
Query By Templates: A Generalized Approach for Visual Query

Formulation for Text Dominated Databases�

Arijit Senguptay Andrew Dillon

Computer Science Department School of Library & Information Science

Indiana University Indiana University

Bloomington, IN 47405 Bloomington, IN 47405

asengupt@indiana.edu adillon@indiana.edu

Abstract

The WWW has a great potential of evolving into
a globally distributed digital document library.The pri-
mary use of such a library is to retrieve information
quickly and easily. Because of the size of these li-
braries, simple keyword searches often result in too
many matches. More complex searches involving
boolean expressions are di�cult to formulate and un-
derstand. This paper describes QBT (Query By Tem-
plates), a visual method for formulating queries for
structured document databases modeled with SGML.
Based on Zloof 's QBE (Query By Example), this
method incorporates the structure of the documents
for composing powerful queries. The goal of this tech-
nique is to design an interface for querying struc-
tured documents without prior knowledge of the in-
ternal structure. This paper describes the rationale
behind QBT, illustrates the query formulation princi-
ples using QBT, and describes results obtained from
a usability analysis on a prototype implementation of
QBT on the Web using the JavaTM programming lan-
guage.

1 Introduction
The SGML Standard [11] has introduced a method

for using documents as a means for information in-
terchange and retrieval. We can now use properly

�Copyright 1997 IEEE. Published in the Proceedings of
ADL'97, May 7-9, 1997 in Washington D.C. Personal use of this
material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for cre-
ating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact: Man-
ager, Copyright and Permissions / IEEE Service Center / 445
Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA.
Telephone: +Intl. 908-562-3966

yPartially supported by U.S. Dept. of Education award num-
ber P200A502367 and NSF Research and Infrastructure grant,
award number NSF CDA-9303189.

structured documents not only for the traditional pur-
poses of reading, browsing, and printing, but also for
searching and querying. Automated searches in nor-
mal word-processor documents are usually restricted
to linear word searches. However, users can use docu-
ments encoded in SGML to pose much more complex
searches involving both text content and structure.

1.1 SGML, Databases and Documents

Traditionally, documents in electronic formats like
text or word-processor documents are used mainly
for word processing, editing, publishing, and possible
reuse into other documents. The problem with these
documents is that they can not be easily used for pur-
poses other than what they are primarily designed for.
The SGML standard extends the use of electronic doc-
uments beyond word processing and towards a means
for information interchange. SGML was originally de-
signed as a portable document encoding format for
easy interchange between various platforms and sys-
tems. As stated in the standard [11], SGML was to be
used \for publishing in its broadest de�nition, ranging
from single medium conventional publishing to multi-
media data base publishing." SGML achieves this goal
by involving a modeling phase in document design
and by completely separating layout and structure.
The motivation in SGML is to de�ne the structure of
the document; and leave the layout to the process-
ing application. The process for the design of docu-
ment structure is conceptually similar to schema de-
sign in traditional databases. Applications processing
an SGML document can then use this structural con-
tent as a database schema to solve queries (searches)
on the document. This makes the treatment of docu-
ments encoded in SGML as databases for the purpose
of querying a fairly straightforward task.

1.2 Searching, querying and browsing

Traditionally, the most common method for retriev-
ing information from documents is by perusing. For
simple word-processor documents, perusing involves
sequentially scanning or paging through the docu-
ment to �nd the information of interest. This form
of searching, which we technically call \browsing", de-
pends completely upon the reader's perseverance and
visual attention. The success of the search depends
upon the reader's knowledge of the subject matter,
the organization of the text, and similar factors. The
recent advent of hypertext documents has changed the
traditional sequential method of browsing. Brows-
ing in hypertext documents is considered non-linear
[14, 21] { usually performed by following links in the
document to other related areas of the same document
or entirely di�erent documents.

Although hypertext documents may provide a more
exible way of browsing, �nding information in hyper-
text documents by browsing still requires human in-
telligence, knowledge and experience. Whether read-
ers are more comfortable with screen reading or paper
reading is a debatable question[8]. Research shows
strong evidence of paper as a more natural means of
reading [7, 9] as well as a means to rectify the problems
with reading from a screen [10, 16].

One major advantage of electronic documents over
their paper counterpart is the capability of automated
searching. Many information retrieval techniques have
been proposed [20] that can quickly extract portions of
documents matching given keywords. Similar searches
can be quite di�cult in paper documents[8]. However,
keyword searches do not often retrieve the target doc-
uments. For large documents combining text with the
logical structure of documents is often necessary. In
many cases, many component search conditions need
to be combined using boolean expressions to build a
narrower search. For example, a reader might be look-
ing for papers in a journal authored by \Jane Doe"
with a title containing \creature". These types of
searches are less common in traditional information
retrieval systems which lack the capability of involv-
ing structure in searches. Searches involving structure
and complex operations such as join have been the
object of recent research [4, 1]. In this paper, we will
refer to such searches as \queries".

2 Query languages for structured doc-
uments

The object of developing languages for the pur-
pose of querying is to attain the capability of in-
volving complex operations involving text (data) and
structure (meta-data). Traditional query languages

for relational databases have the capability of using
the schema information e�ectively. Since the basic
structure of relational databases consists of at tables,
query languages for relational databases do not usu-
ally deal with complex hierarchical structures. How-
ever, query languages for document databases need to
e�ectively use the document hierarchy. Research on
query languages for documents has unearthed a num-
ber of such languages. Two very useful surveys of such
languages and systems can be obtained from [13, 3].

