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Abstract— We propose an approach for inferring bounds on
the finite-horizon return of a control policy from an off-policy
sample of trajectories collecting state transitions, rewards, and
control actions. In this paper, the dynamics, control policy, and
reward function are supposed to be deterministic and Lipschitz
continuous. Under these assumptions, a polynomial algorithm,
in terms of the sample size and length of the optimization
horizon, is derived to compute these bounds, and their tightness
is characterized in terms of the sample density.

I. INTRODUCTION

In financial [6], medical [9] and engineering sciences [1],
as well as in artificial intelligence [13], variants (or gen-
eralizations) of the following discrete-time optimal control
problem arise quite frequently: a system, characterized by
its state-transition function xt+1 = f(xt, ut), should be
controlled by using a policy ut = h(t, xt) so as to maximize
a cumulated reward

∑T−1
t=0 ρ(xt, ut) over a finite horizon T .

Among the solution approaches that have been proposed
for this class of problems we have, on the one hand, dynamic
programming [1] and model predictive control [3] which
compute optimal solutions from an analytical or computa-
tional model of the real system, and, on the other hand,
reinforcement learning approaches [13], [8], [5], [11] which
compute approximations of optimal control policies based
only on data gathered from the real system. In between, we
have approximate dynamic programming approaches which
use datasets generated by using a model (e.g. by Monte-
Carlo simulation) so as to derive approximate solutions while
complying with computational requirements [2].

Whatever the approach (model based, data based, Monte-
Carlo based, (or even finger based)) used to derive a control
policy for a given problem, one major question that remains
open today is to ascertain the actual performance of the
derived control policy [7], [12] when applied to the real
system behind the model or the dataset (or the finger).
Indeed, for many applications, even if it is perhaps not
paramount to have a policy h which is very close to the
optimal one, it is however crucial to be able to guarantee
that the considered policy h leads for some initial states x0

to high-enough cumulated rewards on the real system that is
considered.

In this paper, we thus focus on the evaluation of con-
trol policies on the sole basis of the actual behaviour of
the concerned real system. We use to this end a sample
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of trajectories (x0, u0, r0, x1, . . . , rT−1, xT ) gathered from
interactions with the real system, where states xt ∈ X ,
actions ut ∈ U and instantaneous rewards rt = ρ(xt, ut) ∈ R
at successive discrete instants t = 0, 1, . . . , T − 1 will be
exploited so as to evaluate bounds on the performance of a
given control policy h(t, x) : {0, 1, . . . , T − 1} × X → U
when applied to a given initial state x0 of the real system.

Actually, our proposed approach does not require full-
length trajectories since it relies only on a set of one-step
system transitions F = {(xl, ul, rl, yl)}|F|l=1, each one pro-
viding the knowledge of a sample of information (x, u, r, y),
named four-tuple, where y is the state reached after taking
action u in state x and r the instantaneous reward associated
with the transition. We however assume that the state and
action spaces are normed and that the system dynamics
(y = f(x, u)) and the reward function (r = ρ(x, u)) and
control policy (u = h(t, x)) are deterministic and Lipschitz
continuous.

In a few words, the approach works by identifying
in F a sequence of T four-tuples [(xl0 , ul0 , rl0 , yl0),
(xl1 , ul1 , rl1 , yl1), . . . , (xlT−1 , ulT−1 , rlT−1 , ylT−1)] (lt ∈
{1, . . . , |F|}), which maximizes a specific numerical crite-
rion. This criterion is made of the sum of the T rewards
corresponding to these four-tuples (

∑T−1
t=0 rlt) and T neg-

ative terms. The negative term corresponding to the four-
tuple (xlt , ult , rlt , ylt) of the sequence represents an upper
bound variation of the cumulated rewards over the remaining
time steps that can occur by simulating the system from
a state xlt rather than ylt−1 (with yl−1 = x0) and by
using at time t the action ult rather than h(t, ylt−1). We
provide a polynomial algorithm to compute this optimal
sequence of tuples and derive a tightness characterization of
the corresponding performance bound in terms of the density
of the sample F .

