
Active Exploration by Searching for Experiments

that Falsify the Computed Control Policy

Raphael Fonteneau∗, Susan A. Murphy†, Louis Wehenkel∗ and Damien Ernst∗

∗ Department of Electrical Engineering and Computer Science, University of Liège, BELGIUM
†Department of Statistics, University of Michigan, USA

Abstract—We propose a strategy for experiment selection - in
the context of reinforcement learning - based on the idea that
the most interesting experiments to carry out at some stage are
those that are the most liable to falsify the current hypothesis
about the optimal control policy. We cast this idea in a context
where a policy learning algorithm and a model identification
method are given a priori. Experiments are selected if, using the
learnt environment model, they are predicted to yield a revision
of the learnt control policy. Algorithms and simulation results are
provided for a deterministic system with discrete action space.
They show that the proposed approach is promising.

I. INTRODUCTION

Many relevant decision problems in the field of engineering

[19], finance [12], medicine ([15], [16]) or artificial intelli-

gence [20] can be formalized as optimal control problems,

which are problems where one seeks to compute a control

policy so as to maximize a numerical performance criterion.

Often, for solving these problems, one has to deal with

an incomplete knowledge of the two key elements of the

optimal control problem, which are the system dynamics and

the reward function. A vast literature has already proposed

ways for computing approximate optimal solutions to these

problems when the only information available on these ele-

ments is in the form of a set of system transitions, where

every system transition is made of a state, the action taken

while being in this state, and the values of the reward function

and system dynamics observed in this state-action point. In

particular, researchers in the field of reinforcement learning

(RL) - where the goal was initially to design intelligent agents

able to interact with an environment so as to maximize a

numerical reward signal - have developed efficient algorithms

to address this particular problem, commonly known as batch

mode reinforcement learning (BMRL) algorithms.

In this paper, we consider the problem of choosing addi-

tional data gathering experiments on the real system in order to

complete an already available sample of system trajectories, so

as to improve the policy learned by a given BMRL algorithm

as much as possible, i.e. by using a minimum number of

additional data gathering experiments. Our strategy is based

on using a predictive model (PM) of the system performance

inferred from the already collected datasets. The PM allows

us to predict the outcome of new putative experiments with

the real system in terms of putative trajectories, and hence to

predict the effect of including these putative trajectories into

the sample used by the BMRL algorithm in terms of their

impact on the policy inferred by this algorithm. In order to

choose the next experiment, we suggest that a good strategy

is to select an experiment which (putatively) would lead to a

revision of the policy learned from the augmented dataset.

In essence, this strategy consists in always trying to find

experiments which are likely to falsify the current hypothesis

about the optimal control policy.

This approach relies on two intuitions backed by many

works/numerical experiments in the field of optimal control.

The first intuition is that if when adding a new system

transition to the set of existing ones, the BMRL algorithm run

on this new set outputs a policy that falsifies the previously

computed policy, then this new system transition may be

particularly informative. The second intuition is related to

the fact that for many problems, one may easily use the

already collected information on the dynamics and reward

function to build a PM of the system. Based on these two

observations, our approach (i) iteratively screens a set of

potential sampling locations, i.e. a set of state-action points

candidate for sampling, (ii) computes for each one of these

points a predicted system transition, and (iii) analyzes the

influence that each such predicted transition would have on the

policy computed by the BMRL algorithm when combined with

the “true” system transitions previously collected. The output

of this analysis is then used to (iv) select a sampling location

which is “predicted” to generate a new system transition that

falsifies the policy computed by the BMRL algorithm.

After detailing this approach and the context in which it

is proposed in sections II, III and IV, we report in section V

simulation results with the car-on-the-hill problem. Section VI

discusses related work and Section VII concludes.

