
Social Behaviors on XP and non-XP teams: A Comparative Study

Jan Chong

Stanford University, Department of Management Science and Engineering
jchong@cs.stanford.edu

Abstract

This is an ethnographic study of two software
development teams within the same
organization, one which utilizes the Extreme
Programming (XP) methodology and one which
does not. This study compares the work routines
and work practices of the software developers on
the XP team and the non-XP team. Observed
behavior suggests that certain features of the XP
methodology lead to greater uniformity in work
routine and work practice across individual team
members. The data also suggest that the XP
methodology makes awareness development and
maintenance less effortful on a software
development team.

1. Introduction

Nascent research on any complex phenomena
is bound to be piecemeal in nature, as different
facets of the phenomena are produced for
scrutiny subject to scrutiny by each researcher
that seeks to understand the phenomena as a
whole. The state of research on the phenomena
of Extreme Programming (XP) is no different;
researchers have explored such varied topics as
the methodology’s efficacy [11, 20], the
methodology’s use in classroom settings [10, 14]
and still others yet evaluating particular
practices, and the effectiveness of particular
practices, most notably pair programming [13,
15, 5].

This work contributes to the piecemeal effort
by offering yet another analytical perspective,
albeit one that I believe has been absent so far.
This study approaches the XP methodology from
a social perspective, viewing XP as a system of
organizing work that is expressed as a set of
beliefs and practices. The subsequent analysis
compares work-related behaviors across two
teams, one which has adopted XP and one which
has not. I explain the differences in two types of
behaviors by tracing the roots of this behavior
back to the adoption (or non-adoption) of certain
XP principles and values. I end by building an

explanation of how team adoption of XP
methodologies transforms the work of software
development for a developer on that team.

2. Theoretical framework

XP structures how individuals in a group
understand both their role as a team member and
the larger process of software development. It
gives software developers a framework by which
to understand and interpret the activities of
others. This is not an explicit framework, but a
set of beliefs and practices that, once adopted,
shape the social structure of the group. The
framework shapes how the members of the group
interact with each other and how they
fundamentally understand the task of “software
development” in which they are engaged. This
structured understanding of work, in turn,
manifests itself in observable behaviors.

My perspective on this interaction process
draws heavily on the sociological tradition of
symbolic interactionism [4]. In particular, I draw
both methodological and theoretically on the
works of Garfinkel [7] and Goffman [8] as a
framework for my exploration of how specific
social behaviors between individuals can reflect
the larger beliefs and understandings that these
individuals hold.

3. Research site

I observed two teams of software developers
at a mid-sized startup company in Silicon Valley,
California. The XP team was formed six months
prior to my arrival at the site. During my time
with the XP team, the team size fluctuated
between 12 and 7 members. 6 of project team
members were short-term contractors, 4 of which
left the team during the observation period. The
non-XP team was composed two overlapping
product development teams within the company
that merged during the observation period. The
non-XP team began as two teams, one well-
established product team with 5 members (2 of
which were contractors) and one relatively new

mailto:jchong@cs.stanford.edu

product team with 5 members (1 of which was a
contractor). By the end of the observation period,
the two teams had merged for a final team size of
10, 2 of which were newly hired short-term
contractors. Both teams therefore varied in
composition between full time and temporary
employees and experienced fluctuations in team
membership during the observation period.

The XP team adopted all XP practices with
the exception of customer acceptance tests. The
team was radically co-located at a single site.
Team members paired whenever possible,
working in a large, bullpen-like room around
two-monitor stations. Communication between
team members almost exclusively occurred
through face-to-face communication.

A previous incarnation of the non-XP team
had briefly adopted Scrum, but the practice, with
the exception of the daily status meeting, was
largely abandoned. Instead, the non-XP team
adopted a relaxed version of the waterfall
process, separating design, implementation and
testing. The non-XP team was also
geographically distributed. Although the bulk of
the team spent most of their time on site, 2
members of the team worked remotely all of the
time and the remaining 8 team members
regularly worked from home. When team
members were on-site, they worked in their own
cubicles. The non-XP team utilized a company-
wide computer-mediated communication (CMC)
tool (notably the XP team did not use this tool,
although its use was prevalent among the rest of
the company) that can be roughly characterized
as a large chat room. They also maintained
contact through e-mail and face-to-face
conversations.