The rest of this paper is organized as follows. In Section II,
we formalize the problem considered in this paper. In Section
III, we show that the state-action value function of a policy
over the N last steps of an episode is Lipschitz continuous.
Section IV uses this result to compute from a sequence of
four-tuples a lower bound on the cumulated reward obtained
by a policy h when starting from a given x0 ∈ X , while
Section V proposes a polynomial algorithm for identifying
the sequence of four-tuples which leads to the best bound.
Section VI studies the tightness of this bound and shows that
it can be characterized by Cα∗ where C is a positive constant
and α∗ is the maximum distance between any element of
the state-action space X×U and its closest state-action pair
(xl, ul) ∈ F . Finally, Section VII concludes and outlines



directions for future research.

II. FORMULATION OF THE PROBLEM

We consider a discrete-time system whose dynamics over
T stages is described by a time-invariant equation:

xt+1 = f(xt, ut) t = 0, 1, . . . , T − 1, (1)

where for all t, the state xt is an element of the state space
X and the action ut is an element of the action space U
(both X and U are assumed to be normed vector spaces).
T ∈ N0 is referred to as the optimization horizon.

The transition from t to t + 1 is associated with an
instantaneous reward rt = ρ(xt, ut) ∈ R.

For every initial state x0 and for every sequence of actions
the cumulated reward over T stages (also named return over
T stages) is defined as

J
(u0,u1,...,uT−1)
T (x0) =

T−1∑
t=0

ρ(xt, ut). (2)

We consider in this paper deterministic time-varying T -
stage policies h : {0, 1, . . . , T − 1} ×X → U which select
at time t the action ut based on the current time and the
current state (ut = h(t, xt)). The return over T stages of a
policy h from a state x0 is denoted by

Jh
T (x0) =

T−1∑
t=0

ρ(xt, h(t, xt)). (3)

We also assume that the dynamics f , the reward function
ρ and the policy h are Lipschitz continuous, i.e., that there
exist finite constants Lf , Lρ, Lh ∈ R such that:

‖f(x, u)− f(x′, u′)‖ ≤ Lf

(
‖x− x′‖+ ‖u− u′‖

)
,(4)

|ρ(x, u)− ρ(x′, u′)| ≤ Lρ

(
‖x− x′‖+ ‖u− u′‖

)
,(5)

‖h(t, x)− h(t, x′)‖ ≤ Lh‖x− x′‖, (6)

∀x, x′ ∈ X, ∀u, u′ ∈ U,∀t ∈ {0, . . . , T − 1}. The smallest
constants satisfying those inequalities are named the Lips-
chitz constants.
We further suppose that:

1) the system dynamics f and the reward function ρ are
unknown,

2) an arbitrary set of one-step system transitions (also
named four-tuples) F = {(xl, ul, rl, yl)}|F|l=1 is known.
Each four-tuple is such that yl = f(xl, ul) and rl =
ρ(xl, ul),

3) three constants Lf , Lρ, Lh satisfying the above-written
inequalities are known.1

Under these assumptions, we want to find for an arbitrary
initial state x0 of the system a lower bound on the return
over T stages of any given policy h.

1These constants do not necessarily have to be the smallest ones satisfying
these inequalities (i.e., the Lispchitz constants), even if, the smaller they are,
the tighter the bound will be.

III. LIPSCHITZ CONTINUITY OF THE STATE-ACTION
VALUE FUNCTION

For N = 1, . . . , T , let us define the family of functions
Qh

N : X × U → R as follows:

Qh
N (x, u) = ρ(x, u) +

T−1∑
t=T−N+1

ρ(xt, h(t, xt)), (7)

where xT−N+1 = f(x, u). Qh
N (x, u) gives the sum of

rewards from instant t = T − N to instant T − 1 when (i)
the system is in state x at instant T − N , (ii) the action
chosen at instant T − N is u and (iii) the actions are
selected at subsequent instants according to the policy h
(ut = h(t, xt),∀t > T −N ).