II. PROBLEM STATEMENT

We consider a deterministic time-invariant system whose

discrete-time dynamics over T stages is described by

xt+1 = f(xt, ut) t = 0, 1, . . . , T − 1,

where for all t ∈ {0, . . . , T − 1}, the state xt is an element

of the normed state space (X , ‖.‖X ) and ut is an element of

a finite action space U =
{

a1, . . . , am
}

with m ∈ N0. T ∈
N0 denotes the finite optimization horizon. An instantaneous

reward

rt = ρ(xt, ut) ∈ R

is associated with the action ut ∈ U taken while being

in state xt ∈ X . We assume that the initial state of the

978-1-4244-9886-4/11/$26.00 ©2011 IEEE 40



system x0 ∈ X is known. For a given sequence of actions

u = (u0, . . . , uT−1) ∈ U
T , we denote by Ju(x0) the T−stage

return of the sequence of actions u when starting from x0,

defined as follows:

∀u ∈ UT , Ju(x0) =
T−1
∑

t=0

ρ(xt, ut)

with xt+1 = f(xt, ut), ∀t ∈ {0, . . . , T − 1} . We denote by

J∗(x0) the maximal value of Ju(x0) over UT :

J∗(x0) = max
u∈UT

Ju(x0) .

An optimal sequence of actions u
∗ is a sequence for which

Ju
∗

(x0) = J∗(x0) .

In the following, we call “system transition” a 4−tuple

(x, u, ρ(x, u), f(x, u)) ∈ X × U × R × X that gathers infor-

mation on the functions f and ρ in a point (x, u) of the state-

action space X×U . Batch mode RL algorithms ([17], [8], [19])

have been introduced to infer near optimal control policies

from the sole knowledge of a sample of system transitions

Fn =
{(

xl, ul, rl, yl
)}n

l=1

where rl = ρ(xl, ul) and yl = f(xl, ul). In the rest of

this paper, we denote by BMRL a generic batch mode RL

algorithm and by BMRL(Fn, x0) the policy it computes.

The problem we address is to find a sampling strategy which

allows to collect a set of system transitions Fn from which a

high quality sequence of actions ũ
∗
Fn
∈ UT can be inferred

by BMRL, i.e. a sequence of actions ũ
∗
Fn
∈ UT such that

J ũ
∗

Fn (x0) is as close as possible to J∗(x0). The sampling

process is limited to Nmax ∈ N transitions, i.e. one can afford

to collect at most Nmax system transitions.

III. ITERATIVE SAMPLING STRATEGY TO COLLECT

INFORMATIVE SYSTEM TRANSITIONS

In this section we describe one way to implement the gen-

eral falsification strategy presented in Section I for addressing

the problem stated in Section II.

Assuming that we are given a batch-mode RL algorithm,

BMRL, a predictive model PM , and a sequence of numbers

Ln ∈ N0, we proceed iteratively, by carrying out the following

computations at any iteration n < Nmax:

• Using the sample Fn =
{(

xl, ul, rl, yl
)}n

l=1
of already

collected transitions, we first compute a sequence of

actions ũ
∗
Fn

= BMRL(Fn, x0).
• Next, we draw a state-action point (x, u) ∈ X × U

according to a uniform probability distribution pX×U (·)
over the state-action space X × U .

• Using the sample Fn and the predictive model PM , we

then compute a “predicted” system transition by:

(x, u, r̂Fn
(x, u), ŷFn

(x, u)) = PM(Fn, x, u) .

• Using (x, u, r̂Fn
(x, u), ŷFn

(x, u)), we build the “pre-

dicted” augmented sample by:

F̂n+1(x, u) = Fn ∪ {(x, u, r̂Fn
(x, u), ŷFn

(x, u))} ,

and use it to predict the revised policy by:

û
∗
F̂n+1(x,u)

= BMRL(F̂n+1(x, u), x0) .

– If û
∗
F̂n+1(x,u)

6= ũ
∗
Fn

, we consider (x, u) as in-

formative, because it is potentially falsifying our

current hypothesis about the optimal control pol-

icy. We hence use it to make an experiment on

the real-system so as to collect a new transition
(

xn+1, un+1, rn+1, yn+1
)

with xn+1 = x, un+1 =
u, rn+1 = ρ(x, u) and yn+1 = f(x, u), and we

augment the sample with it:

Fn+1 = Fn ∪
{(

xn+1, un+1, rn+1, yn+1
)}

.

– If û∗
F̂n+1(x,u)

= ũ
∗
Fn

, we draw another state-action

point (x′, u′) according to pX×U (·) and repeat the

process of prediction followed by policy revision.

– If Ln state-action points have been tried without

yielding a potential falsifier of the current policy,

we give up and merely draw a state-action point
(

xn+1, un+1
)

“at random” according to pX×U (·),
and augment Fn with the transition

(

xn+1, un+1, ρ(xn+1, un+1), f(xn+1, un+1)
)

.

