... yN

1 1 ... 1





where W is the rescaled observation matrix.Rt =
[
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is an orthogonal matrix and corresponds to



the rotation matrix for framet.
[

tkx tky
]T

corresponds to

the translation vector for framek.
[

xi yi

]T
is the x-y

coordinate of point i, but because of the ambiguity in se-
lecting the reference coordinates for motion and structure,
they are not necessarily defined in WCS. Also note that the

contribution froms is absorbed into
[

tkx tky
]T

.
Therefore the rescaled matrixW will have a rank of

at most 3. To find the scale, we use the fact that the z-
component of each feature point in WCS remain constant
across all frames, i.e.z(P ti

w ) = z(P si
w ) for s = 1, ...,M .

Then we can obtainλtiwti = λsiwsi. Thus the ratio ofλs
can be recovered along each column inW.

Thus using the equality, we can setλtiwti = ci, for
t = 1, ...,M , and i = 1, ..., N . Typically wti 6= 0 and
ci 6= 0 unless the feature point lies on the vanishing line
of the ground plane. So we substituteλti and move all the
unknowns to the right hand side, which will produce,
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The matrixW̃ can be directly calculated from the ob-
servations, calibration parameters and GPC. It is a bilinear
product of motion and shape matrices on the x-y plane in
WCS. Its rank is at most 3.

Once we have the rank constraints, similar procedure for
other factorization methods can be applied. SVD can be
applied to find the rank 3 matrix which is closest toW̃ in
the sense of Frobenius norm.

BecauseW̃ = M̃S̃ = (M̃T)(T−1S̃) for any 3x3 non-
singular matrixT, we need additional constraints to elimi-
nate the ambiguity. RewriteT = [T1T2], whereT1 andT2

are 3x2 and 3x1 matrix respectively. Suppose the correct
motion matrixM = M̃T, then

M̃T1 =
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Using the orthogonal property ofRt, certain elements along

the tri-diagonals in(M̃T1)(M̃T1)
T = M̃(T1TT

1
)M̃

T
are

known. So the linear least square estimate (LLSE) can be

used to recoverQ ≡ T1TT
1

. Then T1 can be estimated
through SVD ofQ and it is unique up to a 2x2 rotational
matrix. That ambiguity comes from the selection of the ref-
erence coordinate system. If we select the first frame as the
reference frame, namelyR1 = I2×2 andt1x = t1y = 0, then
T1 can be uniquely recovered andT2 can be recovered up to
a scale.T2 can be solved using the known elements inM̃T2.
The scale can be arbitrarily chosen and that is an inherent
ambiguity when a monocular sequence is used.

After T is found, the desired shape matrix isS = T−1S̃.
Using the the last row ofS, we can easily find the perspec-
tive depth of each feature points, thus the 3D structure can
be recovered. It is only recovered up to a scale because of
ambiguity inT2.

The algorithm can be summarized as follows,

Algorithm:
a. Calculate the matrix̃W from Eq. (2) and (3), using the
observations, estimated calibration and GPC.
b. Use SVD to getW̃ = Udiag(σ1, σ2, ..., σs)VT ,
where s = min(2M,N). Use the 3 largest sin-
gular values and the corresponding singular vectors to
get an initial estimate of motion and shape matrices,
i.e., setM̃ = W2M×3diag(σ0.5

1
, σ0.5

3
, σ0.5

3
) and S̃ =

diag(σ0.5
1

, σ0.5
3

, σ0.5
3

)VN×3.
c. Find T = [T1T2] and eliminate the ambiguity. First
find LLSE of Q ≡ T1TT

1
from known elements in

M̃(T1TT
1
)M̃

T
according to Eq. (5). Set the first frame as

the reference frame, then useR1 = I2x2 andt1x = t1y = 0
to further remove the ambiguity inT1 and findT2 up to a
scale. Set an arbitrary scale forT2.
d. Reconstructed shape and motion matrices areS =
T−1S̃ andM = M̃T respectively. Then1/s3i = λtiwti

are used to findλti, the perspective depth, and hence the
structure is reconstructed.