I watched both teams release a version of
their product to customers and engage in
planning activities for the next release.
Consequently, the observations of both teams
spanned a “crunch” period of intense pressure to
make release deadlines and a more leisurely
planning period, reducing the chance that the
observed temporal routines were exclusive to a
particular project phase.

4. Methodology

I conducted ethnographic observations of the
developers at work, either once or twice a week.
Across both teams, I spent a total of 18 weeks on
site starting in June of 2004 and ending in
December. During observations of the non-XP
team, I tracked the activities of a single
programmer during the entire observation period.

In the process, I also observed any other team
members that came in to contact with the
programmer. For the XP team, I followed
roughly the same methodology, by tracking the
activities of a pair through a session. Due to the
close physical proximity and high frequency of
interactions between team members, however,
my observation data frequently spanned the
activities of multiple pairs.

 I took extensive notes during my
observations and, whenever possible, made
audio recordings of the entire session. The
audio record was then transcribed and integrated
into my notes to produce a faithful record of
dialogue annotated by detailed descriptions of
action.

To analyze my data, I employed inductive
qualitative techniques [19]. I began with
multiple readings of our field notes and review
of the events that occurred. I wanted to
understand the temporal structure of a typical
developer’s day. In my analysis, I tried to create
a portrait of what developers attended to in the
course of the workday, looking at both the events
that drew their attention away from their primary
work tasks and the events that they choose to
turn their attention to. I created summary charts
breaking down the sequence of events, noting
attentional shifts. My analysis drew on
techniques used previously by Pentland [16] in
his exploration of organizational routines and
Perlow [17] in her exploration of work patterns.
To explore the use of awareness maintenance
mechanisms, I identified a primary task for the
informant or pair observed in the observation
session (frequently, this was self-identified by
the informant or pair in the course of the
observation). I then coded the data for all
instances where a developer’s attention, either
voluntarily or prompted by some external event,
deviated from his or her primary task. In doing
so, I also identified in the data every instance of
a social interaction between team members.

5. Findings

In the following section, I present behavioral

differences observed between developers on the
XP team and developers on the non-XP team. I
focus on two particular categories of behavior:
temporal patterns of work and awareness
maintenance mechanisms.

5.1 Work patterns on the XP team

Analysis of work routines across team members
of the XP team revealed a startling uniformity in
the temporal structure of the work sessions
across team members. Below, I present a sample
sequence of events1 for two XP team members.
Following the actual steps used in analysis, each
event is annotated by line number. In this case,
the activities listed follow a pair, Andy and
Brian2 in a morning work session.

0110-0122: Andy is pulled into a discussion of a
technical issue with Lee, the customer. Brian leaves
to get coffee.
0122: Andy begins working alone.
0133: Erin asks the team a question. Andy answers.
0160-0173: Carl calls over Andy to consult on a
customer issue.
0173: Andy returns to his computer. Brian returns
from coffee and joins him. They begin to pair.
0408: Carl, overhearing some of their conversation,
makes a joke.
0413: Lee returns, calling Andy away from the area to
review an issue.
0425: Brian notices that a test is broken and asks the
team if this is meant to be
0443-0473: Andy returns to the area to speak with
Erin about the customer issue.
0473-0504: Andy and Brian pair.
0504-0609: Andy and Brian ask Carl to review the
bug they have encountered. The three of them work
together on the issue.
0609: Andy returns to his computer, while Brian
continues to work with Carl.
0628-0639: Brian and Carl ask the team a question
that leads to a brief team-wide discussion.
0689-0692: Lee comes in and announces that a feature
is broken (the issue that Brian and Carl are currently
working on). Brian and Carl update the customer.
0703: Brian returns to working with Andy.
0710-0726: Dennis asks Brian for help.
0726-0758: Andy and Brian return to pairing.
0758-0794: Erin asks Andy for help
0794: Brian and Andy return to pairing.
0866-0880: Carl initiates a group wide discussion
about lunch
0895: Brian goes to lunch, while Andy continues to
work on the issue.