The function Jh
T can be deduced from Qh

N as follows:

∀x ∈ X, Jh
T (x) = Qh

T (x, h(0, x)). (8)

We also have ∀x ∈ X, ∀u ∈ U ,

Qh
N+1(x, u) = ρ(x, u) + Qh

N (f(x, u), h(T −N, f(x, u)). (9)

We prove hereafter the Lipschitz continuity of
Qh

N ,∀N ∈ {1, . . . , T}.

Lemma 3.1 (Lipschitz continuity of Qh
N ):

∀N ∈ {1, . . . , T}, there exists a finite constant LQN
∈ R+

such that ∀x, x′ ∈ X, ∀u, u′ ∈ U ,

|Qh
N (x, u)−Qh

N (x′, u′)| ≤ LQN

(
‖x− x′‖+ ‖u− u′‖

)
. (10)

Proof: We consider the statement H(N):
There exists a finite constant LQN

∈ R+ such that ∀x, x′ ∈
X, ∀u, u′ ∈ U ,

|Qh
N (x, u)−Qh

N (x′, u′)| ≤ LQN

(
‖x− x′‖+ ‖u− u′‖

)
.

We prove by mathematical induction that H(N) is true ∀N ∈
{1, . . . , T}. For the sake of clarity, we denote |Qh

N (x, u) −
Qh

N (x′, u′)| by ∆N .

• Basis: N = 1
We have ∆N = |ρ(x, u) − ρ(x′, u′)|, and the Lipschitz
continuity of ρ allows to write

∆N ≤ LQ1

(
‖x− x′‖+ ‖u− u′‖

)
,

with LQ1

.= Lρ. This proves H(1).

• Induction step: we suppose that H(N) is true, 1 ≤ N ≤
T − 1.

Using Equation (9), we can write
∆N+1 =

∣∣Qh
N+1(x, u) − Qh

N+1(x
′, u′)

∣∣ =∣∣ρ(x, u) − ρ(x′, u′) + Qh
N (f(x, u), h(T − N, f(x, u))) −

Qh
N (f(x′, u′), h(T −N, f(x′, u′)))

∣∣
and, from there,
∆N+1 ≤

∣∣ρ(x, u) − ρ(x′, u′)
∣∣ +

∣∣Qh
N (f(x, u), h(T −

N, f(x, u)))−Qh
N (f(x′, u′), h(T −N, f(x′, u′)))

∣∣.
H(N) and the Lipschitz continuity of ρ give



∆N+1 ≤ Lρ

(
‖x − x′‖ + ‖u − u′‖

)
+ LQN

(
‖f(x, u) −

f(x′, u′)‖+ ‖h(T −N, f(x, u))− h(T −N, f(x′, u′))‖
)

.

Using the Lipschitz continuity of f and h, we have

∆N+1 ≤ Lρ

(
‖x− x′‖+ ‖u− u′‖

)
+ LQN

(
Lf

(
‖x− x′‖+

‖u− u′‖
)

+ LhLf

(
‖x− x′‖+ ‖u− u′‖

))
,

and, from there,

∆N+1 ≤ LQN+1

(
‖x− x′‖+ ‖u− u′‖

)
,

with LQN+1

.= Lρ + LQN
Lf (1 + Lh). This proves that

H (N + 1) is true, and ends the proof.

Let L∗
QN

be the Lipschitz constant of the function Qh
N ,

that is the smallest value of LQN
that satisfies inequality

(10). We have the following result:

Lemma 3.2 (Upper bound on L∗
QN

):

L∗
QN

≤ Lρ

( N−1∑
t=0

[Lf (1 + Lh)]t
)

(11)

Proof: A sequence of positive constants LQ1 , . . . , LQN

is defined in the proof of Lemma 3.1. Each constant LQN

of this sequence is an upper-bound on the Lipschitz constant
related to the function Qh

N . These LQN
constants satisfy the

relationship

LQN+1 = Lρ + LQN
Lf (1 + Lh) (12)

(with LQ1 = Lρ) from which the lemma can be proved in a
straightforward way.