Most database systems implement speci�c database
models, such as the relational model and Object-
Oriented (OO) model. These database models are
based on strong theoretical foundations and have for-
mal procedural languages to manipulate data. In
the case of relational databases, the most commonly
used query languages are SQL(Structured Query Lan-
guage) [2] and QBE (Query By Example)[22]. SQL
is a textual language with a simple English-like syn-
tax, and is widely implemented in most commercial
database systems. QBE provides a visual method for
posing queries and is suitable even for inexperienced
users. This section describes some previous work done
in the area of visual query formulation, and derives the
motivation behind the current research.

2.1 Visual languages and interfaces

This paper presents the design of a visual inter-
face for the purpose of querying document databases.
Although many di�erent types of procedural query
languages have been proposed so far, not enough at-
tention has been devoted towards providing visual
methods for query formulation. Current implementa-
tions primarily use form-based approaches for building
queries. In this section, we take a closer look at QBE
and form-based querying.

Query By Example (QBE). Query By Exam-
ple [22] is a visual language for querying relational
databases. This language has a simple interface com-
posed of tabular skeletons representing tables in the
database. Users specify queries by entering sample
values (or examples) in appropriate areas of the table
skeleton. These values can be either search strings or
variables for the purpose of join and other operations
that require variables. QBE can also handle complex
boolean combinations of such search expressions us-
ing a special section of the screen (termed condition
box). Aggregation operations such as sum, count and
average can also be performed by indicating appropri-
ately in the tabular skeleton. Figure 1 shows a simple
join operation using QBE as implemented in a popular
database system. The main idea behind this method is
that the user provides an example of outputs that she

expects from her query, and the query engine looks in
the database for data that matches the given exam-
ple. This works nicely for relational databases, pri-
marily because the tabular structure of the database
�ts quite well with tabular skeletons used in the inter-
face. Some useful properties of QBE are:

Simplicity The core QBE does not require the
knowledge of any syntactic constructs or the internal
structure of the database to use.

Equivalence relational databases are stored in ta-
bles, and in QBE, the queries are entered into equiv-
alent table skeletons.

Closure Users give examples of the type of values
that they are looking for, and the result of the queries
shows up as tables in the same format as the data.

Completeness The core QBE, along with some
additional commands, condition boxes and other con-
structs, can construct the same class of queries as re-
lational algebra.

These properties make QBE a complete language
that can adapt to any relational schema and make
querying almost independent of the users' knowledge
of the structure of the data. In a later section we
will show how our approach keeps all these proper-
ties in a generalized interface designed primarily for
documents, but applicable to any complex structured
data.

Query By Forms. Although QBE is a formally ac-
cepted direct-manipulation visual language for rela-
tional algebra, most relational database systems still
do not universally use or implement it. Some com-
monly used relational database systems implement dif-
ferent variations of QBE, but application developers
designing query interfaces for a speci�c purpose sel-
dom use the QBE method directly in their implemen-
tations. In these cases, developers use form-based in-
terfaces.

In form-based interfaces, the user is presented with
a list of searchable �elds, each with an entry area that
can be used to indicate the search string. To pose a
query, the user needs to �ll in the areas of the form
relevant to her search. A more general form interface
would have options of specifying boolean operations.
As part of the comparison process in the current work,
we implemented a version of the form interface that
can work with current world-wide-web technology [see
Figure 8]. Search interfaces employed by most web
search engines also use interfaces similar to the one
shown here.

2.2 Other query visualization approaches

Here we describe two experimental systems that use
interesting visualization techniques for the purpose of
information retrieval on complex structures. Although
the approaches here are directed primarily towards vi-
sualization of data, they do provide useful incentive in
this work.

TEXTVIZ. TEXTVIZ[6] is a system for intuitively
visualizing, searching, and querying the contents of
large text databases under development at TASC.
This method uses a map-like representation of docu-
ments that shows users how components of documents
are related to each other in the collection. It pro-
vides two levels of text database information { (1) a
macro perspective, giving a top-level view of the whole
database using the topographic map, and (2) a micro
perspective focusing upon the conceptual content of
each document component. TEXTVIZ uses a natu-
ral language or text processing front-end to extract
meaning about the contents of a document database.
It then generates and displays a text map portraying
these contents. This provides the user the ability to
comprehend the entire database at once, giving the
user a global perspective of the organization of the
contents of the database.

AIR and SCALIR. AIR (Adaptive Information Re-
trieval) and SCALIR (Symbolic and Connectionist
Approach to Legal Information Retrieval) are two sys-
tems described by Rose et al.[18] that use a connec-
tionist approach to the information retrieval problem.
AIR's goal is to build a representation that will re-
trieve documents that are more likely to be relevant
to particular queries. In order to achieve this, users
begin a session with AIR by describing their informa-
tion need using a very simple query language. Sub-
sequently users can re�ne their queries by specifying
multiple clauses or by navigating links shown by the
system. SCALIR is an IR system for retrieving cases
about copyright law. Internally, SCALIR contains a
network of nodes representing terms, court decisions,
and statute sections. A query consists of the acti-
vation of a few selected nodes. This activation is
spread throughout the network, building the retrieval
set from the activated nodes.