Andy and Brian’s work session is fairly
representative in terms of the underlying
structure of the workday for an XP team
member. In general, the work routines and work
hours across the XP team were remarkably
similar. Team members generally arrived at the
office slightly before the daily standup meeting.
Time before the stand up meeting was

1 This and subsequent excerpts have been edited for space
considerations.
2 All of the names used in this paper are pseudonyms.

unstructured, spent checking e-mail, web-surfing
or catching up on work tasks from the previous
day. The standup meeting was short, running
between ten and fifteen minutes. Pairs for the
day were arranged at the end of the standup
meeting. Immediately after the meeting, the
team scattered to retrieve coffee from the
company break room. Teams members promptly
returned to begin pair programming, which they
continued until lunchtime. After lunch, team
members resumed pairing until the end of the
workday.

As illustrated by Andy and Brian’s session,
pair programming sessions were frequently
interrupted by events that directed one or both
programmer’s attention away from their primary
task, such as inquiries for technical information
or support from other team members, social
exchanges of conversations and coffee/snack
breaks. In my observations, pairs never
completed a two or three hour stretch of pair
programming activity without some sort of
interruption. The general structure of pair
programming sessions were strikingly consistent
across the team. The pair would work together
until interrupted, at which point one member
would leave to attend to the interruption. The
other member would continue to work on the
pair’s task. When the first member returned
from the interruption, the second member would
update him or her on the status of the task and
they would return to pairing.

5.2 Work patterns on the non-XP team

While the XP workday had a consistent
structure across team members, the non-XP work
varied greatly from individual-to-individual and
day-by-day. Work was much more diffuse,
occurring at a greater variety of times and
locations. The non-XP team members frequently
worked from home, logging into the CMC tool
to check on team status and sometimes code or
answer technical inquiries before leaving the
house to come to the office. Team members
maintained communication on the CMC tool
until late at night and sometimes kept irregular
work hours. Like the XP team, the non-XP team
also had a daily status meeting, but team
members could and frequently did attend
remotely. Consequently, individual team
members had very different work routines. To
illustrate this point, I present a sample work
session from two different non-XP developers,
both working at the office. The first sequence
tracks a developer named Fred through a

morning work session. The second sequence
tracks a developer named Ian through an
afternoon work session.

0371-0399: Fred responds to a technical inquiry sent
to him by e-mail.
0399: Fred turns to his primary task, writing a new set
of routines.
0750-0789: Fred participates in a discussion of where
to go to lunch over the CMC tool.
0789-0798: Fred checks his e-mail.
0798: Fred turns back to coding.
0839-0849: Fred reads and then briefly responds to a
discussion on the CMC tool.
0849: Fred continues to code
0855-0865: Fred makes a joke over the CMC tool, in
response an ongoing discussion.
0865: Fred continues to work.
0885: Greg and Hilary come to Fred’s cubicle to fetch
him for lunch.

In this session, Fred maintains a fairly focused
pattern of work. There are fewer external
interruptions, presenting the opportunity for
longer stretches of concentrated work. Fred,
however, turns his attention away from his
primary task at several points during the session
to monitor communication from the rest of this
team. In this particular session, he does so
twice, once via e-mail and one three times via
the CMC tool. After each check, he promptly
turns his attention back to his work. Ian’s work
session, on the other hand, has a very different
structure:

0097-0111: Upon returning from lunch, Ian sits down
to carefully review the log of discussions over the
CMC tool.
0142: Ian responds to an inquiry from John, who is
working remotely, over the CMC tool.
0143: Ian begins working on his primary task for the
day, which is determining and then documenting how
to set up a particular tool.
0168: Ian pauses to flip through a stack of mail that
has been delivered to his cubicle.
0169: Ian turns back to his primary task.
0256-0380: Ian stops to review the discussion log of
the CMC tool. He spends some time following a set
of humorous websites posted by others to the CMC
discussion.
0380: Ian turns back to work.
0812: Ian asks Kai, who is walking by Ian’s cubicle,
for help.
0838: Kai leaves and Ian continues to work.
1065: Ian chimes in, to make a joke, to a loud
conversation that Greg and Hilary are having in
Greg’s cubicle.
1072: Ian turns back to work.

1108: Ian notices that his emacs settings on his
machine are not working. He spends some time fixing
them.
1195: Ian turns back to his primary task.
1287-1297: Ian takes a snack break.
1297: Ian posts a question to the CMC discussion
about a problem he’s been having with a tool running
on his home machine.
1324: Ian downloads a Star Trek video that has been
posted to the CMC tool and watches it. The noise
draws Greg, Fred and Hilary over to watch and chat
about the video.
1390: Ian reviews the CMC tool discussion log.
1402: Ian downloads and watches another video
posted to the CMC log.
1411: Ian turns back to work.

