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Abstract—This paper proposes a methodology to estimate the
maximum revenue that can be generated by a company that
operates a high-capacity storage device to buy or sell electricity
on the day-ahead electricity market. The methodology exploits
the Dynamic Programming (DP) principle and is specified for
hydrogen-based storage devices that use electrolysis to produce
hydrogen and fuel cells to generate electricity from hydrogen.
Experimental results are generated using historical data of energy
prices on the Belgian market. They show how the storage capacity
and other parameters of the storage device influence the optimal
revenue. The main conclusion drawn from the experiments is that
it may be advisable to invest in large storage tanks to exploit the
inter-seasonal price fluctuations of electricity.

I. INTRODUCTION

Developing sustainable energy systems is one of the most
critical issues that today’s society must address. Due to the
fluctuating nature of the Renewable Energy Sources (RES)
generation, fossil-fuel-based generation capacity is currently
still needed to provide flexibility and to adequately cover peak
demand. This issue can be partially addressed or mitigated in
several ways [1]: (i) by diversifying the types of renewable
energy sources to reduce the correlation between the amount
of energy supplied by these sources, which lowers the risk
of shortage of supply, (ii) by developing electricity storage
capacity, (iii) by increasing the flexibility of the demand, to
smooth out peak demand or (iv) by developing the electrical
network since the variance in the energy supplied by renewable
sources tends to decrease with the size of the zone on which
they are collected [2]. This has been the main motivation for
developing the European network in recent years. Note that
authors have also reported that the variance in the energy
supplied by renewables could be further decreased by building
a global electrical grid that connects continents together [3],
[4].

During recent years, storage has gradually become more
and more profitable thanks to technological progress. Con-
sequently, economic actors on the energy market are cur-
rently planning to invest additional funds in storage devices.
Among the different storage technologies, pumped-storage
hydroelectricity and batteries are currently among the most
mature. Other technologies exist such as for example super
capacities, energy conversion to natural gas, compressed air
energy storage, flywheels, superconducting magnetic energy
storage and storage of electricity in the form of hydrogen.
This latter one seems to be particularly promising due to its

capability to store large quantities of energy at a relatively low
cost, and is therefore well suited for long-term storage [5]. Ad-
ditionally, the round trip efficiency of hydrogen-based storage
devices is rather good. For example, the energy efficiency of
an electrolyzer is around 80% and the one of a fuel cell is
generally between 40% and 60%, which results in an overall
round-trip efficiency of 35% up to 50%, with the potential to
get an efficiency higher than 70% in hybrid fuel cell/turbine
systems and more than 80% in Combined Heat and Power
(CHP) systems.

However, before investing in such a hydrogen-based stor-
age technology, a careful analysis of the return on investment
needs to be carried out. Such an analysis implies, among
others, to be able to estimate the revenues that can be generated
by such a storage device on the power exchange markets,
which is the focus of this paper. We will consider the case
of a company that operates the hydrogen-based high-capacity
storage device and makes money by buying or selling electric-
ity on the day-ahead market. In such a context, the company
has to decide on the day-ahead which amount of electricity
to store or to generate for every market period. The main
complexity of this decision problem originates from the fact
that a decision to store or generate electricity at one specific
market period may not only significantly impact the revenues
that could be generated at other market periods of the day,
but also the revenues that could be generated months ahead.
As a result, long optimization horizons have to be considered
for computing operation strategies for high-capacity storage
devices.

The valuation of energy storage technologies on power
markets has already received considerable attention in the
scientific literature [6], [7], [8], [9], [10], [11]. For example,
reference [10] proposes an approach based on mixed-integer
programming for optimizing bidding strategies for hydropower.
This approach can handle uncertainty in market prices and
water inflows. However, the computational complexity of this
technique grows very rapidly with the state/action space, which
makes this approach unsuitable for estimating the revenues
that can be generated by a storage capacity over an extended
period of time. Another example is reference [11] where a
methodology based on Approximate Dynamic Programming
(ADP) is proposed for jointly optimizing in the day-ahead the
trading of renewable energy and of the storage management
strategies.