The value of the constant LQN
will influence the lower

bound on the return of the policy h that will be established
later in this paper. The larger this constant, the looser the
bounds. When using these bounds, LQN

should therefore
preferably be chosen as small as possible while still ensuring
that inequality (10) is satisfied. Later in this paper, we will
use the upper bound (11) to select a value for LQN

. More
specifically, we will choose

LQN
= Lρ

( N−1∑
t=0

[Lf (1 + Lh)]t
)

. (13)

IV. COMPUTING A LOWER BOUND ON Jh
T (x0) FROM A

SEQUENCE OF FOUR-TUPLES

The algorithm described in Table I provides a way of
computing from any T -length sequence of four-tuples τ =
[(xlt , ult , rlt , ylt)]T−1

t=0 a lower bound on Jh
T (x0), provided

that the initial state x0, the policy h and three constants
Lf , Lρ and Lh satisfying inequalities (4-6) are given. The
algorithm is a direct consequence of Theorem 4.1 below.

Inputs: An initial state x0, a policy h, a sequence of four-tuples
τ = [(xlt , ult , rlt , ylt )]t=0,...,T−1, and three constants Lf , Lρ, Lh

which satisfy inequalities (4-6).
Output: A lower bound on Jh

T (x0).
Algorithm:
Set lb = 0
Set yl−1 = x0

For t = 0 to T − 1 do

Set LQT−t
= Lρ

„ PT−t−1
k=0 [Lf (1 + Lh)]k

«
Set lb = lb + rlt − LQT−t

`
‖xlt − ylt−1‖ + ‖ult − h(t, ylt−1 )‖

´
end for
Return lb

TABLE I
AN ALGORITHM FOR COMPUTING FROM A SEQUENCE OF

FOUR-TUPLES τ A LOWER BOUND ON Jh
T (x0).

The lower bound on Jh
T (x0) derived in Theorem 4.1

can be interpreted as follows. The sum of the rewards
of the “broken” trajectory formed by the sequence of
four-tuples τ can never be greater than Jh

T (x0), pro-
vided that every reward rlt is penalized by a factor
LQT−t

(
‖xlt − ylt−1‖+ ‖ult − h(t, ylt−1)‖

)
. This factor is

in fact an upper bound on the variation of the function
Qh

T−t that can occur when “jumping” from (ylt , h(t, ylt)) to
(xlt+1 , ult+1). An illustration of this interpretation is given
in Figure 1.

Theorem 4.1 (Lower bound on Jh
T (x0)): Let x0 be

an initial state of the system, h a policy,
τ = [(xlt , ult , rlt , ylt)]T−1

t=0 a sequence of tuples. Then
we have the following lower bound on Jh

T (x0)

T−1∑
t=0

(rlt − LQT−t
δt) ≤ Jh

T (x0), (14)

where

δt = ‖xlt−ylt−1‖+‖ult−h(t, ylt−1)‖ ∀t ∈ {0, 1, . . . , T−1},

with yl−1 = x0.
Proof: Using Equation (8) and the Lipschitz continuity

of Qh
T , we can write

|Qh
T (x0, u0)−Qh

T (xl0 , ul0)| ≤ LQT

(
‖x0−xl0‖+‖u0−ul0‖

)
,

and with u0 = h(0, x0),

|Jh
T (x0)−Qh

T (xl0 , ul0)| =
|Qh

T (x0, h(0, x0))−Qh
T (xl0 , ul0)| ≤

LQT

(
‖x0 − xl0‖+ ‖h(0, x0)− ul0‖

)
.

It follows that

Qh
T (xl0 , ul0)− LQT

δ0 ≤ Jh
T (x0).

By definition of the state-action evaluation function Qh
T , we

have

Qh
T (xl0 , ul0) = ρ(xl0 , ul0)+Qh

T−1(f(xl0 , ul0), h(1, f(xl0 , ul0)))



Fig. 1. A graphical interpretation of the different terms composing the bound on Jh
T (x0) inferred from a

sequence of four-tuples (see Equation (14)). The bound is equal to the sum of all the rewards corresponding to
this sequence of four-tuples (the terms rlt t = 0, 1, . . . , T − 1 on the figure) minus the sum of all the terms
LQT−t

δt.

and from there

Qh
T (xl0 , ul0) = rl0 + Qh

T−1(y
l0 , h(1, yl0)).