In this session, Ian has few external
interruptions, which gives him the opportunity to
devote long stretches of uninterrupted attention
to his primary work task. Instead, however, we
find that Ian’s sessions is filled with points at
which he turns his attention away from his
primary work task without any external impetus.
Ian’s session alternates between engagement in
periods of focused work and sustained periods of
social conversation or other activities unrelated
to work.

Ian’s and Fred’s sessions are, of course,
selected for maximum contrast, but in
comparison with the XP team, the non-XP team
members had a marked lack of consistency when
it came to their patterns of work.

5.3 Awareness on the XP team

Awareness has long been established as a
critical component of collaborative work [6, 9,
18]. Dourish and Bly [6] define awareness to be
“an understanding of the activities of others,
which provides a context for your own activity.”
Maintaining awareness is the process by which
individuals working with others transmit and
acquire information, consciously or
unconsciously, about their work efforts and how
that effort fits in with the on-going work of
others. Teams of people engaged in highly
collaborative work often develop mechanisms to
help other team members maintain awareness by
making certain features of their work more
salient than others, for instance, through gestures
and speech [9].

In a rich work environment, awareness rarely
has a single source; an XP team is no different.
Developers become aware of the work of others
on the team through a variety of physical cues,
ranging from physical artifacts in the workspace

to observable actions or audible utterances made
by teammates.

One obvious way that awareness is developed
and maintained in an XP environment is through
the stream of dialogue between developers
during pair programming. In the following
excerpt, John and Kai are attempting to debug
some newly written code, after watching it fail
the test:

John: There's the test. It apparently fails.

John and Kai examine the code for a bit, silently.

Kai: We didn't do anything on end.
John: Oh, we have an infinite loop.
Kai: On end you didn't increment.
John: Oh yeah, that.
Kai: Oh no, you did look for end. Okay. Might be
sufficient.
John: Why do we have an array out of bounds
exception? Nice. Oh. Nothing matches? Well let's go
to the line…

They add a breakpoint and run it in the debugger to
see what is being generated by the code at that point.

John: Hrm. Do you see the difference? We have
some extra stuff at the end? I think the actual regexp
still might be wrong because of the \n.

In this incident, John and Kai use speech to
direct each other’s attention to various aspects of
the situation. John begins by observing that the
test has failed, focusing both of their attention on
that issue. Kai then responds by drawing
attention to a particular segment of code where
he thinks the problem might be – the code that
deals with the “END” tag. Their speech
throughout the except acts as a coordinating
mechanism, communicating what aspects of the
code and the bug each member of the pair
programming duo finds relevant to their work.

The observation that pair programmers use
dialogue to coordinate their efforts is by no
means earth shattering, particularly in light of the
fact that their speech is the main means by which
they share information about their work task.
But the dialogue produced in these pairs also
serves to make information about the pair’s work
available to other team members who are
physically situated around them. Exchanges,
such as the following, were fairly commonplace:

Andy: Dennis, are you a CVS expert? This icon gets
corrupted every ten seconds?

Matt: [to Andy] I know how to fix it now. You have
to delete it from the store and enter it and the first time
that you enter it, enter it as binary the first time.
Andy: We've done that, several times.
Matt: [shrugs] I've created several of them and every
time I've followed that rule, it's worked.
Dennis: But you have to do it on create, you can't
change the type, right?
Matt: That's why you have to delete it.
Dennis: Okay.

Here, Dennis and Andy are paired and, in the
course of working together, Andy asks Dennis a
question. Although Matt is in the process of
working with Erin, he nevertheless turns to
answer Andy’s question, demonstrating that he is
not only aware of their conversation, but actively
listening to it. Of course, not all team members
engaged in this behavior to the same level.
Limitations on human attention dictate that the
amount of attention that team members to devote
to cultivating awareness varied by day and task.
Nevertheless, even in the absence of a conscious
effort to develop an awareness about the work
going on around them, a team member immersed
in these surroundings was always, to some
extent, building this awareness.