Before explaining the details of this approach, we will
describe in Section II the bid process for a typical day-ahead
electricity market such as the Belgian electricity market and
lay out in Section III a mathematical model for energy storage
utilizing hydrogen. A first formulation of our problem as a
dynamic programming problem will be stated in Section IV
where we assume that only the market prices of the next market
day are known. Section V specifies this formulation to the
case where the market prices are assumed to be known over
the whole optimization horizon and provides a fully specified
algorithm that exploits this new formulation for computing the
maximum operational revenue. The computational complexity
of this algorithm is linear with respect to the cardinality of
the discretized state space, the cardinality of the discretized
action space, and the optimization horizon. Section VI provides
experimental results computed from historical data gathered
over the Belgian electricity market. Finally, Section VIII
concludes the paper.

II. OPTIMIZATION ON THE DAY-AHEAD ENERGY MARKET

Let us consider a power exchange market for the day-ahead
trading of electricity, providing the market with a transparent
reference price. Producers and retailers submit each day offers
to the market operator for the day-ahead. An offer is defined
by a volume and a limit price, and can span several market
periods. The market clearing price is computed by the market
operator at the intersection of the supply and the demand
curves. The prices for electricity on the Belgian day-ahead
market are determined via a blind auction with the possibility
to define linked Block Orders that allow the execution of
profile blocks to be subjected to the execution of other blocks.
This possibility allows for the design of complex linked
structures (i.e. families) that take into account the different
possible price outcomes of the market clearing price. Figure 1
shows the distribution of prices over the year 2013.

In this paper, we consider that the storage capacity is an
agent which interacts with the electricity exchange market
under the following assumptions:

• the evolution of the price of electricity does not depend
on the behavior of this agent. This hypothesis is
equivalent to assuming that the bids for supply or
demand from the actor do not change the market
clearing price significantly1.

• the evolution of the prices is known when determining
the agent behavior.

III. PROBLEM FORMALIZATION

Let us introduce a discrete-time system whose state vari-
able is fully described by the amount of energy in the storage
device. The state space S contains all possible states si,j ∈ S,
where the indices (i, j) refer to hour j during day i (in
MWh). Let A be the set of possible actions and ~ai,j ∈ A
the action taken at time (i, j). At every time step, an action
~ai,j = [aGRi,j , a

RG
i,j ] ∈ A is applied on the system, where aGRi,j

is the amount of energy transferred into the storage (R) from

1That effect is measured by the market resilience which is the price
sensitivity due to an increase in offer or demand on the market. It is of the
order of 5.10−3e/MWh on the Belgian power exchange market [12].

Fig. 1. Histogram of the price of electricity for the year 2013.

the grid (G), and aRGi,j is the amount of energy taken out of
the storage (R) to the grid (G). The actions aGRi,j and aRGi,j are
non-negative. The considered dynamics is defined over nD
days and nH market periods (nH = 24). We denote by I and
J the sets of time indices:

I = {0, ..., nD − 1},
J = {0, ..., nH − 1}.

The system dynamics is given by the following equation:

∀i ∈ I,∀j ∈ J, si,j+1 = f(si,j ,~ai,j) (1)

where we use the convention si,nH
= si+1,0 for any i ∈ I.

The notation ti,j is introduced as the time index corresponding
to time (i, j) ∈ I×J. This transition function can be rewritten
as follows:

si,j = si,0 +

ti,j−1∑
t=ti,0

(aGRt − aRGt ), ∀(i, j) ∈ I× J. (2)

At any time (i, j) ∈ I × J, the following constraints have to
be satisfied:

si,0 +

ti,j−1∑
t=ti,0

(aGRt − aRGt ) ≤ Rc (3)

si,0 +

ti,j−1∑
t=ti,0

(aGRt − aRGt ) ≥ 0 (4)

where Rc is the energy capacity of the device.

The bidding process occurs only once for each day i ∈ I,
which means that all actions taken on day i+ 1 are computed
on day i. We denote by ~si ∈ S the vector of states defined as
~si = [si,0, si,1, ..., si,nH−1]. We denote by Ai ∈ A the matrix
of actions defined as follows: Ai =

[
~aGRi ;~aRGi

]
with

~aGRi = [aGRi,0 , a
GR
i,1 , ..., a

GR
i,n−1]

and
~aRGi = [aRGi,0 , a

RG
i,1 , ..., a

RG
i,n−1].



The dynamics corresponding to the bidding process logic is
then

si+1,0 = F (si,0, Ai), ∀i ∈ I,∀Ai ∈ Ai (5)

where the feasible action space Ai is the set of matrices of
actions Ai which satisfy the constraints at time i ∈ I defined
by Equations (3) and (4).

