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Abstract. This paper considers optimal control of dynamical systems which are
represented by nonlinear stochastic differential equations. It is well-known that
the optimal control policy for this problem can be obtained as a function of a
value function that satisfies a nonlinear partial differential equation, namely, the
Hamilton-Jacobi-Bellman equation. This nonlinear PDE must be solved back-
wards in time, and this computation is intractable for large scale systems. Under
certain assumptions, and after applying a logarithmic transformation, an alterna-
tive characterization of the optimal policy can be given in terms of a path integral.
Path Integral (PI) based control methods have recently been shown to provide el-
egant solutions to a broad class of stochastic optimal control problems. One of the
implementation challenges with this formalism is the computation of the expec-
tation of a cost functional over the trajectories of the unforced dynamics. Com-
puting such expectation over trajectories that are sampled uniformly may induce
numerical instabilities due to the exponentiation of the cost. Therefore, sampling
of low-cost trajectories is essential for the practical implementation of PI-based
methods. In this paper, we use incremental sampling-based algorithms to sample
useful trajectories from the unforced system dynamics, and make a novel connec-
tion between Rapidly-exploring Random Trees (RRTs) and information-theoretic
stochastic optimal control. We show the results from the numerical implementa-
tion of the proposed approach to several examples.

Keywords: path integral, stochastic optimal control, sampling-based algorithms

1 Introduction

In [19,20], the authors showed the connection between Kullback-Leibler (KL) and Path
Integral (PI) control with an information-theoretic view of stochastic optimal control. In
addition, the authors derived the iterative path integral optimal control without relying
on policy parameterizations, as in [17]. We review the work in [19,20] starting with the
definitions of free energy and relative entropy and their connections to dynamic pro-
gramming. In addition, we discuss how the iterative scheme developed in [19] and [20]
can be modified to incorporate incremental sampling-based methods such as Rapidly-
exploring Random Trees (RRTs) to guide sampling.

Within the mathematical framework of path integral control, the Feynman-Kac lemma
plays an essential role, since it creates a connection between Stochastic Differential
Equations (SDEs) and backward Partial Differential Equations (PDEs). This fundamen-
tal connection between SDEs and backward PDEs has inspired new avenues for the
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development of stochastic control algorithms such as Policy Improvement with Path In-
tegrals (PI2) [18] that rely on forward sampling. PI2 has been applied to a plethora
of motor control tasks from robotic object manipulation and locomotion to general
trajectory optimization and gain scheduling [2, 15, 16, 18], but it relies on a suitable
parameterization of the optimal control policy. While policy parameterization such as
Dynamic Movement Primitives (DMPs) [7] improves sampling by steering trajectories
in high-dimensional state spaces towards areas of interest, it does not exploit the feed-
back structure provided by the path integral control framework. In PI2 trajectories are
sampled from the initial state of the task, the optimal parameter variations are com-
puted, and the parameters are updated. In the next iteration, trajectories are sampled
again from the same initial state and the iterative process continues until convergence.
It is clear that in the case of policy parameterization one has to explicitly design the
structure of the feedback control policy and then treat the gains as parameters to be
optimized.

In this work, we use an alternative approach, which steers state trajectories towards
relevant areas of the state space without the requirement of policy parameterization. In
addition, the proposed approach improves sampling, while also allowing the use of path
integral control in a feedback form.

2 Notation

A probability space is a triple (Ω, F , p) where (Ω,F) is a measurable space with Ω a
non-empty set, which is called the sample space, F ⊆ 2Ω a σ-algebra of subsets of Ω,
whose elements are called events, and p is a probability measure on F , that is, p is a
finite measure on F with p(Ω) = 1.

A real random variable is a function X : Ω → R with the property that {ω ∈ Ω :
X(ω) ≤ x} ∈ F for each x ∈ R. Such a function is said to be F-measurable. An
extended (real) random variable can also take the values±∞. IfX is a random variable
on the probability space (Ω, F , p), then its expectation is defined by

Ep [X] =

∫
Ω

X(ω) dp(ω), (1)

provided that the integral in the right-hand side exists. As usual, and for notational
simplicity, in the sequel we will drop the explicit dependence on ω ∈ Ω in (1). In other
words, the notation Ep [X] is another (shorter) notation for the integral

∫
Xdp.