Similarly, transmission of awareness
information is a relatively effortless act in the XP
environment. For instance, in the following
incident, Matt and Erin grew increasingly
frustrated as they wrestled with a bewildering
bug. Although they only ask Brian for help with
the bug, others on the team become aware of the
issue as it unfolds. This leads Carl to eventually
step in and offer unsolicited help, when Matt and
Erin grow too frustrated to continue working.
Here, when they first notice the error, Matt is
actually speaking to Andy, on the other side of
the room, while Erin gives a demo to Lee. When
the error occurs, Matt trails off mid-sentence and
walks back over to Erin and Lee:

Matt: But the beauty is that you have the exact copy...

Matt trails off as he notices the error on Erin’s screen.
He walks back over to Lee and Erin.

Matt: [joking] If it doesn't work, I didn't do it. I was
working on ACLs.

On the screen, the application page displays an
exception.

Andy: [from his computer] That looks like an error.
Erin: Huh.

Shortly afterwards, Matt and Erin begin to
trace the issue in earnest. They soon call Brian
over for help, because they believe it may be
related to some of the code he recently altered.
In this exchange, Carl, who is working
separately, overhears this, looks up and begins to
ask about the issue. Initially, however, Matt and
Erin reveal little information in response to his
questions and the conversation ends quickly:

Erin: Brian, have you done the lazy collection things?
Brian: [distracted with own work] Yes.
Erin: Because we have an exception
Carl: [looking up] Do you have a test fail? or just
something?
Matt: Or just something.
Carl: Because all the tests pass. Maybe we need a test
if this isn't getting caught.
Matt: We don't know what we're testing for.
Brian: I'll be there, let me just finish this.

As more time passes, Carl checks in once

again. Although Matt, Erin and Brian respond to
Carl’s statements, Carl is not included in the
subsequent conversation and Carl will return to
his work on other code:

Brian: But now the store is closed too early for this
context. And it might be good that we've exposed this.
Erin: Because it may always be closed too early.
Matt: But I thought the object rendered from the store.
Carl: No one should be closing the store?
Matt: [joking] We're open 24 hours.
Brian: What about uncommitted objects? Do we throw
away the hibernated session when we commit? If we
do, objects retrieved from that session are now stale,
need to be refreshed.
Carl: Yes, but closing the store should be the last thing
that we do before the action.
Erin: [to Brian] When we commit we throw away the
session.

As time passes, Matt and Erin grow

increasingly frustrated. At the time of the next
exchange, Erin’s responses to Brian grow less
and less substantive. Carl comes over,
unsolicited by the others, to step in and help:

Erin: There's an error.
Brian: That here? [Brian points to the screen.] There's
no error. It’s just not displaying the objects that exist.
Erin: If you try to load a container that doesn't exist?
Brian: How?
Erin: [defeated] I don't know
Brian: By ID?
Erin: [frustrated and defensive] I don't know, I'm just
saying.

Carl comes over.

Carl: So what doesn't work?
Erin: [gloomily] Everything that worked this morning.
Carl: [Carl moves to stands closely behind Brian]
Let’s go back up, I'm trying to see where this stuff
gets called from. [He instructs Brian to scroll up on
the screen.] Execute. If you open up the web server…

In the above incident, the means by which
Carl becomes aware of the situation as it
develops was largely passive, a mere fact of his
presence in a shared workspace. Once he
became aware that there was a situation, he
began to also actively solicit information.
Nevertheless, these incidents illustrate a
hallmark of awareness development on the XP-
team, namely that team members can be largely
passive, but still transmit significant information
about their work as well as acquire significant
information about the work going on around
them.

5.4 Awareness on the non-XP team

Members of the non-XP team lacked both the
consistent physical proximity with other team
members and access to a dialogue similar to that
produced by the pair programmers; consequently
they used very different mechanisms to maintain
awareness. Notably, members of the non-XP
team seemed to require more concerted attention
and effort to develop and maintain the awareness
necessary for their work.

Strategies for cultivating awareness differed
across the team members. Some team members
actively broadcasted status information to team
members. The following exchange, which
occurs some time after Nate asked Olivia to
examine the cause of a build failure, is fairly
typical:

The browser loads and Nate reviews the options on the
webpage, but a beep announces a private message on
[the CMS tool], so he checks the [the CMC tool]
window. Olivia has sent him a message, "RDS [the
name of their product] should compile on AIX now."

Nate: Apparently RDS should compile now. Let's see.