We define a reward function ρ(si,0, Ai, ~pi) for day i which
measures the revenues generated by taking a sequence of
actions Ai when starting from the state si,0, function of the
vector of prices of electricity ~pi for day i. The value of the
reward function is given by the total amount of money paid or
collected when transferring energy to and from the grid. For
every day i, the reward function is defined by

ρ(si,0, Ai, ~pi) =

ti,0+n−1∑
t=ti,0

r(~at, pt)

where r(~at, pt) is given by

r(~at, pt) =

(
aRGt ηd − aGRt

ηc

)
pt

with ηd and ηc being the discharge and charge efficiencies,
respectively.

In the context of the day-ahead energy market developed in
Section II, the prices of electricity are known one day before,
i.e. the prices of electricity on day i ∈ I are known when
choosing the sequence of actions Ai ∈ Ai. An admissible
policy π(i, si,0) : I × S → A is a function that maps states
into actions such that, for any state si,0, the action π(i, si,0)
satisfies the constraints (3) and (4) (which defines the set of
feasible actions Ai ⊂ A). We denote by Π such a set:

Π = {π : I× S→ A : ∀si,0 ∈ S,∀i ∈ I, π(i, si,0) ∈ Ai}

Arguably, the decision of a policy π to be made during the
bidding process is whether to buy or sell energy to maximize
the revenues on the long term. An optimal value function
V ∗i+1(si+1,0) is introduced as the maximum expected revenue
that can be obtained from time (i + 1, 0) = (i, nH) over the
remaining time-steps:

∀si+1,0 ∈ S, V ∗i+1(si+1,0) = max
(Ai+1,...,AnD−1)∈Ai+1×...×AnD−1

E
~pi+1,...,~pnD−1

[
nD−1∑
k=i+1

ρ(sk,0, Ak, ~pk)

]

From these value functions, an optimal policy π∗ ∈ Π can
be defined as follows:

∀i ∈ I,∀si,0 ∈ S,

π∗(i, si,0) ∈ arg max
Ai∈Ai

(
ρ(si,0, Ai, ~pi) + V ∗i+1(si+1,0)

)
(6)

IV. A DYNAMIC PROGRAMMING APPROACH TO COMPUTE
THE OPTIMAL REVENUE OF STORAGE

In this paper, we make the (strong) assumption that the
evolution of the prices is perfectly known. This has the
two following consequences on the resolution of the above-
described problem: (i) the problem becomes deterministic and
(ii) the day-ahead structure of the problem disappears.

Let Q0, Q1, . . ., Q24∗nD−1 be the sequence of functions
defined as follows:

∀(s, a) ∈ S ×A, t = 0 . . . nD ∗ 24− 1,

Qt(s, a) = r(s, a, pt) + max
feasible a′∈A

Qt+1(f(s, a), a′) (7)

with

QnD∗24(s, a) = 0, ∀(s, a) ∈ S ×A.

It is straightforward to see that when the prices are known we
have:

V ∗i (s) = max
a∈Ai

Qi∗24(s, a)

From the sequence of functions Qt, it is possible to
estimate in a straightforward way the maximum revenue that
can be generated by our storage capacity. We suggest to
approximate the computation of this sequence of functions
by discretizing the state and the action space [13], [14].
More specifically, the state space is discretized into a set
{σ(i), i = 1 . . . nS}, and the action space is discretized into
a set {α(i), i = 1 . . . nA}. We also choose a projection
function Γ : S → {σ(1), . . . , σ(nS)} which projects any
element of the state space S into a unique element of the
discretized space. In such a context, the problem is reduced
to a dynamic programming problem with a finite horizon of
nD ∗ 24 time-steps that can be solved with a backward value
iteration algorithm [15]. The resulting algorithm is sketched in
Procedure 1. It has a complexity proportional to the product of
the size of the state space, the action space and the optimization
horizon. A(σ) denotes the set of feasible discretized actions
for a given discretized state σ so that the maximization over
possible actions α(i) takes into account the constraints stated
in Equations (3) and (4).