3 Stochastic Control Based on Free Energy and Relative Entropy
Dualities

Let (Ω,F) be a measurable space where Ω is a non-empty set and F ⊆ 2Ω is a σ-
algebra of subsets of Ω, and let P(Ω) be the set of all probability measures defined on
(Ω,F).
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Definition 1 Let p ∈ P(Ω) be a probability measure, x = x(ω), ω ∈ Ω be a random
variable, t, ρ ∈ R be real numbers, and let J (x, t) be a measurable function. The
Helmholtz free energy of J (x, t) with respect to p is defined by

Ep (J (x, t); ρ) = log

(∫
exp (ρJ (x, t)) dp

)
= logEp [exp (ρJ (x, t))] . (2)

Definition 2 Let p, q ∈ P(Ω) be two probability measures. The relative entropy of p
with respect to q is defined as1:

KL (q‖p) =


∫

log

(
dq

dp

)
dq if q� p and log

(
dq

dp

)
∈ L1,

+∞ otherwise.
(3)

We will also consider the function ξ(x, t), defined by

ξ(x, t) = 1
ρEp (J (x, t); ρ) = 1

ρ logEp [exp (ρJ (x, t))] . (4)

To derive the basic relationship between free energy and relative entropy [4], we ex-
press the expectation Ep taken under the probability measure p as a function of the
expectation Eq taken under the probability measure q. More precisely, we have:

Ep [exp (ρJ (x, t))] =

∫
exp (ρJ (x, t))

dp

dq
dq.

By taking the logarithm of both sides of the previous equation and by making use
of Jensen’s inequality [4], it can be shown that:

logEp [exp (ρJ (x, t))] ≥
∫
ρJ (x, t) dq−KL (q‖p) . (5)

Let ρ < 0. By multiplying both sides of (5) with −1/|ρ|, one obtains:

ξ(x, t) = − 1

|ρ|
Ep (J (x, t); ρ) ≤ Eq [J (x, t)] +

1

|ρ|
KL (q‖p) (6)

where Eq [J (x, t)] =

∫
J (x, t) dq. The inequality (6) provides us with a duality re-

lationship between relative entropy and free energy. Essentially, one could define the
following minimization problem:

− 1

|ρ|
Ep (J (x, t); ρ) = inf

q∈P(Ω)

(
Eq [J (x, t)] +

1

|ρ|
KL(q‖p)

)
. (7)

It can be shown that the infimum in (7) is attained at q∗, where

dq∗ =
exp (−|ρ|J (x, t))∫
exp (−|ρ|J (x, t)) dp

dp. (8)

1 Given two probability measures p and q, we say that q is absolute continuous with p and write
q� p if q = 0⇒ p = 0, see page 161 of [13].
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A rather intuitive way of writing (6) is to express it in the following form:

−|ρ|−1Ep (J (x, t); ρ)︸ ︷︷ ︸
Helmholtz Free Energy

≤ State Cost + |ρ|−1Information Cost︸ ︷︷ ︸
Non-Equilibrium Free Energy

(9)

where “State Cost” and “Information Cost” are defined as Eq [J (x, t)] and KL (q‖p),
respectively.

In the next sections, we derive the form of (7) for the case when x is the state of a
nonlinear stochastic differential equation affine in noise and control.

3.1 Application of the Legendre Transformation to Stochastic Differential
Equations

We consider the general uncontrolled and controlled stochastic dynamics affine in noise
as follows:

dx = A(x) dt+ C(x) dw(0), (10)

dx = F(x,u) dt+ C(x) dw(1), (11)

where x ∈ Rn denotes the state of the system, u ∈ Rm denotes the control input,
C(x) ∈ Rn×m is the diffusion matrix, F(x,u) ∈ Rn is the drift dynamics, and
w(0),(1) ∈ Rm are Wiener processes (Brownian motion). The upper-scripts (0) and
(1) are used to distinguish the two noise processes in the uncontrolled and controlled
dynamics, respectively. The drift term A(x) ∈ Rn is defined by A(x) = F(x, 0). The
diffusion matrix may be partitioned as C(x) =