The developers regularly broadcast updates

while working through the team-wide channels
on their CMC tool, private messages on the
CMC tool, e-mail or via face-to-face
conversation. Not all broadcasting behaviors
were so explicit. Awareness information was
also available through more subtle channels,
such as casual face-to-face conversations or
technical discussions conducted on the team-

wide channels of the CMC tool. All the non-XP
team members were careful to track the technical
discussions that occurred over CMC, although
they often filtered out the social discussions.

Broadcasting behaviors reduced the effort
required on the part of other team members to
maintain awareness, although they often required
concerted effort on the part of the broadcaster.
For developers that did not broadcast, the
remaining team members often simply lacked a
basic awareness of their activities, something
that they actively complained about. During the
observation period, the team employed a
contractor named Peter, who transmitted
exceptionally little information about his work,
both by being rarely physically present in the
office and by remaining relatively silent on the
communication channels used by the team. The
team discussed Peter over lunch one day:

Nate: [to me] She [Olivia] suggested that you shadow
Peter, so you can tell us what he does! [They all laugh
heartily]
Hilary: Yeah, I don't know what he does.
Nate: Sometimes I'll see him suddenly in his cube
when I'm getting ready to leave or headed in that
direction to talk to someone and it's like, "Oh Peter's
here."
Hilary: How many days a week does he work from
home?
Nate: I don't know. I wish he would send out
schedules.
Hilary: He did for a little while, but I don't think he
likes them.
Nate: I don't even know what he's doing. [To me] So
you have to understand, Peter's been working on the
same project for six months-
Hilary: Has it been that long?
Nate: And he gives status updates in the broadest of
strokes. Like for the first two months, it was just
"working on CM!" and that was it.
Hilary: Or, "Doesn't work! Looking at it!"
Nate: He seems like a nice enough guy. I mean, don't
get me wrong, I'd like to be able to work with him
because I'm sure he's nice enough, but… [Nate trails
off]

In this discussion, we see that the team is
frustrated by the lack of information that they
have about Peter – to the extent that they feel
that they are unable to work with Peter because
they lack awareness of his work activities. Lack
of broadcasting often meant that team members
needed to actively solicit awareness information.
In a representative incident, Ryan, another
member of the team, checked in without some of
the changes he had discussed with the team on
the day before. He also failed to notify the other

team members that the addition of this
functionality would be delayed. In the course of
his work session following the check in, three
other members of the team separately contacted
him to inquire about the status of the check in.
This inquiry from Fred, is typical:

Ryan glances at the CMC tool. He’s received a
message from Fred:

I do not see any of the rrtd based client fields in the
cont_logic.c module and the cont.schema still has a lot
of gunk from the tld.schema in it. Are you updating
these now? It can not be released as it is.

Since Ryan is not making information about
his work passively accessible to others, Fred
must actively solicit this information. While not
all awareness information on the non-XP team
required active, conscious solicitation or
transmission, in general, awareness development
and maintenance on the non-XP team was a
more effortful activity than on the XP team.

6. Discussion

In the previous section, we saw a portrait of
social behavior exhibited by members of an XP
team and members of a non-XP team. In this
section, I explore the link between the adoption
of the XP methodology and these social
behaviors.

6.1 XP as organizing

XP is a framework of beliefs and practices
that transform software development into a
standard and transparent practice. These two
features, standardization and transparency, play a
crucial role in shaping the structure of an XP
team and, subsequently, in shaping the ways in
which members of an XP team go about the
work of software development.

6.1.1 Standardization. When I claim that XP
has standardized software development, I want to
first make a clear distinction between software
development and programming. XP has not
standardized programming, in the sense of
removing from it the knowledge and skill
required to do the work of programming.
Standardization does not imply a dumbing down
of the fundamental task of programming here.

What XP has, instead, done is carefully
delineated the role of the software developer in
the software development process. While work

movements in the past (ex. TQM [1] and self-
organizing teams [2]) have sought to broaden the
role of the worker, in some sense, the power of
XP comes from limiting the software developer
role. XP organizes the software developer’s role,
in part by removing certain responsibilities from
it and by giving a uniform structure to the tasks
that remain.