Influence of the BMRL algorithm and the predictive

model PM . For this iterative sampling strategy to behave

well, the inference capabilities of the BMRL algorithm it

uses should obviously be as good as possible. Usually, BMRL

algorithms rely on the training of function approximators [4]

that either represent the system dynamics and the reward

function of the underlying control problem, a (state-action)

value function or a policy. Given the fact that here, at any

iteration of the algorithm, the only knowledge on the problem

is given in the form of a sample of system transitions,

we advocate using BMRL algorithms with non-parametric

function approximators such as, for example, nearest neighbor

or tree-based methods.

The best predictive model PM would be an algorithm that

would, given a state action pair (x, u), output a predicted

transition equal to (x, u, ρ(x, u), f(x, u)). Since predicting

with great accuracy ρ(x, u) and f(x, u) may be difficult,

one could also imagine an algorithm that computes a set of

predictions rather than a single “best guess”. Indeed, with

such a choice, it would be more likely that at least one of

these predicted transitions would also lead to a predicted

policy falsification if the exact one leads to a true policy

falsification. However, working with a large predicted set

may also increase the likelihood that a sampling location

would be predicted as a policy falsifier while it is actually

not the case. Notice also that if some prior knowledge on the

problem is available, it may be possible to exploit it to define

for a given sampling location, a set of transitions which is

“compatible” with the previous samples collected (see, e.g.,

[10] where a compatible set is defined when assuming that

41



the problem is Lipschitz continuous with known Lipschitz

constants). This could be used to increase the performance of

a prediction algorithm by avoiding incompatible predictions.

Influence of the Ln sequence of parameters. Ln sets the

maximal number of trials for searching a new experiment

when n transitions have already been collected. Its value

should be chosen large enough so as to ensure that, if there

exist transitions that indeed lead to a policy falsification, one

of those would be identified with high probability. It may

however happen that, at some iteration n, there doesn’t exist

any (predicted) transition that would lead to a (predicted)

policy falsification. In this case, our algorithm will conduct

Ln trials, which may be problematic from the computational

point of view if Ln is very large. Thus the choice of Ln is a

trade-off between the desirability to have at any iteration a high

probability to find a sample that leads to a policy falsification,

and the need to avoid excessive computations when such a

sampling location does not exist.

IV. BMRL/PM IMPLEMENTATION BASED ON

NEAREST-NEIGHBOUR APPROXIMATIONS

In this section, we present the batch-mode RL algorithm

BMRL and the predictive model PM to which our iterative

sampling strategy will be applied in the context of simulations

reported in Section V.

As BMRL algorithm, we have chosen a model learning–

type RL algorithm. It first approximates the functions f and

ρ from the available sample of system transitions, and then

solves “exactly” the optimal control problem defined by these

approximations. This algorithm is fully detailed in Section

IV-A. In Section IV-B, we present the PM used in our

experiments. It computes its predictions based on the same

approximations as those used by the BMRL algorithm.

A. Choice of the Inference Algorithm BMRL

Model learning–type RL. Model learning–type RL aims

at solving optimal control problems by approximating the

unknown functions f and ρ and solving the so approximated

optimal control problem instead of the unknown actual optimal

control problem. The values yl (resp. rl) of the function f
(resp. ρ) in the state-action points (xl, ul) l = 1 . . . n are

used to learn a function f̃Fn
(resp. ρ̃Fn

) over the whole space

X ×U . The approximated optimal control problem defined by

the functions f̃Fn
and ρ̃Fn

is solved and its solution is kept

as an approximation of the solution of the optimal control

problem defined by the actual functions f and ρ.

Given a sequence of actions u ∈ UT and a model learning–

type RL algorithm, we denote by J̃u

Fn
(x0) the approximated

T−stage return of the sequence of actions u, i.e. the T−stage

return when considering the approximations f̃Fn
and ρ̃Fn

:

∀u ∈ UT , J̃u

Fn
(x0) =

T−1
∑

t=0

ρ̃Fn
(x̃t, ut)

with x̃t+1 = f̃Fn
(x̃t, ut) , ∀t ∈ {0, . . . , T − 1} and x̃0 = x0.