Although the methods described in this section pri-
marily apply to data visualization, the direct manip-
ulation of the data in its natural form and constant
modi�cation of the display based on the current sta-
tus of the query has signi�cant inuence in the design
of QBT.

Figure 1: A sample QBE screen from Paradox for Windows

3 Query By Templates (QBT)
The current work generalizes QBE for databases

containing complex structured data. QBE is very
suitable for relational databases, since it uses tabular
skeletons(analogous to tables in the relational model)
as a means for constructing queries. In other words,
the template for presenting queries in QBE is simi-
lar to the internal structure of the database. We use
this idea to generalize QBE for any type of database in
which each data instance has a simple visual template.
In this generalized method (that we term \Query By
Templates",) the basis of the interface is a visual tem-
plate representing an instance of the database. Simple
examples of templates are: a small poem for poetry
databases, a table for relational databases, a sample
word de�nition for a dictionary database, and a sam-
ple entry in a bibliography database. Any database
that has a simple visual representation of its content
can be used with QBT. For databases that do not have
a general visual content, we can always revert to tables
for the template.

The main goal for using QBT is to retain all the
prominent properties of QBE. The intended proper-
ties of QBT that are analogous to those of QBE (as
discussed in Section 2.1) are (i) simplicity, (ii) equiva-
lence, (iii) closure and (iv) completeness. This section
describes templates in greater detail to explain to ba-
sic design of QBT.

3.1 QBT: the basic design

At the simplest level, a QBT interface displays a
template for a representative entry of the database.
The user sees an example of the type of data she would
expect to �nd in the database, such as a poem in a
poetry database. She speci�es a query by entering ex-
amples of what she is searching for in the appropriate
areas of the template, and the system retrieves all the
database entries that match the example she provided.
To illustrate the interface, we use a simple template
for a poetry database, as in Figure 2. In this �gure,

Stanza

First Line

Poem Title

Collection Historical Age

Poet Name

Any line

by Felicia Hemans

 Shone round him o’er the dead.

 As born to rule the Storm,
The Creatures of Heroic blood
 A proud, though child-like form.

Casabianca

The boy stood on the burning deck
 Whence all but he had fled,
The flames that lit the battle’s wreck

Yet beautiful and bright he stood,

Poems by Felicia Dorothea Hemans 1808 (Early Eighteenth Century)

Figure 2: A simple template for poems, with its logical
regions

we indicate a prominent logical region of the poem by
circling it and labeling it with the corresponding re-
gion name. Physically the QBT interface consists of
a small template image divided into areas correspond-
ing to di�erent logical regions in the database, as in
Figure 2. Depending on the layout of the regions, the
templates can be of di�erent types, and these di�erent
types are described in the next sections.

3.2 Flat templates

As described in the previous section, QBT relies on
the presence of a simple visual template for the in-
stances in the database. In most cases, this template
could be planar or at. This means that all logical re-
gions of the template can be displayed simultaneously
in a two dimensional image without overlapping(like
in Figure 2). We call these templates \at templates".
Flat templates are usually easier to display and use,as
the structural regions can be simultaneously displayed
in a plane, possibly by showing multiple instances of
some regions. For example, in Figure 2, the First Line
and Any Line regions are subregions in Stanza. To dis-
play these subregions, the template needs to include a
second stanza which is broken into its components.

(b)

Stanza

Any line

First line

by Felicia Hemans

(a)

Casabianca

The Creatures of Heroic blood
 A proud, though child-like form.

Stanza

First line

Any line

 As born to rule the Storm,

The boy stood on the burning deck
 Whence all but he had fled,
The flames that lit the battle’s wreck
 Shone round him o’er the dead.

Yet beautiful and bright he stood,

The flames that lit the battle’s wreck
 Shone round him o’er the dead.

Yet beautiful and bright he stood,
 As born to rule the Storm,
The Creatures of Heroic blood

 Whence all but he had fled,

Casabianca
by Felicia Hemans

The boy stood on the burning deck

 A proud, though child-like form.

The boy stood on the burning deck

 Whence all but he had fled,
The flames that lit the battle’s wreck

 Shone round him o’er the dead.

Figure 3: Templates with (a) Embedded Regions and (b)Recursive regions

3.3 Nested templates

Although at templates are easy to display and
navigate, they cannot model structures with deep lev-
els of nesting. In this case, we use templates that can
be nested. In nested templates, regions are allowed
to overlap. In particular, certain regions can be com-
pletely inside other regions to represent subregions.
To display embedded logical regions, we use one of
the following methods:

Embedded Regions In this method, subregions
are displayed inside the parent region. As in at tem-
plates, all regions are displayed simultaneously in the
same plane of the image. Component regions no longer
need to be mutually exclusive. This method is a sim-
ple extension of at templates, but it makes templates
much more powerful while retaining the simplicity.
However, this method is again limited to structures
in which the nesting level is not very deep and the
top-level region is physically large enough to include
all the nested regions without completely obscuring it-
self. An example of this type of nesting in shown in
Figure 3(a).

Recursive regions This is the most general method
of nesting regions. In this method, a region with sub-
regions can be recursively expanded. During traversal,
the user may \zoom in" to a parent region to display
its subregions. The magni�ed portion of the template
can be an independent template, and can be subse-
quently magni�ed to get to additional levels of nest-
ing. Although this method can capture any general
structure, the templates have to be cleverly designed
so that users are not disoriented by the nested tem-
plates. Figure 3(b) shows this method of displaying

internal structures for the same poem example.