For software developer at work on an XP
team, there is a shared, reliable understanding of
what one’s work task is, the scope of one’s work
task, how the project’s work tasks is allotted
among fellow team members, how one should
work on one’s work task and what it means to
complete a work task. In XP team observed
here, for instance, team members understood
their task to be defined by the words written on a
set of colorful index cards that they selected off
of a board or volunteered to take on during the
morning standup meeting. They understood that
their work involved cooperatively creating
structures in code that exhibited interactions that
matched the descriptions written on the index
cards they selected, as well as helping others on
their team do the same. The team members
understood that working on their task meant
being present in the same room as their
teammates whenever possible and working,
when possible, in pairs. They also understood
that task completion meant demonstrating code
behavior to the customer and having the
customer believe that their task criterion was
satisfied.

The clear definition of these understandings is
the interpretive structure that the XP framework
brings. This is not to say that every XP team
will or should adopt the same understanding for
each of these concepts. Each team must develop
its own set of understandings, although team
convergence is no doubt encouraged through the
prescription and emphasis of particular practices
(such as Open Workspace and Pair
Programming) within the XP repertoire by the
larger XP movement.

In the XP team observed in this study, these
shared understandings manifested themselves in
the consistent, uniform patterns of work in which
the team members engaged. Their understanding
of their work role under the XP framework
required that they work at the same time, in the
same place, and in largely the same ways. The
non-XP team did not share this understanding of
software development work and therefore
exhibited a wildly different structure of work.

6.1.2 Transparency. The concept of
transparency, as I use it here, comes from Lave
and Wenger’s influential work on situated
learning [12]. Transparency to Lave and Wenger
is a process rather than an attribute, one that is a
fundamental to the practice of learning. Applied
to the work of software development,
transparency is the process by which the work
because accessible, observable and knowable to
others.

In one sense, this transparency is
unsurprising; after all, XP sprang up in part due
to a sense that available software development
processes were too opaque. That a customer or a
manager could be so unaware of a project status
that schedule slips came as a surprise was
viewed as a failing that XP might remedy [3].
But what I mean by transparency goes beyond
creating and maintaining an awareness of project
status in terms either features complete out of
features desired or working pace. XP makes
developing software visually and aurally
available. On a very basic level, a software
developer on an XP team can now regularly see
and hear others on their team, chiefly due to their
increased physical proximity and the continuous
talk produced by pair programming. Pair
programming, by its very nature, increases the
accessibility (and hence transparency) of the
programming component of software
development; the practice creates a verbal, aural
interface to cognitive act of constructing code.

These new forms of accessibility not only
allows XP team members to easily make
assessments of whether team members and
activities are “on task”, but it allows them,
throughout the course of the workday, to build
and maintain a continuing awareness of the work
that is going on around them. For the non-XP
team members, software development work is
not nearly so transparent and consequently they
must work consciously to acquire the same
information.

7. Conclusions

While past research has emphasized the
efficacy of pair programming, overlooked has
been the social effects of the XP methodology
and their role in the methodology’s effectiveness.
This study attempts to remedy, at least in part,
this oversight.

The study’s findings suggest that XP provides
a framework for standardizing the work of
software development and making this work
more effortlessly visible and accessible to

members of a software development team. The
transformations have implications for the social
relations of team members, both in terms of
behaviors enacted and understandings developed
in the course of their work. It should be noted,
of course, that the social behaviors reported in
this study are situated, local practices that have
been developed over time by the team members
in response to both the general effects of the XP
framework (or lack of it) and a specific set of
arbitrary environmental circumstances.
Therefore, while the roots of this behavior may
be constant across teams that adopt XP (or teams
that do not) and, indeed, many of the practices
observed here may be also shared, the
expectation that these behaviors be replicated
perfectly across all teams that adopt XP is
unrealistic. A major challenge of social science
research has always been to separate the
systemic causes and effects from the local ones;
it is no different here.

Standardization and transparency both have
implications beyond the behaviors explored in
this paper. The transformation of software
development into a more routine, recognizable
and accessible form of work should result, for
instance, in an equally fundamental
transformation in the process of learning. A
fruitful avenue for further study would be
examination and comparison of these learning
behaviors across XP and non-XP teams.

8. Limitations

While the conclusions reached in this work
are a result of a systematic and careful
exploration of a rich, descriptive data set,
ethnographic work always faces the question of
generalizability due to sample size. Replication
of this work with other teams and other
environments could stand to strengthen the
findings.