We denote by J̃∗
Fn

(x0) the maximal approximated T−stage

return when starting from the initial state x0 ∈ X according

to the approximations f̃Fn
and ρ̃Fn

:

J̃∗
Fn

(x0) = max
u∈UT

J̃u

Fn
(x0) .

Using these notations, model learning–type RL algorithms

aim at computing a sequence of actions ũ
∗
Fn
∈ UT such that

J̃
ũ

∗

Fn

Fn
(x0) is as close as possible (and ideally equal to) to

J̃∗
Fn

(x0). These techniques implicitly assume that an optimal

policy for the learned model leads also to high returns on the

real problem.

Voronoi tessellation based RL algorithm. We describe here

the model-learning type of RL algorithm that will be used

later in our simulations. This algorithm approximates the

reward function ρ and the system dynamics f using piecewise

constant approximations on a Voronoi–like [2] partition of the

state-action space (which is equivalent to a nearest-neighbour

approximation) and will be referred to by the VRL algorithm.

Given an initial state x0 ∈ X , the VRL algorithm computes

an open-loop sequence of actions which corresponds to an

“optimal navigation” among the Voronoi cells.

Before fully describing this algorithm, we first assume that

all the state-action pairs
{

(xl, ul)
}n

l=1
given by the sample of

transitions Fn are unique, i.e.

∀l, l′ ∈ {1, . . . , n}, (xl, ul) = (xl′ , ul′) =⇒ l = l′ .

We also assume that each action of the action space U has

been tried at least once, i.e.,

∀u ∈ U , ∃l ∈ {1, . . . , n}, ul = u .

The model is based on the creation of n Voronoi cells
{

V l
}n

l=1
which define a partition of size n of the state-action space.

The Voronoi cell V l associated to the element (xl, ul) of Fn

is defined as the set of state-action pairs (x, u) ∈ X × U that

satisfy:

(i) u = ul , (1)

(ii) l ∈ argmin
l′:ul′=u

{

‖x− xl′‖X

}

, (2)

(iii) l = min
l′

{

l′ ∈ argmin
l′:ul′=u

{

‖x− xl′‖X

}

}

. (3)

One can verify that
{

V l
}n

l=1
is indeed a partition of the state-

action space X × U since every state-action (x, u) ∈ X × U
belongs to one and only one Voronoi cell.

The function f (resp. ρ) is approximated by a piecewise

constant function f̃Fn
(resp. ρ̃Fn

) defined as follows:

∀l ∈ {1, . . . , n}, ∀(x, u) ∈ V l, f̃Fn
(x, u) = yl,

ρ̃Fn
(x, u) = rl .

Using the approximations f̃Fn
and ρ̃Fn

, we define a se-

quence of approximated optimal state-action value functions

42



(

Q̃∗
T−t

)T−1

t=0
as follows : ∀t ∈ {0, . . . , T − 1} , ∀(x, u) ∈

X × U ,

Q̃∗
T−t(x, u) = ρ̃Fn

(x, u)

+ argmax
u′∈U

Q̃∗
T−t−1

(

f̃Fn
(x, u), u′

)

,

with Q∗
1(x, u) = ρ̃Fn

(x, u), ∀(x, u) ∈ X × U .
Using the sequence of approximated optimal state-action

value functions
(

Q̃∗
T−t

)T−1

t=0
, one can infer an open-loop

sequence of actions ũ
∗
Fn

= (ũ∗
Fn,0

, . . . , ũ∗
Fn,T−1) ∈ U

T

which is an exact solution of the approximated optimal control

problem, i.e. which is such that J̃
ũ

∗

Fn

Fn
(x0) = J̃∗

Fn
(x0) as

follows:

ũ∗
Fn,0 ∈ argmax

u′∈U
Q̃∗

T (x̃
∗
0, u

′) ,

and, ∀t ∈ {0, . . . , T − 2} ,

ũ∗
Fn,t+1 ∈ argmax

u′∈U
Q̃∗

T−(t+1)

(

f̃Fn

(

x̃∗
t , ũ

∗
Fn,t

)

, u′
)

where x̃∗
0 = x0 and x̃∗

t+1 = f̃Fn
(x̃∗

t , ũ
∗
t ), ∀t ∈ {0, . . . , T −1}.