2.2. Comparisons with the factorization
method for general motion

Factorization method is generalized for perspective projec-
tion in [8]. The authors form a measurement matrix of
rank at most 4. The key factor in factorization under per-
spective projection lies in the scaling of the measurement
matrix according to the perspective depths. In [8], the au-
thors use epipolar constraints to recover the ratio of the scal-
ings. However, the estimation of the fundamental matrix
and epipoles is not an easy job.

The general method can be used to handle the special
case of planar motion. However, we find a simpler and more
efficient formulation which is tailored to deal with the con-
strained case. In summary, our method is different from the
general method in the following ways,

1. We form the measurement matrix using only the x-
y coordinates in WCS instead of CCS. The measure-



ment matrix is shown to come from points taking a
2D Euclidean transform, which has a rank of at most
3. In [8], the homogeneous coordinates of projections
scaled by the depths are gathered together to form a
matrix of rank at most 4. So the rank condition is re-
duced for planar motion.

2. We use the property that the z-component for each fea-
ture point is constant in WCS to find the right scaling,
which is a lot easier than estimating the fundamental
matrix and epipoles. However, we do need one-time
calibration and estimation of the motion plane, which
can be done fairly easily using vanishing points and
lines.

3. We have an Euclidean reconstruction instead of a pro-
jective reconstruction, because more ambiguities are
removed in our formulation. The structure can be re-
covered up to a scale, while in [8], it is recovered up to
a 4x4 non-singular matrix.

3. Experiments
In this section, we first explain the simple calibration
method we use in our experiment, then we do quantita-
tive and qualitative analysis of our method by applying it
to some real and synthetic sequences.

3.1. Calibration through vanishing points and
line

Many methods are available for automatic or semi-
automatic calibration and recovery of the ground plane
constraints (GPC). We use vanishing points and lines
[3][5][13][14]. We make use of parallel and perpendicular
lines, which are very often seen in man-made environments.

In perspective camera model, the images of parallel lines
typically will intersect at one point, which is the vanishing
point corresponding to those lines. Geometrically, it is the
intersection of the image plane with a ray passing through
the camera center and parallel to those lines. Algebraically,
the direction of the rayd and the vanishing pointv will be
related byv = Kd [3], whereK is the calibration matrix.

The angle between two such rays is,

cos θ =
vT
1
(K−T K−1)v2

√

vT
1
(K−T K−1)v1

√

vT
2
(K−T K−1)v2

(6)

The vanishing line for the ground plane corresponds
to the intersection of image plane with the plane passing
through the camera center and parallel to the ground plane.
Once calibration is done and the vanishing line is known,
the ground plane normal can be calculated.

Figure 2: Illustration of the calibration results. Left: Locat-
ing vanishing points by marking parallel lines. Right: The
WCS we choose.

We assume a pinhole camera model, and the image cen-
ter to be the central projection point. Then the only un-
known inK is focusf .

First, to findf , two vanishing pointsv1 andv2 for two
perpendicular lines on the ground plane are located semi-
automatically. Using Eq. 6, in whichcos θ = 0, f can
be found by solving a quadratic equation. Second, the
line passing through the two vanishing points is the van-
ishing line of the ground plane. Hence the plane normal is
known. We can set the WCS asgx = K−1v1/‖K−1v1‖,
gy = K−1v2/‖K−1v2‖, andgz = gx ⊗ gy. g0 can be set
by arbitrarily setting the perspective depth of the image of
an point that lies on the ground plane. Results are shown in
Figure 2.

3.2. Quantitative Analysis on Synthetic Data
Using the calibration data, we synthesize very realistic
tracking results that carry characteristics similar to thereal
data. We do some quantitative analysis on those sequences
by adding noise to the tracked feature points and changing
the calibration.

Figure 3 shows the example of the synthetic data we gen-
erated. 26 points are tracked over 40 frames. Note that the
feature points on the vehicle are chosen to be points that can
be tracked on a real vehicle, seen in Figure 7.

The noise we add to each feature points is drawn from
an i.i.d. isotropic Gaussian distribution. We vary the stan-
dard deviationσ to test how robust the method is to noise.
Two kinds of calibration error are studied here: error from
the focal lengthf , and from the angle betweengx and the
ground plane, denoted asφ. Here we assume thatgy can
be estimated reliably, i.e.,gy lies on the ground plane. That
requires very accurate estimation of one vanishing point,
which comes from only one set of parallel lines and is very
plausible in man-made environments.