In addition, this study closely examines the
effects of a limited number of practices in the XP
framework, while simultaneously attempting to
consider the effects of the framework as a whole.
Since the study’s emphasis is on social
interaction, I have implicitly focused on the
practices and values most likely to shape social
interaction: the value of Communication and the
practices of the Planning Game, Open
Workspace and Pair Programming. Software
development, however, has a fundamental
technical interdependence that has not been
thoroughly explored here. Further work that
looks at this technical interdependence and the

effects of XP practices and beliefs on how teams
structure and are structured by this technical
interdependence may stand to add to our
understanding of how XP “works”.

9. Acknowledgements

This work would not have been possible
without the support and participation of all the
informants who so thoughtfully made their time
and attention available to me. In addition,
Vivian Neou, Rob Mee and Chris Sepulveda
provided invaluable assistance. For their
patience, comments and feedback, I’d like to
thank Diane Bailey, Chris Gates and Somik
Raha.

11. References

[1] Adler, P., B. Goldoftas and D. Levine,
“Ergonomics, Employee Involvement, and the Toyota
Production System: A Case Study of NUMMI’s 1993
Model Introduction,” Industrial and Labor Relations
Review¸1997, p. 416-437.

[2] Banker, R., J. Field, R. Schroeder and K. Sinha,
“Impact of Work Teams on Manufacturing
Performance: A Longitudinal Field Study,” The
Academy of Management Journal¸1996, p. 867-890

[3] Beck, K, Extreme Programming Explained,
Addison Wesley, 2000.

[4] Blumer, H., Symbolic Interactionism: Perspective
and Method, Prentice Hall, Englewood Cliffs, NJ,
1969.

[5] Cockburn, A. and L. Williams, “The Cost and
Benefits of Pair Programming” in Extreme
Programming Examined. Addison Wesley, 2001.

[6] Dourish, P., and V. Bellotti, “Awareness and
Coordination in Shared Workspace,” Computer
Supported Cooperative Work 1992 Proceedings,
ACM, 1992.

[7] Garfinkel, H. Studies in Ethnomethodology,
Prentice-Hall, Englewood Cliffs, NJ, 1967.

[8] Goffman, E. The Presentation of Self in Everyday
Life¸ The Overlook Press, Woodstock, NY. 1959.

[9] Heath, C., M. Svensson, J. Hindmarsh and P. Luff,
“Configuring Awareness,” Computer Supported
Cooperative Work¸ Kluwer Academic Publishers,
2002.

[10] Keefe, K. and M. Dick., “Using Extreme
Programming in a Capstone Project”, Proceedings of

the 6th Conference on Australian Computing
Education, ACM, 2004. p. 151-160.

[11] Layman, L., L. Williams, and L. Cunningham,
“Exploring Extreme Programming in Context: An
Industrial Case Study”, Agile Development
Conference 2004, p. 32-41.

[12] Lave, J. and E. Wenger. Situated Learning:
Legitimate Peripheral Participation, Cambridge
University Press, 1991.

[13] McDowell, C., L. Werner, H. Bullock and J.
Fernald, “The Effects of Pair-Programming on
Performance in an Introductory Programming
Course”, Proceedings of the 33rd SIGCSE Technical
Symposium on Computer Science Education, ACM,
2002.

[14] Muller, M. M. and W. F. Tichey. “Case Study:
Extreme Programming in a University Environment”,
23rd International Conference on Software
Engineering, IEEE, 2001.

[15] Nicolescu, R and R. Plummer. “A Pair
Programming Experiment in a Large Computing
Course”, CITR Technical Report, 2003.

[16] Pentland, B. T, “Grammatical Models of
Organizational Processes”, Organization Science,
INFORMS, 1995, p.541-556

[17] Perlow, L., “The Time Famine: Toward a
Sociology of Work Time”, Administrative Science
Quarterly, Cornell Business, 1999, p. 57-81.

[18] Schmidt, K. “The Problem with ‘Awareness’”,
Computer Supported Cooperative Work¸ Kluwer
Academic Publishers, 2002, p. 285-298.

[19] Strauss, A., & Corbin, J., Basics of qualitative
research: Grounded theory, procedures, and
techniques, Sage, Newbury Park, 1990

[20] Williams, L., Krebs, W., Layman, L., and Antón,
A., “Toward a Framework for Evaluating Extreme
Programming”, Empirical Assessment in Software
Engineering (EASE) 2004, pp. 11-2

	Abstract