3.4 Structure templates

Structures, particularly large ones, may get too
complex to use nested templates. In these cases, it is
often necessary to display the internal structure simul-
taneously with a template that displays the relative
position of the current region. As mentioned earlier,
most documents can be thought of as having a hier-
archical structure that can be conveniently visualized
as a tree. Showing a template simultaneously with a
hierarchy of logical regions depicting the context sim-
pli�es the nested structure visualization. An example
of the structure template is shown in Figure 7, which
is a screen-shot from the prototype implementation of
QBT, described in Section 5.

4 Querying with QBT
Normal keyword searches bounded by structural re-

gions are simple in the QBT interface. As described
earlier, users express their queries by indicating the
search keywords in the appropriate regions of the tem-
plate. In this section, we show all the di�erent types
of possible searches that can be performed with QBT.

One can treat QBE[22] as a special case of QBT
where the templates used are table skeletons that in-
stantiate tables in the database. In QBE, queries
are speci�ed by entering values in proper positions
of the tables. These values may be either constants
(i.e., strings or numbers), variables (or examples, usu-
ally di�erentiated from the constants by underlining),
or expressions involving constants and variables com-
bined with arithmetic and comparison operators. The
output of the query is speci�ed by marking the regions
that need to be presented in the output. QBT uses the

 Shone round him o’er the dead.
The flames that lit the battle’s wreck

The boy stood on the burning deck
 Whence all but he had fled,

by Felicia Hemans

Casabiancahate

love

 Shone round him o’er the dead.
The flames that lit the battle’s wreck

The boy stood on the burning deck
 Whence all but he had fled,

by Felicia Hemans

love

CasabiancaNOT "hate"

OR

(a) (b)

Figure 4: Query formulation with QBT: (a) Simple selections and (b)Logically combined selections

same basic principle, with the extension that the tem-
plates are not restricted to table skeletons but can be
any visual representation of the database instances.

The primary di�erence between the method of ex-
pressing queries in QBT and that in QBE lies in the
fact that the templates in QBE are essentially one-
dimensional. Although QBE uses a 2D tables for
querying, the meta-data (attributes of the relations)
only appear along the horizontal axis as column head-
ings of the tables. QBE uses the rows to specify mul-
tiple search conditions and logical operations between
the search conditions (see examples in [22].) In QBT,
the regions (meta-data) are distributed along both di-
mensions of the template, utilizing whole template
plane for visualizing the structure. Logical operations
between regions can be expressed by physically con-
necting two or more regions via a logical operator.
Logical operations within regions can be formed using
logical expressions within the scope of that region. In
the rest of this section, we discuss how di�erent types
of queries are performed using QBT.

4.1 Simple selections

Simple selections include searching for constant
strings or numbers within logical regions of the doc-
ument (the whole document itself being one region).
In QBT, such searches are performed by simply en-
tering the search string in the corresponding region of
the template. As a result of such a search, database
instances rooted at a default region that match all
the speci�ed conditions are returned. In other words,
the given search criteria are combined using a logical
conjunction operation. The result of the query is by
default rooted at a preselected region de�ned by the
template. However, users can mark the regions that
they want returned by placing a print-marker on them.

In the illustrations (see Figure 4), the small tick-
mark (

p
) is used as a print indicator. In the exam-

ples, Figure 4(a) denotes the simple query: \Find the

poem titles and poets of all the poems that have the
word hate in the title and the word love in the �rst
line." Note that unlike QBE, searches are substring
matches instead of exact string matches. So, entering
the word \love" in the region \�rst line" matches all
poems with the �rst line containing the word \love"
anywhere in the �rst line. In QBE, this is done by in-
dicating examples before and after the search string.
In case of documents, substring matches make more
sense since exact searches are far less common.

4.2 Selections with multiple conditions

We have just seen that if multiple conditions are
speci�ed in di�erent regions, they are combined us-
ing logical conjunctions, implying that the results re-
turned from the query will satisfy all the speci�ed
search conditions. If this is not desired, search con-
ditions can be combined using logical operators AND,
OR, NOT. Negation of individual conditions are done
by placing the keyword \NOT" in front of the string.
Implementations of the interface may use some visual
mechanisms to place this negation keyword. Con-
necting various search strings using the binary oper-
ators \AND" and \OR" involves simply connecting
the two strings using a pointing device and selecting
the proper operation type for that connection. Fig-
ure 4(b) demonstrates how this is done by expressing
the query: \Find the poem titles and poets of all po-
ems that either do not have the word `hate' in the title
or have the word `love' in the �rst line." Notice the in-
troduction of the negation and the \OR" connection.

Note that if multiple clauses are connected using
logical constructs, the order in which the expressions
are evaluated depends on the direction of the arrow.
However, it is possible to override this order of evalua-
tion by placing parentheses in appropriate places in a
condition box, which we will demonstrate shortly (see
Section 4.4).

The flames that lit the battle’s wreck
 Shone round him o’er the dead.

Casabianca
by Felicia Hemans

The boy stood on the burning deck

Casabianca example1example1

by Felicia Hemans

 Whence all but he had fled, Whence all but he had fled,
The boy stood on the burning deck

The flames that lit the battle’s wreck
 Shone round him o’er the dead.