From the sequence of Q̂t functions outputted by Procedure
1, one can extract a bidding policy. Note that the near-
optimal revenue that is obtained from an initial state s0 can
be calculated as follows:

arg max
α′∈A(Γ(s0))

Q̂0(Γ(s0), α′)

Another way to calculate this revenue is to simulate the
system with the policy extracted from these Q̂t functions. As
way of example, Procedure 2 provides a way for computing the
sequence of actions outputted by this policy when the initial
state of the system is s0.

V. MATHEMATICAL MODEL FOR ENERGY STORAGE
UNDER THE FORM OF HYDROGEN

Each storage capacity is defined by its maximum capacity,
its maximum power consumption and restitution to the network



Algorithm 1 Q-iteration in the discretized state-action space
Require: pt, ∀t = 0, ..., nD ∗ 24− 1;

for t = nD ∗ 24− 1 to 0 do {Backward loop over all time
periods}

for σ = σ(1) . . . σ(nS) do {Loop over discretized states}
for α = α(1) . . . α(nA) do {Loop over actions}
Q̂t(σ, α) = r(σ, α, pt)+ max

α′∈A(σ′)
Q̂t+1(σ′, α′) where

σ′ = Γ(f(σ, α))
end for

end for
end for
return Q̂t,∀t ∈ 0, . . . , nD ∗ 24− 1

Algorithm 2 Computation of the sequence of actions generated
by the bidding policy

Require: Q̂t,∀t ∈ 0, 1, . . . , nD ∗ 24− 1; s0

σ0 = Γ(s0)
for t = 0 to nD ∗ 24− 1 do {Loop over all time periods}
α∗t = arg max

α′∈A(σt)

Q̂t(σ
′, α′)

σt+1 = f(σt, α
∗
t )

end for
return α∗t , ∀t ∈ 0, . . . , nD ∗ 24− 1

as well as the efficiencies for those three steps. A hydrogen-
based high-capacity storage device is composed from three
main parts: (i) an electrolyzer that transforms water into
hydrogen using electricity (ii) a tank where the hydrogen is
stored (iii) a fuel cell where the hydrogen is transformed into
electricity. Figure 2 gives a schematic representation of such
a device, whose main 3 elements are detailed hereafter.

Fig. 2. Sketch of the hydrogen based high-capacity storage.

A. Electrolysis

Currently the dominant technology for direct production of
hydrogen (95%) is steam reforming from fossil fuels. However
sustainable techniques also exist, such as electrolysis of water
using electricity from one of the many renewable sources.
It also has the advantage of producing high-purity hydrogen
(>99.999%).

a) : The technical performance of this process has a
strong dependency on the rate at which the electrolysis is
forced. The charge energy efficiency as a function of the cell

voltage is given by:

ηc =
1.48

CellVoltage

The minimum voltage necessary for electrolysis is 1.23 V.
Henceforth, the process can theoretically reach efficiencies
above 100% but the rate at which the reaction happens is then
very low [16]. The part of the voltage that exceeds 1.23 V
is called overpotential or overvoltage, and leads to losses in
the electrochemical process while allowing a higher rate in the
reaction. Current density as a function of voltage is approxi-
mated at standard temperature for Flat-Plate Bifunctional Cells
by

I = s× (CellVoltage− 1.48),

where s is a constant dependent on the setup used for the
electrolysis. The evolution of the efficiency with the voltage
and with the power generated can be seen on Fig. 3(a) and
3(b), respectively.

(a) Efficiency as a function of Voltage

(b) Efficiency as a function of Power

Fig. 3. Evolution of the efficiency of the electrolysis process as a function
of the rate at which the electrolysis is forced. Parameters used can be found
in Table I.

B. Fuel cell

A fuel cell is a device that converts the chemical energy
from a fuel, in this case hydrogen, into electricity through
a chemical reaction with oxygen or another oxidizing agent.
Unlike heat engine, the efficiency of a fuel cell is not limited



by the Carnot cycle and has a theoretical discharge efficiency
ηd = 83% in the case of hydrogen. This efficiency is however
lowered when the amount of power generated by the fuel
cell increases as illustrated on Fig. 4. In standard operating
conditions, the function ηd(Wfc) can be approximated as a
linear equation:

ηd = ηdmax − sfcWfc

where sfc is a constant dependent on the setup used for the
fuel cell and Wfc is the power density of the fuel cell.