All the approximated optimal state-action value functions
(

Q̃∗
T−t

)T−1

t=0
are piecewise constant over each Voronoi cell,

a property that can be exploited for computing them easily

as it is shown in Figure 1. The VRL algorithm has linear

complexity with respect to the cardinality n of the sample

of system transitions Fn, the optimization horizon T and the

cardinality m of the action space U . Furthermore, the VRL

algorithm has consistency properties in Lipschitz continuous

environments, for which the open-loop sequence of actions

computed by the VRL algorithm converges towards an optimal

sequence of actions when the sparsity of the sample of system

transitions converges towards zero [9].

B. Choice of the Predictive Model PM

Model learning–type RL uses a predictive model of the

environment. Our predictive model PM is thus given by

the approximated system dynamics f̃Fn
and reward function

ρ̃Fn
computed by the VRL algorithm. Given a sample of

transitions Fn and a state-action point (x, u) ∈ X × U ,

the PM algorithm computes a predicted system transition

(x, u, r̂Fn
(x, u), ŷFn

(x, u)) = PM(Fn, x, u) such that:

∀(x, u) ∈ X × U : r̂Fn
(x, u) = ρ̃Fn

(x, u) ,

ŷFn
(x, u) = f̃Fn

(x, u) .

V. EXPERIMENTAL SIMULATION RESULTS WITH THE

CAR-ON-THE-HILL PROBLEM

We propose in this section to illustrate the sampling strat-

egy proposed in the previous sections on the car-on-the-hill

problem [7] which has been vastly used as benchmark for

validating RL algorithms. First we describe the benchmark.

Afterwards we detail the experimental protocol and finally,

we present and discuss our simulation results.

Inputs: an initial state x0 ∈ X , a sample of transitions

Fn =
{(

xl, ul, rl, yl
)}n

l=1
;

Output: a sequence of actions ũ
∗
Fn

and J̃∗
Fn

(x0) ;

Initialization:

Create a n×m matrix V such that V (i, j) contains the index

of the Voronoi cell (VC) where
(

f̃Fn
(xi, ui), aj

)

lies ;

for i = 1 to n do

Q1,i ← ri ;

end for

Algorithm:

for t = T − 2 to 0 do

for i = 1 to n do

l← argmax
l′∈{1,...,m}

{

QT−t−1,V (i,l′)

}

;

QT−t,i ← ri +QT−t−1,V (i,l) ;

end for

end for

l ← argmax
l′∈{1,...,m}

QT,i′ where i′ denotes the index of the VC

where (x0, a
l′) lies ;

l∗0 ← index of the VC where (x0, a
l) lies ;

J̃∗
Fn

(x0)← QT,l∗
0

;

i← l∗0 ;

ũ∗
Fn,0

← ul∗0 ;

for t = 0 to T − 2 do

l∗t+1 ← argmax
l′∈{1,...,m}

{

QT−t−1,V (i,l′)

}

;

ũ∗
Fn,t+1 ← al

∗

t+1 ;

i← V (i, l∗t+1) ;

end for

Return: ũ∗
Fn

= (ũ∗
Fn,0

, . . . , ũ∗
Fn,T−1) and J̃∗

Fn
(x0).

Fig. 1. The Voronoi Reinforcement Learning (VRL) algorithm. QT−t,l is

the value taken by the function Q̃∗

T−t
in the Voronoi cell V l.

A. The Car-on-the-hill Benchmark

In the car-on-the-hill benchmark, a point mass - which

represents a car - has to be driven past the top of a hill

by applying a horizontal force. For some initial states, the

maximum available force is not sufficient to drive the car

directly up the right hill. Instead, the car has to first be driven

up the opposite (left) slope in order to gather energy prior to

accelerating towards the goal. An illustration of the car-on-

the-hill benchmark is given below in Figure 2.

The continuous-time dynamics of the car is given by

z̈ =
1

1 +
(

dH(z)
dz

)2

(

u

mc

− g
dH(z)

dz
− ż2

dH(z)

dz

d2H(z)

dz2

)

where z ∈ [−1, 1] is the horizontal position of the car

(expressed in m), ż ∈ [−3, 3] is the velocity of the car

(given in m/s), u ∈ {−4, 4} is the horizontal force applied to

the car (expressed in N ), g = 9.81m/s2 is the gravitational

acceleration and H denotes the slope of the hill:

43







Fig. 7. Representation of the sample of system transitions F1

Nmax
(obtained

through inferred policy variations-based sampling strategy).