Figure 5: Query formulation with QBT: Joins

 Shone round him o’er the dead.
The flames that lit the battle’s wreck

The boy stood on the burning deck
 Whence all but he had fled,

by Felicia Hemans

Casabiancahate

love

shakespeare
OR

TITLE AND POET OR FLINE

TITLE AND (POET OR FLINE)

(b)

(a)

Figure 6: Changing precedence of operations with Condition boxes

4.3 Joins and multiple templates

In this section, we look at a special class of query
called \join". A join is an operation using which mul-
tiple fragments of a database are combined together
based on some common property. Joins are indispens-
able in relational database, since the relational de-
sign involves \normalizing" a schema by breaking it
into at tabular fragments. This fragmentation neces-
sitates combining the individual fragments together
at the time of query processing using the join oper-
ation. However, in document databases, the struc-
ture is not normalized into planar fragments, but al-
lowed to grow hierarchically, so joins are not required
to combine fragments. However, joins are still useful
to solve queries that requires comparison of di�erent
parts of a database or di�erent instantiations of the
same database.

For example, one may try to \�nd the pairs of poets
who have at least one poem with a common title" (as
in Figure 5). In this case, we need to generate two in-
stances of the poetry database and run the query com-
paring the titles of the two poems. This is achieved in
QBT by using multiple templates. In the case of the
above query, the same template is instantiated twice,
and the join attributes are connected together. The
connection can be augmented with comparison opera-

tors to specify joins other than \equi-joins" (joins that
use equality on the join attributes). Once again, in the
case of asymmetric comparison operations, the prece-
dence of the operators is determined by the direction
of the arrow. Although we are still using underlined
examples to highlight the joins, they are redeemed un-
necessary by the use of the joining arrow.

4.4 Queries with complex conditions

Like QBE, QBT cannot always enable visualiza-
tion of complex conditions involving more than two
regions. These conditions need to speci�ed using a
condition box. The condition box can also be used to
override the precedence of operators. As search strings
and examples are speci�ed, the condition box is auto-
matically updated. The user can then insert parenthe-
ses as necessary to change the default precedence. For
example, in Figure 6, if the default precedence is used,
the query evaluates to: \Find the poem titles and po-
ets of the poems in which either the title contains
`hate' and the poet is Shakespeare, or the �rst line
contains `love'." The default condition box is shown
in Figure 6(a). However, this default can be changed
to: \Find the poem titles and poets of the poems in
which the title contains `hate', and either the poet
is Shakespeare, or the �rst line contains `love'." The
condition box of this query is shown in Figure 6(b).

The condition box can also be used for specifying more
complex conditions involving more than two variables
in an expression. The condition box functions in the
same manner as the condition box in QBE.

5 A prototype implementation of QBT
We built a prototype1 of the QBT interface using

the JavaTM programming language. The prototype
implements most of the features described here includ-
ing the embedded template (without recursive magni-
�cation) and the structure template. We have not yet
incorporated the condition box in this prototype, but
it will be added in the next release. We also included
an experimental version of an SQL language transla-
tor from the QBT query. Figure 7 shows two parts of
the screen { one showing the template screen and the
other showing the structure template.

As an experiment, we used the Chadwyck-Healey
English Poetry database with templates similar to
those described in this paper for performing the
queries. We used the JavaTM language to build the
user interface. Queries generated using the interface
are sent to a query engine by the HTTP (HyperText
Transfer Protocol) protocol, which is run from a web
server as a CGI (Common Gateway Interface) exe-
cutable. The engine generates its output in HTML
which is displayed by the clients. We wrote the engine
in C/C++, using the API (Application Programming
Interface) provided by the Pat [17] software. However,
due to limitations of the processing capabilities of Pat,
this engine does not support variables or joins. A part
of the current research is aimed at building a database
engine that will support queries such as join, grouping,
and nesting, without converting the documents into a
di�erent database format.

6 Usability analysis
We performed an initial phase of usability analy-

sis on the prototype interface. The main goal of this
analysis was to detect di�erences between this inter-
face and a standard forms-based interface with similar
search capabilities. In particular, we were interested
in di�erences with respect to (1) accuracy, (2) e�-
ciency and (3) satisfaction. This section describes the
method used during the experimental evaluation of the
new Java-based (QBT) interface.

6.1 Experimental design

The experiment consisted of two primary parts. In
the �rst part, we gave the subjects ten questions {

1The current version of the prototype can be seen
at: http://blesmol.cs.indiana.edu:7890/projects/SGMLQuery.
Note that only the interface is accessible from outside Indiana
University. The results of the queries cannot be viewed from a
remote location because of copyright restrictions.

Figure 8: The form implementation of the query in-
terface used in the usability analysis

among which we prepared nine, and left the tenth
question open to the subject's imagination. All sub-
jects were given the same set of questions (see Ap-
pendix A.) The questions varied in complexity and
were designed so that all except one returned some
matches. The subjects were to answer the questions
using the search interface and to write down the num-
ber of matches returned by the search, after making
sure that the question was interpreted properly by the
searching program. The independent and dependent
variables for the experiment are outlined below:

Independent variables:

A. Interface type, (1) New Java-based QBT inter-
face, and (2) generic form-based interface;

B. Subject type, (1) expert, and (2) novice.

Dependent variables:

1. E�ciency: The amount of time in seconds the
subjects take to answer each question.

2. Accuracy: The degree of accuracy of the answers.

3. Satisfaction: How satis�ed the users were after
using the interface (measured by self-reports in
written debrie�ngs.)

Twenty subjects were chosen for the experiment.
The experiment was conducted using a \between-
users" strategy[19], where two distinct groups of users
use the two platforms. In our experiment, ten sub-
jects were given the Java-based interface (see Fig-
ure 7), while another ten (�ve novices, �ve experts)
were given the form-based interface (see Figure 8).