[
0 Cᵀ

c (x)
]ᵀ

where 0 ∈ R(n−m)×m and
Cc(x) ∈ Rm×m is invertible. Similarly, the drift term in the controlled dynamics may
be partitioned as F(x,u) =

[
Fᵀ

1(x,u) Fᵀ
2(x,u)

]ᵀ
where F1(x,u) ∈ Rm×(n−m) and

F2(x,u) ∈ Rm×m; and the drift term in the uncontrolled dynamics may be partitioned
as A(x) =

[
Aᵀ

1(x) Aᵀ
2(x)

]ᵀ
where A1(x) ∈ Rm×(n−m) and A2(x) ∈ Rm×m. The

class of systems whose matrices can be partitioned as such contains rigid body, and
multi body dynamics as well as kinematic models such as the ones considered in this
work. Henceforth, for simplicity, we will assume that m = n. The case when m < n
can be treated similarly; see for instance [22]. Let Σ(x) = C(x)Cᵀ(x) ∈ Rm×m and
also define the following quantity:

δF(x,u) = F(x,u)−A(x) = F(x,u)− F(x, 0), ∀x,u.

To the system (11) we also associated the state cost

J (x(·), t) = Φ(x(tf)) +

∫ tf

t

q(x(τ), τ) dτ. (12)

With a slight abuse of notation we will also use J (x, t) to denote the value ofJ (x(·), t)
along the trajectory x(·) starting from x = x(t) at time t. Expectations evaluated on
trajectories generated by the uncontrolled dynamics and controlled dynamics will be
represented by Ep[ · ] and Eq[ · ], respectively. The following fact can be found in [22].
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Proposition 1. Given the measures p, q induced by the trajectories of (10) and (11),
respectively, the Radon-Nikodym derivative of q with respect to p is defined by

dq

dp
= exp

(∫ tf

t

δFᵀ(x(τ),u(τ))C−1(x(τ)) dw(1)(τ)

)
+

exp

(∫ tf

t

1
2δF

ᵀ(x(τ),u(τ))Σ−1(x(τ)) δF(x(τ),u(τ)) dτ

)
. (13)

Given equation (13), the relative entropy term in (6) takes the form:

1

|ρ|
KL(q‖p) =Eq

[
1

|ρ|

∫ tf

t

δFᵀ(x(τ),u(τ))C−1(x(τ)) dw(1)(τ)

]
+

Eq

[
1

|ρ|

∫ tf

t

1
2δF

ᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
=Eq

[
1

2|ρ|

∫ tf

t

δFᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
,

where the first term in the previous expression vanishes since the expectations term
Eq

[
δFᵀ(x(τ),u(τ))C−1(x(τ))dw(1)(τ)

]
becomes

Eq

[
δFᵀ(x(τ),u(τ))C−1(x(τ))

]
Eq

[
dw(1)(τ)

]
= 0, ∀τ, t ≤ τ ≤ tf (14)

Substituting the previous expression of the Kullback-Leibler divergence into (6) one
obtains

− 1

|ρ|
Ep (J (x, t); ρ) ≤ Eq [J (x, t)] +

Eq

[
1

2|ρ|

∫ tf

t

δFᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
.

The previous equation can be written in the form (9) with state cost term defined as

Eq [J (x, t)] , (15)

and information cost defined as

Eq

[
1

2|ρ|

∫ tf

t

δFᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
. (16)

Next, we further specialize the class of systems where (9) is applied to, and discuss
its connections to stochastic optimal control as in [4,19,20]. To this end, let us consider
the special case of (10) and (11) with uncontrolled and controlled stochastic dynamics
of the following form, respectively:

dx = f(x) dt+
1√
|ρ|

B(x) dw(0), (17)
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dx = f(x) dt+ B(x)

(
u dt+

1√
|ρ|

dw(1)