Fig. 8. Representation of the sample of system transitions G1

Nmax
(obtained

through uniform sampling strategy).

VI. RELATED WORK

The problem of sampling parsimoniously the state-action

space of an optimal control problem for identifying good

policies has already been addressed by several authors. The

approach detailed in [6] is probably the closest to ours. In

this paper, the authors propose a sequential sampling strategy

which also favors sampling locations that are predicted to

have a high-influence on the policy that will be inferred.

While we focus in this paper on deterministic problems with

continuous state spaces, their approach is particularized to

stationary stochastic problems with finite state spaces.

In [11], another sequential sampling strategy is proposed. It

works by computing bounds on the return of control policies

and selects as sampling area the one which is expected to lead

to the highest increase of the bounds’ tightness. The approach

requires the system dynamics and the reward function to be

Lipschitz continuous, and relies at its heart on the resolution

of a complex optimization problem.

Most of the works in the field of RL related to the gener-

ation of informative samples have focused on the problem of

controlling a system so as to generate samples that can be used

to increase the performance of the control policy while at the

same time generating high rewards. One common approach for

addressing this “exploration-exploitation” dilemma ([1], [5])

is to use a so-called ǫ-Greedy policy which is a policy that

deviates with a certain probability from the estimate of the

optimal one ([21], [13], [20]). The problem has been recently

well-studied for stochastic Markov Decision Processes having

one single state ([3]).

There is a considerable body of work in the field of adaptive

discretization techniques in dynamic programming which is

also related to our approach. In these works, the state-action

space is iteratively sampled so as to lead rapidly to an optimal

policy (see e.g., [14]). If at the inner loop of our approach,

exact samples rather than predicted samples were used, it could

certainly be assimilated to this body of work. The amount

of computation required by our approach to identify at every

iteration a new sample would however not make it necessarily

a good adaptive discretization technique. Indeed, the efficiency

of an adaptive discretization technique does not depend solely

only on the number of samples it uses to identify a good policy,

but well on its overall computational complexity.

Finally, it is worth mentioning that the problem of iden-

tifying a concise set of samples from which a good policy

can be inferred has also been addressed in other contexts than

the one considered in this paper. For example, [7] proposes

a strategy for extracting from a given sample of system

transitions, a much smaller subset that can still lead to a good

policy. The strategy relies on the computation of errors in

a Bellman equation and showed good results on problems

having a smooth environment. In [18], the authors focus on the

identification of a small sample of transitions that can lead to a

good policy when combined with a BMRL algorithm without

assuming any constraints on the number of samples that can be

generated. The simulation results given in this paper show that

for the car-on-the-hill benchmark, less than twenty well chosen

samples can lead to an optimal policy. However, for identifying

these samples, the state-action space had to be sampled a very

large number of times (about hundreds of thousands of times).

VII. CONCLUSIONS

We have proposed a sequential strategy for sampling in-

formative collections of system transitions for solving deter-

ministic optimal control problems in continuous state spaces.

This sampling strategy uses the ability of predicting system

transitions, in order to identify experiments whose outcome

would be likely to falsify the current hypothesis about the

solution of the optimal control problem. Algorithms have been

fully specified for the case of finite horizon deterministic

optimal control problems with finite action spaces, by using

nearest-neighbor approximations of the optimal control prob-

lem both in the RL algorithm and for predicting the outcome

of experiments in terms of hypothetical system transitions.

The simulations were carried out on the car-on-the-hill

problem and the results were promising. In particular, our

46



sampling strategy was found to be much more efficient than a

uniform sampling one. These results motivate further study

of the algorithms proposed in this paper. In particular, it

would be interesting to establish under which conditions policy

falsification caused by new samples also corresponds to actual

policy improvements and what may be the influence of the

prediction errors done when generating the “predicted system

transitions” on the “predicted policy changes”. This should

be very helpful for analytically investigating the convergence

speed of the proposed sampling strategy towards a sample of

system transitions from which optimal or near-optimal policies

could be inferred.