After the subjects �nished the questions, we asked
them to complete a small survey of their experience
with databases and query engines. The survey also
asked them to compare the interface with a standard
web-search interface that they have used.

Figure 7: A screen shot-from the prototype showing the template and structure

6.2 Subjects

Subjects were students who volunteered to par-
ticipate in the research. There were no major re-
quirements from the subjects except that they all
be Indiana University a�liates, because of the copy-
righted nature of the database on which we performed
the experiment. We divided the subjects into two
groups based on their experience with computers and
databases. The subjects classi�ed as \novices" had
minimal computer expertise { generally limited to
only e-mail and occasional World Wide Web access.
The subjects classi�ed as \experts" were people ac-
customed to using databases and the web as well as
designing and programming graphical user interfaces.
We made no distinctions between male and female
subjects, since it was not one of the independent vari-
ables in this analysis (eleven female and nine male
subjects participated in this study.)

6.3 Equipment - software and hardware

We performed all the experiments using Netscape
2.0 for the Java-based interface and either Netscape
2.0 or 1.1 for the form-based version. For the Java-
based interface, we restricted experiments to ma-
chines having 16MB or more system memory, since
Netscape's Java performance is sub-standard with less
memory. However, for the other interface, no memory
restriction was enforced since the HTML forms do not
have additional memory requirements.

6.4 Data collection

We collected two types of written data: (1) the sub-
jects' responses to the survey questions and (2) the
subjects' responses to the number of matches for each
search problem (please see Appendix A for the actual

questions). The subjects were timed automatically by
the server and the query engine that was actually ex-
ecuting the queries.

Basic procedure. The subjects were introduced to
the experiment and the target interface. After an ini-
tial introduction, the subjects were given the experi-
mental queries and asked to input them sequentially,
and to note down the number of matches returned by
the database for every query. They were also asked to
verify their results to eliminate typographical errors
by checking the response from the database and look-
ing at sample results from their search. After they
�nished the queries, they were given a set of survey
questions which they were to answer. They were also
asked to verbally describe their feelings and general
reactions from their use of the systems.

Experimental queries. A set of nine queries (see
Appendix A) were given to each subject. For the tenth
query, they were asked to search for something of their
own interest. The �rst and the easiest query was pri-
marily meant for the subjects to get acquainted with
the system, and the last query was mainly to see what
types of questions users often search for. The queries
ranged from very simple searches involving a single
clause in a �eld to complex searches involving up to
four clauses combined together.

Timing technique. The subjects were timed by elec-
tronic means. Whenever a user submitted a query us-
ing either interface, the server logged the access time.
Also, the query engine that we designed logged timing
and other detailed information about the queries sent
by the users. We also designed the Java interface so
that it would send log messages to the server. This al-

lowed the server to keep track of all the actions (such
as button press and query selection) that the user took
over the course of submitting the queries.

Survey questions. In addition to the queries, we
gave the users a small set of questions to express their
experience, preferences, and the degree of satisfaction
with the interface. They were also asked to point out
features that they liked or disliked in the system that
they used.

General feedback. After the experiment was over,
the subjects were asked to comment on their general
feelings about the project; and their comments and
suggestions were noted. This data was primarily used
for the purpose of designing improved features for the
current interface.

7 Results
This section describes in detail the results that we

obtained from the usability analysis. We divide the
results in three di�erent sections, one each for the de-
pendent variables | accuracy, e�ciency, and satis-
faction. For each of the measures, we performed a
multivariate ANOVA test with a :05 signi�cance level.
In addition, for the accuracy and e�ciency measures,
we show the results for all ten questions, and make
appropriate inferences based on the results.

In the following analysis, for the independent vari-
able \Interface type", the Java interface (Figure 7) is
given a value of 1 and the form interface (Figure 8)
is given a value of 2. For the independent variable
\Subject type", the values of 1 and 2 are assigned to
experienced and novice users, respectively. The tasks
are denoted as \qns1" through \qns10".

7.1 Accuracy

We took the accuracy measures by evaluating the
answers to each question in 0�5 scale. Perfect answers
were given 5 points and completely wrong answers (of
course, there were none in the experiment) were given
0 points. Based on the type of mistake the users com-
mitted, their answers were given a value between 1
and 4. For the other questions, there was no signif-
icant di�erence between either the two interfaces or
the two groups of users. The multivariate ANOVA
analysis did not show any signi�cant e�ect of either
the interface type or the user type, or a combination
of both with respect to accuracy. See Table 1 for a
summary of the signi�cance values for the ten ques-
tions.2

2For questions 1,2,4 and 10, all the participants got the cor-
rect result, so there was no variance in the outcome of these
questions.