Thus,

Qh
T−1(y

l0 , h(1, yl0)) + rl0 − LQT
δ0 ≤ Jh

T (x0).

By using the Lipschitz property of the function Qh
T−1, we

can write
|Qh

T−1(y
l0 , h(1, yl0)) − Qh

T−1(x
l1 , ul1)| ≤ LQT−1

(
‖yl0 −

xl1‖+ ‖h(1, yl0)− ul1‖
)

= LQT−1δ1,
which implies that Qh

T−1(x
l1 , ul1) − LQT−1δ1 ≤

Qh
T−1(y

l0 , h(1, yl0)). We have therefore

Qh
T−1(x

l1 , ul1) + rl0 − LQT
δ0 − LQT−1δ1 ≤ Jh

T (x0).

By iterating this derivation, we obtain inequality (14) which
completes the proof.

V. FINDING THE HIGHEST LOWER BOUND

Let

Bh(τ, x0) =
T−1∑
t=0

[rlt − LQT−t
δt], (15)

with δt = ‖xlt −ylt−1‖+‖ult −h(t, ylt−1)‖, be the function
that maps a T -length sequence of four-tuples τ and the initial
state of the system x0 into the lower bound on Jh

T (x0) proved
by Theorem 4.1.

Let FT denote the set of all possible T -length se-
quences of four-tuples built from the elements of F , and
let B∗

FT (x0) = max
τ∈FT

Bh(τ, x0).

In this section, we provide an algorithm for computing in
an efficient way the value of B∗

FT (x0). A naive approach for
computing this value would consist in doing an exhaustive

search over all the elements of FT . However, as soon as
the optimization horizon T grows, this approach becomes
computationally impractical even if F has only a handful of
elements.

Our algorithm for computing B∗
FT (x0) is summarized in

Table II. It is in essence identical to the Viterbi algorithm
[14], and we observe that its complexity is linear with respect
to the optimization horizon T and quadratic with respect to
the size |F| of the sample of four-tuples.

The rationale behind this algorithm is the following. Let
us first introduce some notations. Let τ(i) denote the index
of the ith four-tuple of the sequence τ (τ(i) = li), let
Bh(τ, x0)(j) =

∑j
t=0(r

lt − LQT−t
δt) and let τ∗ be a

sequence of tuples such that τ∗ ∈ arg max
τ∈FT

Bh(τ, x0).

We have that

B∗
FT (x0) = Bh(τ∗, x0)(T − 2) + V1(τ∗(T − 1))

where V1 is a |F|-dimensional vector whose ith component
is:

max
i′

(
ri′ − LQ1

(
‖xi′ − yi‖+ ‖ui′ − h(T − 1, yi)‖

))
.

Now let use observe that:

B∗
FT (x0) = Bh(τ∗, x0)(T − 3) + V2(τ∗(T − 2))

where V2 is a |F|-dimensional vector whose ith component
is:

max
i′

(
ri′ −LQ2

(
‖xi′ −yi‖+‖ui′ −h(T −2, yi)‖

)
+V1(i′)

)
.

By proceeding recursively, it is therefore possible to de-
termine the value of Bh(τ∗, x0) = B∗

FT (x0) without having
to screen all the elements of FT .



Inputs: An initial state x0, a policy h, a set of four-tuples
F = {(xl, ul, rl, yl)}|F|

l=1 and three constants Lf , Lρ, Lh which
satisfy inequalities (4-6).
Output: A lower bound on Jh

T (x0) equal to B∗
FT (x0).