Finally, while an instance of this policy falsification con-

cept for generating new experiments has been fully specified

and validated for deterministic problems with discrete action

spaces, we believe that it would also be interesting to investi-

gate ways to exploit it successfully in other settings.

ACKNOWLEDGEMENTS

Raphael Fonteneau acknowledges the financial support of

the FRIA. Damien Ernst is a research associate of the FRS-

FNRS. This paper presents research results of the European

excellence network PASCAL2 and of the Belgian Network

BIOMAGNET, funded by the Interuniversity Attraction Poles

Programme, initiated by the Belgian State, Science Policy

Office. We also acknowledge financial support from NIH

grants P50 DA10075 and R01 MH080015. The authors also

thank Bertrand Cornélusse for valuable discussions and help

with the numerical experiments. The scientific responsibility

rests with its authors.

REFERENCES

[1] P. Auer. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Reserch, 3:397 – 422, 2003.

[2] F. Aurenhammer. Voronoi diagrams − a survey of a fundamental
geometric data structure. ACM Computing Surveys (CSUR), 23(3):345–
405, 1991.

[3] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. Online optimization
in X-armed bandits. In Advances in Neural Information Processing

Systems 21, pages 201–208. MIT Press, 2009.

[4] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Reinforcement

Learning and Dynamic Programming using Function Approximators.
Taylor & Francis CRC Press, 2010.

[5] J.D. Cohen, S.M. McClure, and A.J. Yu. Should I stay or should I
go? How the human brain manages the trade-off between exploitation
and exploration. Philosophical Transactions of the Royal Society B 29,
362(1481):933–942, 2007.

[6] A. Ephsteyn, A. Vogel, and G. DeJong. Active reinforcement learning.
In Proceedings of the 25th international conference on Machine learning

(ICML 2008), volume 307, 2008.
[7] D. Ernst. Selecting concise sets of samples for a reinforcement

learning agent. In Proceedings of the Third International Conference on

Computational Intelligence, Robotics and Autonomous Systems (CIRAS

2005), Singapore, 2005.
[8] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode rein-

forcement learning. Journal of Machine Learning Research, 6:503–556,
2005.

[9] R. Fonteneau and D. Ernst. Voronoi model learning for batch mode
reinforcement learning. Technical report, University of Liège, 2010.

[10] R. Fonteneau, S. A. Murphy, L. Wehenkel, and D. Ernst. Towards min
max generalization in reinforcement learning. To be published as book

chapter in the series Communications in Computer and Information

Science (CCIS) by Springer-Verlag, 2010.
[11] R. Fonteneau, S.A. Murphy, L. Wehenkel, and D. Ernst. Generating

informative trajectories by using bounds on the return of control policies.
In Proceedings of the Workshop on Active Learning and Experimental

Design 2010 (in conjunction with AISTATS 2010), 2010.
[12] J.E. Ingersoll. Theory of Financial Decision Making. Rowman and

Littlefield Publishers, Inc., 1987.
[13] L.P. Kaelbling. Learning in Embedded Systems. MIT Press, 1993.
[14] R. Munos and A. Moore. Variable resolution discretization in optimal

control. Machine Learning, 49:291–323, 2002.
[15] S.A. Murphy. Optimal dynamic treatment regimes. Journal of the Royal

Statistical Society, Series B, 65(2):331–366, 2003.
[16] S.A. Murphy. An experimental design for the development of adaptive

treatment strategies. Statistics in Medicine, 24:1455–1481, 2005.
[17] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine

Learning, 49(2-3):161–178, 2002.
[18] E. Rachelson, F. Schnitzler, L. Wehenkel, and D. Ernst. Optimal sample

selection for batch-mode reinforcement learning. In 3rd International

Conference on Agents and Artificial Intelligence (ICAART), 2011.
[19] M. Riedmiller. Neural fitted Q iteration - first experiences with a data

efficient neural reinforcement learning method. In Proceedings of the

Sixteenth European Conference on Machine Learning (ECML 2005),
pages 317–328, Porto, Portugal, 2005.

[20] R.S. Sutton and A.G. Barto. Reinforcement Learning. MIT Press, 1998.
[21] S. Thrun. The role of exploration in learning control. In D. White and

D. Sofge, editors, Handbook for Intelligent Control: Neural, Fuzzy and

Adaptive Approaches. Van Nostrand Reinhold, 1992.

47