First, we consider the case that all the feature points are
tracked over all the frames. The reconstruction results with-
out missing data under two conditions are shown in Figure
4. For correct calibrationf = 690, φ = 0o, and for wrong
calibrationf = 690, φ = −4.6o. The same condition ap-
plies to Figure 6 (a) and (b). As can be seen in Figure 4, the



reconstruction does not change much visually when noise
and incorrect calibration are considered.

In Figure 6 (a), the relative construction error is plot-
ted as a function ofσ for both correct and wrong calibra-
tions. For eachσ, the experiments are run for 40 times
and the average error is plotted. For correct calibration,
the structure can be reconstructed perfectly with smallσs.
When the noise levelσ increases to about 7 pixels, perfor-
mances under correct and incorrect calibrations become al-
most the same. (c) and (d) show how the reconstruction er-
ror changes as the calibration changes. In both cases, noise
with σ = 2 is added to all the feature points. The recon-
struction error is less than2% whenδf = ±50 or φ = ±5o.
(b) shows the rank condition by using the ratio of the 3rd to
the 4th largest singular value of the scaled measurement ma-
trix. Ideally, the 4th singular value should be zero and the
ratio approaches infinity, which is true whenσ is close to
zero with correct calibration. Whenσ is large or calibration
is incorrect, the ratio decreases.

As can be seen from these figures, the algorithm de-
grades gracefully with increasing noise level and incorrect
calibration.

Second, we also consider the points occluded in some
of the frames. 34 points are tracked in sections of the 40
frames. We apply SVD with missing data algorithm re-
ported in [1] [15] so that we can have a more complete re-
construction. The reconstruction results for the case with
missing data is shown in Figure 5. Several views have been
fused together to map the texture onto the reconstructed 3D
model. For this experiment, the data is noise free and cal-
ibration is correct. The reconstructed model correctly cap-
tures the structure of the model, such as parallel and per-
pendicular faces.

3.3. Qualitative Analysis on Real Data
The reconstruction for a real sequence is shown in Figure
7. Note that the image of the object is of low resolution
and it is taken on a rainy day, which makes the image more
blurry. 30 points are tracked over 40 frames on the vehicle
with missing data. Because of the low resolution and blurry
effects, many of them cannot be reliably tracked even man-
ually. However, our method still correctly captures the rela-
tions of most faces. The reconstruction is visually realistic.

4. Conclusion and future work
A factorization method for structure from planar motion
is proposed and illustrated with experiments. The method
fully exploits the constraints, and uses SVD to batch pro-
cesses the data. Experiments show that our method is fairly
robust to noise and incorrect calibration. Future work in-
cludes theoretical error analysis along the lines of [9]. Our
method can possibly be generalized to projective geometry,

non-rigid motion on the ground plane, and SfM for video
captured on moving platforms. Motion constrained on non-
planar surface can also be studied.
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Figure 3: Sample of a synthetic sequence. Top: The pro-
jected model. The car makes a900 turn. Bottom: Synthetic
tracking results without missing data. Feature points se-
lected according to real vehicles (compared to Figure 7).

Figure 4: Sample of reconstruction results with no missing
data. First row, correct calibration with no noise. Second
row, wrong calibration with added noise ofσ = 5.

Figure 5: Sample of reconstruction results from observa-
tions with missing data.
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Figure 6: Quantitative analysis of reconstruction error and
rank condition. Suppose during estimation of GPC,gy lies
on the ground plane, and the angle betweengx and the
ground plane isφ. For correct calibrationφ = 0. (a) shows
reconstruction error in the case of correct and wrong cali-
brations. Here for wrong calibrationφ = −4.6o and focal
lengthf is correct. (b) The ratio of the 3rd to 4th largest
singular values is shown to analyze the rank condition of
scaled measurement matrix. Calibration condition same as
(a). (c) Reconstruction error as the estimated focal lengthf
deviates. Correctf = 690. φ = 0 in this case. (d) Recon-
struction error as estimation ofgx changes.gy assumed to
be on the ground plane.f = 690 here. Noise ofσ = 2 is
added in both (c) and (d).

Figure 7: Reconstruction results for a real sequence. Top
row: The real sequence taken on a rainy day and the tracked
feature points. Bottom row: Reconstruction with texture
mapping.