Algorithm:
Create two |F|-dimensional vectors VA and VB

Set VA(i) = 0 and VB(i) = 0, ∀i = {1, . . . , |F|}
For t = T − 1 to 1 do

For i = 1, . . . , |F| do, (update the value of VA)

Set LQT−t
= Lρ

„ PT−t−1
k=0 [Lf (1 + Lh)]k

«
Set u = h(t, yi)

Set VA(i)= max
i′

(ri′−LQT−t

`
‖xi′− yi‖+‖ui′− u‖

´
+VB(i′))

end for
Set VB = VA

end for
Set u0 = h(0, x0)

Set lb∗ = max
i′

„
ri′ − LQT

`
‖xi′ − x0‖ + ‖ui′ − u0‖

´
+ VB(i′)

«
Return lb∗

TABLE II
A VITERBI-LIKE ALGORITHM FOR COMPUTING THE HIGHEST LOWER

BOUND B∗
FT (x0) (SEE EQN (15)) OVER ALL THE SEQUENCES OF

FOUR-TUPLES τ MADE FROM ELEMENTS OF F .

Although this is rather evident, we want to stress the fact
that B∗

FT (x0) can not decrease when new elements are added
to F . In other words, the quality of this lower bound is
monotonically increasing when new samples are collected.
To quantify this behavior, we characterize in the next section
the tightness of this lower bound as a function of the density
of the sample of four-tuples.

VI. TIGHTNESS OF THE LOWER BOUND B∗
FT (x0)

In this section we study the relation of the tightness of
B∗
FT (x0) with respect to the distance between the elements

(x, u) ∈ X × U and the pairs (xl, ul) formed by the two
first elements of the four-tuples composing F . We prove in
Theorem 6.1 that if X × U is bounded, then

Jh
T (x0)−B∗

FT (x0) ≤ Cα∗,

where C is a constant depending only on the control problem
and where α∗ is the maximum distance from any (x, u) ∈
X × U to its closest neighbor in {(xl, ul)}|F|l=1.

The main philosophy behind the proof is the follow-
ing. First, a sequence of four-tuples whose state-action
pairs (xlt , ult) stand close to the different state-action pairs
(xt, ut) visited when the system is controlled by h is
built. Then, it is shown that the lower bound B com-
puted when considering this particular sequence is such that
Jh

T (x0)−B ≤ Cα∗. From there, the proof follows immedi-
ately.

Theorem 6.1: Let x0 be an initial state, h a policy, and
F = {(xl, ul, rl, yl)}|F|l=1 a set of four-tuples. We suppose
that

∃ α ∈ R+ :

sup
(x,u)∈X×U

{
min

l∈{1,...,|F|}
{‖xl − x‖+ ‖ul − u‖}

}
≤ α, (16)

and we note α∗ the smallest constant which satisfies (16).
Then

∃ C ∈ R+ : Jh
T (x0)−B∗

FT (x0) ≤ Cα∗. (17)

Proof:
Let (x0, u0, r0, x1, u1, . . . , xT−1, uT−1, rT−1, xT ) be the
trajectory of the system starting from x0 when the actions
are selected ∀t ∈ {0, 1, . . . , T − 1} according to the policy
h.

Let τ = [(xlt , ult , rlt , ylt)]T−1
t=0 be a sequence of four-

tuples that satisfies ∀t ∈ {0, 1, . . . , T − 1}

‖xlt −xt‖+‖ult −ut‖ = min
l∈{1,...,|F|}

‖xl − xt‖+ ‖ul − ut‖.

We have

Bh(τ, x0) =
T−1∑
t=0

[rlt − LQT−t
δt]

where

δt = ‖xlt−ylt−1‖+‖ult−h(t, ylt−1)‖ ∀t ∈ {0, 1, . . . , T−1}.

Let us focus on δt. We have that

δt = ‖xlt −xt + xt− ylt−1‖+ ‖ult −ut + ut−h(t, ylt−1)‖,

and hence

δt ≤ ‖xlt−xt‖+‖xt−ylt−1‖+‖ult−ut‖+‖ut−h(t, ylt−1)‖.