)
, (18)

where x ∈ Rn denotes the state of the system, B(x) ∈ Rn×m is the control/diffusion
matrix, f(x) ∈ Rn is the passive dynamics, u ∈ Rm is the control vector and w(0),(1)

are m-dimensional Wiener noise processes.
For the dynamics in (17) and (18) the form of the Radon-Nikodym derivative in (13)

can be computed as follows. Noticing that δF(x,u) = B(x)u, C(x) = B(x)/
√
|ρ|

and Σ(x) = B(x)Bᵀ(x)/|ρ|, and substituting these expressions in (13) yields

dq

dp
= exp (|ρ|η(u, t)) and

dp

dq
= exp (−|ρ|η(u, t)) , (19)

where η(u, t) is given by:

η(u, t) =
1

2

∫ tf

t

uᵀ(τ)u(τ) dτ +
1√
|ρ|

∫ tf

t

uᵀ(τ) dw(1). (20)

Substitution of (19) and (20) into inequality (6) yields the following result:

− 1

|ρ|
logEp [exp (−|ρ|J (x, t))] ≤ Eq

[
J (x, t) +

1

|ρ|
η(u, t)

]
. (21)

The expectation on the right side of the inequality in (21) is further simplified as follows:

− 1

|ρ|
logEp [exp (−|ρ|J (x, t))]︸ ︷︷ ︸

ξ(x,t)

≤ Eq

[
J (x, t) + 1

2

∫ tf

t

u(τ)ᵀu(τ) dτ

]
.︸ ︷︷ ︸

Total Cost

(22)

The right-hand side term in the above inequality corresponds to the cost function
of a stochastic optimal control problem that is bounded from below by the free energy.
Surprisingly, inequality (22) was derived without relying on any principle of optimality.
Inequality (22) essentially defines a minimization process in which the right-hand side
part of the inequality is minimized with respect to η(u, t) and therefore with respect
to the corresponding control u. At the minimum, when u = u∗, the right-hand side of
inequality in (22) attains its optimal value ξ(x, t). Under the optimal control u∗, and
according to (8), the corresponding optimal distribution takes the form

dq∗ =

exp
(
− |ρ|Φ(x(tf))

)
exp

(
−|ρ|

∫ tf

t

q(x(τ), τ) dτ

)
∫

exp
(
− |ρ|Φ(x(tf))

)
exp

(
−|ρ|

∫ tf

t

q(x(τ), τ) dτ

)
dp

dp. (23)

The work [19, 20] inspired by early mathematical developments in control theory
[4, 5], has shown that the value function ξ(x, t) in (22) satisfies the Hamilton-Jacobi-
Bellman equation and it has made the connection with more recent work in machine
learning [8, 21] on Kullback-Leibler and path integral control.
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3.2 Connection with Dynamic Programming (DP)

An important question that arises is: What is the link between (22) and the principle
of optimality in dynamic programming? To address this question, we show that ξ(x, t)
satisfies the Hamilton-Jacobi-Bellman (HJB) equation associated with the optimal con-
trol problem (18)-(12) and hence, ξ(x, t) is the corresponding value function of the
following minimization problem

ξ(x, t) = min
u(τ)
t≤τ≤tf

Eq

[
Φ(x(tf)) +

∫ tf

t

(
q(x(τ), τ) + 1

2uᵀ(τ)u(τ)
)

dτ

]

= min
u(τ)
t≤τ≤tf

Eq

[
J (x, τ) + 1

2

∫ tf

t

uᵀ(τ)u(τ) dτ

]
, (24)

where the expectation is computed over the trajectories of (18). To see this, we introduce
Ψ(x, t) , Ep [exp (ρJ (x, t))] and apply the Feynman-Kac lemma [6] to arrive at the
backward Chapman-Kolmogorov partial differential equation (PDE)

−∂tΨ(x, t) = − |ρ|q(x, t)Ψ(x, t) + fᵀ(x)∇Ψx(x, t)

+
1

2|ρ|
tr (∇Ψxx(x, t)B(x)B(x)ᵀ) (25)

with boundary condition Ψ(x(tf), tf) = exp
(
− |ρ|Φ(x(tf)

)
, which governs the evo-

lution of Ψ(x, t) along the trajectories of (18) subject to x = x(t). Since ξ(x, t) =
− log Ψ(x, t)/|ρ|, it follows that

∂tΨ(x, t) = −|ρ|Ψ(x, t)∂tξ(x, t),

∇Ψx(x, t) = −|ρ|Ψ(x, t)∇ξx(x, t),

∇Ψxx(x, t) = |ρ|Ψ(x, t)∇ξxx(x, t)− |ρ|2Ψ(x, t)∇ξx(x, t)∇ξᵀx(x, t).