7.2 E�ciency

For the e�ciency measure, we used the time (in sec-
onds) between two successive submissions of queries.
The absolute times at which (1) the system was �rst
accessed and (2) the queries were submitted, were
logged by the query processing system, and we cal-
culated the di�erence between these times to get the
time taken for each task by the subjects. For the �rst
task, we used the time di�erence between the �rst ac-
cess of the search page and the submission of the �rst
task. This turned out to be a problem (as indicated
by the results,) since the Java interface page did not
have any other text besides the search interface itself,
while the form interface had some instructions in it
which most of the subjects spent time reading, be-
fore composing the �rst query. Table 2 shows that ex-
perts were signi�cantly more e�cient than the novices
on both the types of interfaces. However, except for
Task 1 and Task 7, there was no signi�cant e�ciency
di�erence between the two interfaces.

For Task 1, the subjects using the Java interface
performed signi�cantly better than the subjects us-
ing the form interface, and the possible explanation
is given above. For Task 7, the users of the form in-
terface performed signi�cantly better than the users
of the Java interface. On a detailed analysis of the
subjects' actions, we found that this task required the
users to switch to a di�erent screen for the Java in-
terface, and most of the users could not understand
the necessity for this action. This will be recti�ed
when all three screens are displayed simultaneously;
as users will not have to discover something new in
order to perform this query.

Table 2 displays the results we obtained from the
multivariate tests of signi�cance. The values show
clearly that the combined e�ect of both the interface
and subject type was signi�cant only for Task 1. The
e�ect of subject type was de�nitely signi�cant on al-
most all the tasks - the experts were signi�cantly more
e�cient on both the interfaces. However, the interface
di�erence did not have any signi�cant e�ect on all the
tasks except Task 1 and 7; and the reasons are already
explained above.

7.3 Satisfaction

For the satisfaction measure, the users were asked
to grade the interface that they used in a scale of �ve
qualitative values: Much better, Little better, About
the same, Worse, Absolutely worse. These �ve classes
were given the ranks 5,4,3,2 and 1 respectively. This
data was taken after all the actual tasks were per-
formed, and was not calculated on a task-by-task ba-
sis. As before, a Multivariate ANOVA measure was

E�ectnTrial no. Qns1 Qns2 Qns3 Qns4 Qns5 Qns6 Qns7 Qns8 Qns9 Qns10

Subject - - 0.332 - 0.624 0.332 0.743 0.332 0.811 -
Interface - - 0.332 - 0.153 0.332 0.332 0.332 0.477 -

Interaction: subject & interface - - 0.332 - 0.624 0.332 0.201 0.332 0.477 -

Table 1: Signi�cance values for Accuracy

E�ectnTrial No. Qns1 Qns2 Qns3 Qns4 Qns5 Qns6 Qns7 Qns8 Qns9 Qns10

Subject 0.003 0.085 0.029 0.220 0.000 0.004 0.001 0.000 0.018 0.004
Interface 0.000 0.726 0.696 0.522 0.420 0.660 0.001 0.452 0.897 0.927

Interaction: subject & interface 0.006 0.379 0.446 0.494 0.830 0.054 0.066 0.101 0.934 0.912

Table 2: Signi�cance Values for E�ciency

taken on this data. This clearly shows a signi�cant
e�ect of interface on the satisfaction of the subjects.
However, the satisfaction was independent of subject
type or the combined e�ect of interface and subject
types (see Table 3).

8 Discussion and conclusion
QBE and forms are both quite popular means for

querying in the relational domain. The main advan-
tage of the form interface is that it is very simple
to implement and easy to use for small databases.
However, forms do not adapt very well for databases
with a very complex structure, and most text-based
databases tend to have a very complicated structure
(for instance, the Chadwyck-Healey database used in
the prototype contains over �fty logical regions.) A
form interface that can search on only a few of these
areas is easy to construct, but if the number of search-
able regions is increased, the usability gets question-
able. On the other hand, a structure template can be
easily used to navigate through complex hierarchical
structures. Even for complex hierarchies, the focus
can be concentrated in the regions of interest using
advanced methods like di�erential magni�cation [12].

Another advantage of the template method is its
direct relationship to the internal structure of the
database. Forms always look the same, whether the
underlying database is a poem, a dictionary, a quo-
tation collection, or even a relational database. How-
ever, templates can be custom-designed for di�erent
types of databases. This way, templates can pro-
vide a direct reection of the users' mental models
[5, Ch.6], a signi�cant factor in the design of good
user-interfaces. Moreover, templates use the principle
of familiarity [15], which is demonstrated to work well
for novice users. The only disadvantage of templates
is that good templates require expensive graphics ter-
minals, while forms work quite well with terminals
without graphics capabilities. However, with the ad-
vance in technology, non-graphics terminals are less

common, so the assumption of a graphics-capable ter-
minal is not very demanding.

The implementation of QBT in this work is in an
early developmental stage, and has substantial poten-
tial for improvement. The experiment we performed
clearly indicated some of the ways it could be im-
proved. However, in spite of being a prototype in-
terface, this QBT implementation demonstrates that
QBT is suitable for querying textual databases using
a simple graphical interface. Moreover, QBT is at
least as e�cient and accurate as the general form-
based approach, and signi�cantly more satisfying to
the users. We believe that the idea behind QBT will
give us a starting point for query interfaces in future
text database systems. A signi�cant portion of the
current research is aimed towards the theoretical sta-
bility and soundness of the QBT concept, and once
established, this method has the potential of being
the standard querying mechanism for text databases.