Using inequality (16), we can write

‖xlt − xt‖+ ‖ult − ut‖ ≤ α∗,

and so we have

δt ≤ α∗ + ‖xt − ylt−1‖+ ‖ut − h(t, ylt−1)‖. (18)

- On the one hand, we have

‖xt − ylt−1‖ = ‖f(xt−1, ut−1)− f(xlt−1 , ult−1)‖

and the Lipschitz continuity of f implies that

‖xt − ylt−1‖ ≤ Lf

(
‖xt−1 − xlt−1‖+ ‖ut−1 − ult−1‖

)
,

so, as ‖xt−1 − xlt−1‖+ ‖ut−1 − ult−1‖ ≤ α∗, we have

‖xt − ylt−1‖ ≤ Lfα∗. (19)

- On the other hand, we have

‖ut − h(t, ylt−1)‖ = ‖h(t, xt)− h(t, ylt−1)‖

and the Lipschitz continuity of h implies that

‖ut − h(t, ylt−1)‖ ≤ Lh‖xt − ylt−1‖.



Since ‖xt − ylt−1‖ ≤ Lfα∗ (see (19)) we obtain

‖ut − h(t, ylt−1)‖ ≤ LhLfα∗. (20)

Furthermore, (18), (19) and (20) imply that

δt ≤ α∗ + Lfα∗ + LhLfα∗ = α∗(1 + Lf (1 + Lh))

and

Bh(τ, x0) ≥
T−1∑
t=0

[rlt − LQT−t
α∗(1 + Lf (1 + Lh))] .= B.

We also have, by definition of B∗
FT (x0)

Jh
T (x0) ≥ B∗

FT (x0) ≥ Bh(τ, x0) ≥ B.

Thus

|Jh
T (x0)−B∗

FT (x0)| ≤ |Jh
T (x0)−B| = Jh

T (x0)−B,

and we have
Jh

T (x0) − B = |
∑T−1

t=0 [(rt − rlt) + LQT−t
α∗(1 + Lf (1 +

Lh))]|,

Jh
T (x0)−B ≤

∑T−1
t=0 [|rt−rlt |+LQT−t

α∗(1+Lf (1+Lh))].

The Lipschitz continuity of ρ allows to write
|rt − rlt | = |ρ(xt, ut) − ρ(xlt , ult)| ≤ Lρ(‖xt − xlt‖ +
‖ut − ult‖),

and using inequality (16), we have

|rt − rlt | ≤ Lρα
∗.

Finally, we obtain
Jh

T (x0)−B ≤
∑T−1

t=0 [Lρα
∗ + LQT−t

α∗(1 + Lf (1 + Lh))],

Jh
T (x0)−B ≤ TLρα

∗ +
∑T−1

t=0 LQT−t
α∗(1 + Lf (1 + Lh)),

Jh
T (x0)−B ≤ α∗

(
TLρ +

∑T−1
t=0 LQT−t

(
1+Lf (1+Lh)

))
.

Thus
Jh

T (x0)−B∗(x0) ≤

α∗
(

TLρ +
T−1∑
t=0

LQT−t

(
1 + Lf (1 + Lh)

))
,

which completes the proof.

VII. CONCLUSIONS AND FUTURE RESEARCH

We have introduced in this paper an approach for deriving
from a sample of trajectories a lower bound on the finite-
horizon return of any policy from any given initial state. We
also have proposed a dynamic programming (Viterbi-like)
algorithm for computing this lower bound whose complexity
is linear in the optimization horizon and quadratic in the total
number of state transitions of the sample of trajectories. This
approach and algorithm may directly be transposed in order
to compute an upper bound, so as to bracket the performance
of the given policy, when applied to a given initial state. We

also have derived a characterization of these bounds, in terms
of the density of the coverage of the state-action space by the
sample of trajectories used to compute them. This analysis
shows that the lower (and upper) bound converges at least
linearly towards the true value of the return with the density
of the sample (measured by the maximal distance of any
state-action pair to this sample).