In this case, it can be shown that ξ(x, t) satisfies the nonlinear PDE

−∂tξ(x, t) = q(x, t) +∇ξᵀx(x, t)f(x)− 1
2∇ξ

ᵀ
x(x, t)B(x)Bᵀ(x)∇ξx(x, t)

+
1

2|ρ|
tr (∇ξxx(x, t)B(x)Bᵀ(x)) , (26)

subject to the boundary condition ξ(x(tf), tf) = Φ(x(tf)). The nonlinear PDE (26)
corresponds to the HJB equation associated with the optimal control problem (24) and
hence ξ(x, t) is the corresponding minimizing value function [14]. It is important to
note, however, that the principle of optimality was not used to derive (26).

3.3 Path Integral Control with Initial Sampling Policies

According to (22), in order to find the value function ξ(x, t), sampling of trajectories
under the uncontrolled dynamics is performed, and the left-hand side of (22) is evalu-
ated on these trajectories. However, in high-dimensional spaces, it is desirable to steer
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sampling towards specific areas of the state space. To do so, we have to incorporate
an initial control policy into the uncontrolled dynamics. Therefore, instead of sampling
from the uncontrolled dynamics (17), we sample, instead, based on the stochastic dy-
namics:

dx = f(x) dt+ B(x)

(
uin dt+

1√
|ρ|

dw(1)

)
, (27)

where uin is an initial control policy. In [19,20], the authors derived an iterative PI con-
trol without relying on previous policy parameterizations. More precisely, when sam-
pling from the dynamics (27) the work in [20] and [19] showed that the value function
ξ(x, t) is expressed as

ξ(x, t) = − 1

|ρ|
log

(∫
exp (−|ρ|S (x,uin(x, t), t)) dqin

)
where the term S(x,uin) is defined as

S(x,uin) = Φ(x(tf)) +

∫ tf

t

q(x(τ), τ) dτ︸ ︷︷ ︸
J (x,t)

+

1

2

∫ tf

t

uᵀ
in(τ)uin(τ) dτ +

1√
|ρ|

∫ tf

t

uᵀ
in(τ) dw(1)(τ)︸ ︷︷ ︸

η(uin,t)

, (28)

where the term η(uin, t) appears due to sampling based on the dynamics (27), while
the term J (x, t) is the state-dependent part of the total cost function in (22). The path
integral control is now expressed as [19]

uPI(x, t) dt = uin(x, t) dt+ δu(x, t), (29)

where the term δu(x, t) is defined by

δu(x, t) =
1√
|ρ|

Eq∗

[
dw(1)

]
=

1√
|ρ|

∫
dw(1) dq∗, (30)

and where the expectation is taken under the optimal probability

dq∗ =
exp (−|ρ|S(x,uin))∫

exp (−|ρ|S(x,uin)) dqin

dqin. (31)

During implementation, equation (32) is approximated as

δu(x, t) =
1√
|ρ|

#traj∑
k=1

pkdw(1)(ωk) with pk =
exp (−|ρ|S(xk,uin))∑#traj
`=1 exp (−|ρ|S(x`,uin))

(32)
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The initial policy uin can be a suboptimal control law, a hand-tuned PD, PID control,
or feedforward control. In this paper, we consider a feedforward control given by the
RRT algorithm as the initial control policy. In this case, the RRT-based optimal path
integral control takes the form

uPI(x, t) dt = uRRT(t) dt+ δu(x, t). (33)

In the next section, we discuss how to use the RRT algorithm to compute the initial
control policy uRRT.