Acknowledgments

We are very thankful to the subjects of our usability
analysis for their participation and cooperation. We
are also grateful to the LETRS (Library Electronic
Text Resource Service) subdivision of Indiana Univer-
sity Library, and especially ex-directors Richard Ellis
and Mark Day for allowing us to use the Chadwyck-
Healey Database for this research. We would also like
to thank Prof. Dirk Van Gucht, Computer Science,
Indiana University, for his careful reading and useful
comments.

A Tasks used in the usability testing
1. Find the poems written by \Shakespeare".
2. How many poems were written in the Middle En-
glish Period age (MEP)?
3. Find all the poems written in the Early 19th Cen-
tury period (C19A) that have the word \burning" in
the �rst line.
4. Find the poems that have the word \hate" in the
title and the word \love" in the �rst line.

E�ect Interface and Subject Type Subject Type Only Interface Only

Signi�cance values 1.000 0.503 0.014

Table 3: Signi�cance Values for Satisfaction

5. Find the poems not written by \Hemans" that have
the word \wreck" somewhere in a stanza.
6. Find the poems written during the Early 18th Cen-
tury (C18A) which have the word \love" in the collec-
tion title, as well as in the poem title, but not in the
�rst line.
7. Find the poems that have the phrase \expostula-
tion and reply" anywhere in the body of the poem.
8. Find the poems written by Keats that do not have
the word \mortal" in any of the stanzas.
9. Find the poems written by Shakespeare that has
the phrase \to be or not to be" somewhere in the poem
body.
10. Write a query of your own from your interest in
poems, and indicate the number of matches you found
for that query.

References
[1] Serge Abiteboul, Sophie Cluet, and Tova Milo. Query-

ing and updating the �le. Proceedings, 19th Intl. Con-
ference on Very Large Data Bases, pages 73{84, 1993.

[2] American National Standards Institute, New
York. ANSI X3.135-1992 and ISO/IEC 9075:1992,
Database Language SQL, 1992.

[3] Ricardo Baeza-Yates and Gonzalo Navarro. Integrat-
ing contents and structures in text retrieval. SIGMOD
Record, 25(4):67{79, March 1996.

[4] Ricardo A. Baeza-Yates and Gaston H. Gonnet. Ef-
�cient text searching of regular expressions. Proceed-
ings, 16th International Colloquium on Automata,
Languages, and Programming, pages 46{62, 1989.

[5] Paul Booth. An Introduction to Human-computer In-
teraction. Laurence ErlBaum Associates Publishers,
1989.

[6] Nathan Combs. Large text database visualization.
Advances in Classi�cation Research, Proceedings of
the 3rd ASIS SIG/CR Classi�cation Research Work-
shop, 3, Oct 1992.

[7] A. Creed, I. Dennis, and S. Newstead. Proof-reading
on VDUs. Behavior and Information Technology,
6(1):3{13, 1987.

[8] Andrew Dillon. Designing Usable Electronic Text: Er-
gonomic Aspects of Human Information Usage. Tay-
lor & Francis, London; Bristol, PA, 1994.

[9] J.D. Gould, L. Alfaro, V. Barnes, R. Finn,
N. Grischkowsky, and A. Minuto. Reading is slower
from crt displays than from paper: Attempts to iso-
late a single variable explanation. Human Factors,
29(3):269{299, 1987.

[10] J.D. Gould, L. Alfaro, R. Finn, B. Haupt, and A. Min-
uto. Reading from crt displays can be as fast as read-
ing from paper. Human Factors, 29(5):497{517, 1987.

[11] International Organization for Standardization,
Geneva, Switzerland. ISO 8879: Information
Processing { Text and O�ce Systems { Standard
Generalized Markup Language (SGML), 1986.

[12] T. Alan Keahey and Edward L. Robertson. Tech-
niques for non-linear magni�cation transformations.
In Proceedings, Visualisation '96 Information Visual-
ization Symposium. IEEE, October 1996.

[13] Arjan Loe�en. Text databases: A survey of text mod-
els and systems. SIGMOD RECORD, March 1994.

[14] Ted Nelson. Literary Machines, volume Version 87.1.
Published by author, 1987.

[15] Donald Norman. The Design of Everyday things.
Doubleday Currency, 1990.

[16] D. Oborne and D. Holton. Reading from screen versas
paper: there is no di�erence. International Journal of
Man-Machine Studies, 28(1):1{9, 1988.

[17] Open Text Corporation, Waterloo, Ontario, Canada.
Open Text 5.0, 1994.

[18] Daniel E. Rose and Richard K. Belew. Toward a
direct-manipulation interface for conceptual informa-
tion retrieval systems. Interfaces for Information Re-
trieval and Online Systems - the state of the art, 1991.

[19] Je�rey Rubin. Handbook of Usability Testing: How to
plan, design and conduct e�ective tests. John Wiley
& Sons, Inc., 1994.

[20] Gerard Salton. Developments in automatic text re-
trieval. Science, 253:974{980, 1991.

[21] Ben Shneiderman and Greg Kearsley. Hypertext
Hands-on! An Introduction to a New Way of Orga-
nizing and accessing Information. Addison-Wesley,
1989.

[22] M. M. Zloof. Query by example: A database lan-
guage. IBM Systems Journal, 16(4), 1977.