The Lipschitz continuity assumptions upon which the
results have been built may seem restrictive, and they indeed
are. Indeed, when facing a real-life problem, it may be
difficult to establish whether its systems dynamics and reward
function are indeed Lipschitz continuous. Secondly, even
if one can guarantee that the Lipschitz assumptions are
satisfied, it is still important to be able to establish some not
too-conservative approximations of the Lipschitz constants.
Indeed, the larger they are, the looser the bounds will be. In
the same order of ideas, the choice of the norms on the state
space and the action space might influence the value of the
bounds and should thus also be chosen carefully.

While the approach has been designed for computing
some lower bounds on the cumulated reward obtained by
a given policy, it could also serve as the base for designing
new reinforcement learning algorithms which would output
policies that lead to the maximization of these lower bounds.

The proposed approach could also be used in combination
with batch-mode reinforcement learning algorithms for iden-
tifying the pieces of trajectories that influence the most the
lower bounds of the RL policy and, from there, for selecting a
concise set of four-tuples from which it is possible to extract
a good policy. This problem is particularly important when
batch-mode RL algorithms are used to design autonomous
intelligent agents. Indeed, after a certain time of interaction
with their environment, the sample of information these
agents collect may become so numerous that batch-mode RL
techniques may become computationally impractical [4].

Since there exist in this context many non-deterministic
problems for which it would be interesting to be able to
have a lower bound on the performances of a policy (e.g.,
those related to the inference from clinical data of decision
rules for treating chronic-like diseases [10]), extending our
approach to stochastic systems would certainly be relevant.
Future research on this topic could follow several paths: the
study of lower bounds on the expected cumulated rewards,
the design of worst-case lower bounds, a study of the case
where the disturbances are part of the trajectories, etc.

ACKNOWLEDGEMENTS

This paper presents research results of the Belgian Net-
work BIOMAGNET (Bioinformatics and Modeling: from
Genomes to Networks), funded by the Interuniversity At-
traction Poles Programme, initiated by the Belgian State,
Science Policy Office. Damien Ernst acknowledges the fi-
nancial support of the Belgian National Fund of Scientific
Research (FNRS) of which he is a Research Associate. The
authors are also very grateful to Florence Belmudes, Bertrand
Cornélusse, Jing Dai, Boris Defourny and Renaud Detry for



their helpful suggestions for improving the quality of the
manuscript.

REFERENCES

[1] D.P. Bertsekas. Dynamic Programming and Optimal Control, volume
III. Athena Scientific, Belmont, MA, 2nd edition, 2005.

[2] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1996.

[3] E.F. Camacho and C. Bordons. Model Predictive Control. Springer,
2004.

[4] D. Ernst. Selecting concise sets of samples for a reinforcement
learning agent. In Proceedings of the Third International Conference
on Computational Intelligence, Robotics and Autonomous Systems
(CIRAS 2005), page 6, 2005.

[5] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode rein-
forcement learning. Journal of Machine Learning Research, 6:503–
556, 2005.

[6] J.E. Ingersoll. Theory of Financial Decision Making. Rowman and
Littlefield Publishers, Inc., 1987.

[7] M. Kearns and S. Singh. Finite-sample convergence rates for Q-
learning and indirect algorithms. In In Neural Information Processing
Systems 12, pages 996–1002. MIT Press, 1999.

[8] M. Lagoudakis and R. Parr. Least-squares policy iteration. Jounal of
Machine Learning Research, 4:1107–1149, 2003.

[9] S.A. Murphy. Optimal dynamic treatment regimes. Journal of the
Royal Statistical Society, Series B, 65(2):331–366, 2003.

[10] S.A. Murphy. An experimental design for the development of adapta-
tive treatment strategies. Statistics in Medicine, 24:1455–1481, 2005.

[11] D. Ormoneit and S. Sen. Kernel-based reinforcement learning.
Machine Learning, 49(2-3):161–178, 2002.

[12] R.E. Schapire. On the worst-case analysis of temporal-difference
learning algorithms. Machine Learning, 22(1/2/3), 1996.

[13] R.S. Sutton and A.G. Barto. Reinforcement Learning, an Introduction.
MIT Press, 1998.

[14] A. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information
Theory, 13(2):260– 269, 1967.