4 Trajectory Sampling via Sampling-based Algorithms

As shown in the previous sections, sampling of useful trajectories from the unforced
dynamics can be a tedious task. This issue can be addressed by first computing a “good
enough” initial trajectory and then sampling local trajectories in the neighborhood of
this trajectory. In the proposed approach, we use a probabilistic algorithm to compute an
initial trajectory quickly. Probabilistic methods have proven to be very efficient for the
solution of motion planning problems with dynamic constraints in high dimensional
search spaces. Among them, Rapidly-exploring Random Trees (RRTs) [3, 11, 12] are
among the most popular for solving single query motion planning problems. The main
body of the RRT algorithm is given in Algorithm ??.

In the proposed approach, we leverage the speed and exploration capabilities of the
RRT algorithm to compute an initial policy quickly by making a minor modification
of the RRT primitive procedures. Since both final time and final state are given, the
search space is formed by adding an additional time dimension T to the state space X .
Our search space, goal set and free space are thus defined as Z = X × T , Zgoal =
Xgoal × Tgoal, and Zfree = Z \ Zgoal, respectively. The RRT algorithm is then run to
find a trajectory starting from an initial point zinit = (xinit, tinit) to the goal set Zgoal

while avoiding the obstacles inX . The primitive procedures used by the RRT algorithm
are given below:

Sampling: Sample : N → Zfree returns independent, identically distributed (i.i.d)
samples from Zfree.

Nearest neighbor: Nearest returns a point from a given finite set V , which is the
point closest to a given point z in terms of a given distance function.

Steering: Given two points z1 and z2 inZfree, Steer extends z1 towards z2 by sam-
pling trajectories from the unforced dynamics of the system. Specifically, the procedure
samples a set of trajectories emanating from z1 and returns the closest end point of this
set of trajectories with respect to a given distance function.

Collision checking: Given a trajectory σ, the Boolean function ObstacleFree(σ)
checks whether σ belongs to Zfree or not. It returns True if the trajectory is a subset of
Zfree, i.e., σ ⊂ Zfree, and False otherwise.

Graph extension: Extend is a function that extends the nearest vertex of the graph G
toward the randomly sampled point zrand. Since time always flows in forward direction,
we make sure that Extend computes valid connections, i.e., it returns false if the time
value of zrand is less than that of the nearest vertex in the graph. The Extend procedure
of the RRT algorithm is shown in Algorithm ??.
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The body of the path-integral based RRT algorithm is shown in Algorithm ??. It
runs in a receding horizon fashion, that is, it computes a “good enough” control input
and executes the first portion of the control signal at each time step. The algorithm
starts by initializing the current time and state with the initial values in Lines 2-3. The
algorithm then computes an initial policy in Line 5 by using the RRT algorithm. The
steering procedure in the RRT algorithm is slightly modified in order to sample dy-
namically feasible trajectories. The steering procedure first samples a fixed number of
trajectories from the unforced dynamics and then chooses the one that has the clos-
est terminal state towards the desired point. Once a trajectory that reaches the goal set
has been computed, the corresponding trajectory σRRT, along with control the signal
uRRT, are extracted from the computed data structure in Line 6. Then, the algorithm
proceeds by locally sampling trajectories around (σRRT,uRRT) and computes the vari-
ation in the control δu(x, t) according to (30) by using information of local trajectories.
Since we have M number of local trajectories, the expecation in (30) is numerically ap-
proximated by using the expression in (32). For each local trajectory σk, a cost value
is computed as S(σk,uRRT) and its desirability value is computed by exponentiating
the corresponding cost value, i.e., dk = exp(−|ρ|S(σk,uRRT)). Then, the variation
term in control δu(x, t) is computed by taking the weighted average of all noise pro-
files which create the local trajectories and the weight of each trajectory is computed
as the normalized desirability value, i.e., pk = dk/Σ

N
`=1d`. The iteration of the algo-

rithm is completed by executing the first τ times of the computed control signal and the
algorithm keeps repeating the same steps until the final time is reached.
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5 Numerical Simulations

In this section, we present a series of simulated experiments using a kinematic car
model. We are interested in controlling a vehicle, whose motion is described by the
following kinematic equations:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = w/r (34)

where x, y are the Cartesian coordinates of a reference point of the vehicle, v is its
speed, w is the control input and r is a positive constant. We assume that the admissible
control inputs, are restricted by w ∈ [−1, 1]. We would like to find an optimal policy
for the heading rate w to move the vehicle from a given initial configuration (xi, yi, θi)

ᵀ

to a final configuration (xf , yf , θf)
ᵀ within some fixed final time tf .

Let x1 = x, x2 = y, x3 = θ be the states and u = w be the control input of the
system. Then (34) can be rewritten as

ẋ1 = v cos x3, ẋ2 = v sin x3, ẋ3 = u/r. (35)

Assuming the system is subjected to noise of intensity α in the control channel, (35)
can be written in the standard formdx1

dx2

dx3

 =

v cos x3

v sin x3

0

dt+

 0
0

1/r

 (u dt+ α dw), (36)

where f , B and ρ in (27) are defined as follows

f(x) =

v cos x3

v sin x3

0

 , B =

 0
0

1/r

 , ρ = − 1

α2
.

The following parameters were used in the numerical simulations: x0 =
(
−9 0 0

)ᵀ
,

t0 = 0, xf =
(
9 0 0

)ᵀ
, tf = 10, dt = 0.1, v = 2.0.

5.1 Example 1: Single-slit Obstacle

The objective in this problem is to find trajectories for the vehicle in a square envi-
ronment with a box-like obstacle having a single slit. The trajectories computed by the
PI-RRT algorithm at different stages are shown in Figure 1. The initial state is plotted
as a yellow square and the goal region is shown in blue with magenta border (right-
most). The computed path by the RRT algorithm following the unforced dynamics is
shown in yellow. The locally sampled trajectories which are bundled around the yellow
trajectory are shown in different colors. The trajectory of the vehicle due to execution
of the control policy for some finite time horizon is shown in magenta.

To understand how the intensity of the noise level affects the patterns of the trajec-
tories of the system, we run the algorithm and analyzed the situation for three different
cases, α = 0.25, 0.5 and 1.0 corresponding to low, medium and high intensity noise
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levels in the control channel. As shown in Figure 1 (a)-(c), the PI-RRT algorithm com-
putes trajectories that pass through the slit most of the time when there is low intensity
noise in the control channel. As a first step, the PI-RRT algorithm computes a baseline
trajectory using the RRT algorithm. The vertices and the edges of the tree computed by
the RRT algorithm are shown in green and blue colors, respectively. During the simu-
lations, it was observed that this baseline trajectory does not necessarily pass through
the slit. The RRT algorithm sometimes returns a baseline trajectory that passes close
by the upper or the lower sections of the obstacle due to both the noise which is ob-
served in the dynamics and the randomized nature of the algorithm itself. The PI-RRT
algorithm then samples a bundle of trajectories around the baseline trajectory in order
to compute the variation term for the new control input. The new control input is com-
puted by summing up the baseline control policy returned by the RRT algorithm and
the variation term, which is the weighted average of the contribution of each locally
sampled trajectory. These weights are computed by using the cost information of each
locally sampled trajectory. We observed that the distribution of the trajectories, which
pass close to the upper or lower corners or through the slit, changes as the intensity of
the noise increases. For higher intensity of the noise, the PI-RRT algorithm computes
trajectories which do not pass through the slit but rather pass close to the upper or lower
corners. This change in the distribution of trajectories is shown in Figure 1 (d)-(f) for
medium intensity noise and in Figure 1 (g)-(i) for high intensity noise.

5.2 Example 2: Double-slit Obstacle

Next, we consider a more challenging motion planning problem. In this case, there are
two slits on the obstacle block and the length of the slits is longer than in the previous
example. The longer length of the slits results in a higher probability of collision while
traversing through the slit, which makes the motion planning problem more challenging.

A study was performed in order to compare the performance of the PI-RRT algo-
rithm with the RRT algorithm. No variation term in the control input was computed
for the RRT algorithm, and it was simply executed in a receding horizon fashion. All
algorithms were run for 6000 iterations to find a baseline trajectory. The results over
100 trials are shown in Figures 2, 3 and 4. The trajectories that result in collision are
plotted in Figure 2 (a), (d) for the low noise level, Figure 3 (a), (d) for the medium noise
level, and Figure 4 (a), (d) for the high noise level for the RRT and PI-RRT algorithms,
respectively. Also, the distribution of collision-free trajectories is plotted in Figure 2
(c), (f) for the low noise level, Figure 3 (c), (f) for the medium noise level, and Figure 4
(c), (f) for the high noise level for the RRT and PI-RRT algorithms, respectively. The
distribution of trajectories and the number of trajectories which result in a collision are
summarized in Table I. Under the ‘Success’ column, the rows of the table contain the
number of collision-free trajectories which pass through the bottom corner, bottom slit,
top slit and top corner of the block. As shown in Table 1, the PI-RRT computes safer
control policies which reduce the risk of having a collision. On the other hand, both the
RRT and the PI-RRT compute trajectories that are almost equally distributed over both
slits.

In summary, it was observed that the behaviors of both algorithms are similar for
the case with high noise level. As the noise level decreases, most of the failed cases,
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Fig. 1. The trajectories computed by the PI-RRT algorithm for stochastic optimal control of the
kinematic car model under different levels of noise injected to the control channel: (a)-(c) is with
α = 0.25, (d)-(f) is with α = 0.50, and (g)-(i) is with α = 1.0.
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not surprisingly, occur when the algorithms try to compute a path that passes through
the slits. Our simulation results demonstrate that the PI-RRT algorithm tends to com-
pute trajectories that have larger clearance from obstacles and hence outperforms the
standard RRT algorithm, resulting in a smaller failure rate.

Table 1. Monte-Carlo Results for Double-Slit Obstacle

α = 0.25 α = 0.50 α = 1.00

Algorithm Success Fail Success Fail Success Fail
RRT 0 24 20 0 56 23 8 11 27 31 48 0 0 44 8
PI-RRT 0 44 45 0 11 35 9 8 37 11 47 0 0 49 4
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Fig. 2. Distribution of trajectories for kinematic car model under low intensity of noise injected
to the control channel (α = 0.25) is shown in (a)-(c) for the RRT algorithm, and in (d)-(f) for the
PI-RRT algorithm. The trajectories which hit the obstacles are shown in (a), (d). The collision-
free trajectories at an intermediate stage are shown in (b), (e), and at the final stage are shown in
(c), (f).
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Fig. 3. Distribution of trajectories for kinematic car model under low intensity of noise injected
to the control channel (α = 0.50) is shown in (a)-(c) for the RRT algorithm, and in (d)-(f) for the
PI-RRT algorithm. The trajectories which hit the obstacles are shown in (a), (d). The collision-
free trajectories at an intermediate stage are shown in (b), (e), and at the final stage are shown in
(c), (f).
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Fig. 4. Distribution of trajectories for kinematic car model under low intensity of noise injected
to the control channel (α = 1.0) is shown in (a)-(c) for the RRT algorithm, and in (d)-(f) for the
PI-RRT algorithm. The trajectories which hit the obstacles are shown in (a), (d). The collision-
free trajectories at an intermediate stage are shown in (b), (e), and at the final stage are shown in
(c), (f).
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6 Conclusion

In this paper, the PI-RRT algorithm is proposed in order to solve a class of stochastic
optimal control problems. The proposed approach makes a novel connection between
incremental sampling-based algorithms and path integral control. The work in this pa-
per can be extended in several directions. First, a parallel version of the algorithm can
be implemented by sampling local trajectories or computing several initial trajectories
simultaneously. Second, since there exist many variants of the standard RRT algorithm,
one can implement different sampling-based algorithms to compute initial trajectories
and incorporate them within the path integral framework. For example, the RRT∗ [9,10]
and the RRT# algorithms [1], which are both asymptotically optimal, can be used to
compute bundles of good initial trajectories in a single pass; however, such an algorithm
would require more elaborate computations for implementing the steering function,
e.g., backward integration of a stochastic differential equation. This is part of ongoing
work.
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