Fig. 4. Characteristics of a PEM fuel cell [17]. (a) The voltage as a function
of the current density, commonly referred to as the performance curve. The
efficiency is proportional to the voltage; it is indicated on the secondary vertical
axis. (b) The power density as a function of the current density. (c) The
efficiency as a function of the power density. The dotted line corresponds to
the regime above maximum power. (d) The efficiency of a complete fuel cell
system in a vehicle, as a function of power load, shown both for a PEM and
an ICE. The vertical dotted lines indicate average loads in a car (left) and a
bus or truck (right). The curves in (d) do not refer to the same fuel cell as in
(a) to (c).

C. The storage device

One significant constraint that influences the choice of the
storage device technology is often the energy density imposed
by the application. In the case where hydrogen is to be used as
a fuel stored on board of a vehicle, pure hydrogen gas must be
pressurized or liquefied. The drawback is that it necessitates
the use of external energy to power the compression. This
constraint does not hold for grid energy storage, especially in
the case where hydrogen can be stored in natural reservoirs
such as in underground caverns, salt domes or depleted oil/gas
fields.

In the following, the storage device will be characterized
by the energy capacity of the device Rc (in MWh). It will be
assumed that any leak in the storage device can be neglected.

VI. EXPERIMENTAL RESULTS

In the first part of this section, the algorithm described
in Procedure 1 will be used to figure the maximum revenues

that could be generated over the period ranging from 2007
to 2013 by a high-capacity storage device whose parameters
are defined in Table I. The historical data of electricity prices
provided by Belpex over the last few years will be used as input
[12]. In the second part, the influence of the discretization of
the algorithm will be studied. Finally, the impact of the storage
capacity on the overall gain will be analyzed.

A. Base case

To compute the revenues of the storage capacity defined
by Table 1, we have first discretized the state-action space
to be able to use Procedure 1. We choose for the state
space a discretized step δs = 0.5 MWh. The discretiza-
tion step for the action space is taken equal to δu =
0.5 MWh. That leads to a discretized state space equal
to : {0, 0.5, 1, . . . , Rc} and a discretized action space equal
to the finite set :{−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}.

Electrolysis selectrolysis 1MA/V
Fuel cell ηdmax 60%

sfc 0.4 MW−1

Wfc,max 5 MW
Wfc,min 0.8 MW

Storage device Rc 1000 MWh
s(0,0) 0 MWh

TABLE I. DATA USED FOR THE ELECTROLYSIS SETS AND FUEL CELLS
IN THE BASE CASE.

By using the bidding actions computed using procedures 1
and 2, we have determined the evolution of the cumulative
revenues as a function of time. The results are plotted on
Fig. 5. As we can see, the cumulative revenues are not always
growing. Indeed, they are decreasing during periods of time
when the tank is filled with hydrogen. We note that at the end
of the period 2007-2013, a cumulative revenue of 233,000e
is obtained.

Fig. 5. cumulative revenues
∑

t r(~at, pt) as a function of time. Day 0 refers
to the first of January 2007.

The evolution of the level of energy stored inside the
storage tank st is shown on Fig. 6(a). It can be seen that
hydrogen tends to be stored during summer and transformed
back into electricity during winter. This is explained by the
fact that most years, prices are higher in winter and lower in
summer (see Fig. 7). Besides, daily fluctuations can also be



(a) Evolution throughout the years 2007 to 2013. Day 0 refers
to the first January 2007.

(b) Zoom over two days

Fig. 6. Evolution of the energy reservoir level (st) as a function of time for
the base case.

seen on Fig 6(b). Energy is accumulated during the night and
transferred back to the grid during the day.

On Fig. 8, we have plotted the evolution of the price as a
function of the period of the day. We can observe that with
the years, the difference between on-peak and off-peak prices
tends to decrease. More specifically, the peak prices occurring
traditionally during the day tend to get much closer to the
average price value. This can be explained by the significant
investments that have been made after 2008 in photovoltaic
panels. Let us now go back to Fig. 5 where we have plotted
the evolution of the cumulative revenues over time. As one can
observe, the rate of growth in cumulative revenues is higher
for the first two years than for the rest of the period. This
observation is a direct consequence from this flattening of the
price evolution over the day.

b) : Finally, we end this subsection by Fig. 9, which
nicely illustrates on a single graphic the relation that exists
behind the evolution of the prices and the sequence of actions
taken.

B. Influence of the capacity of the storage tank on the maxi-
mum revenue

In this section, we study the revenues obtained as a function
of the size of the reservoir. We have modeled the storage
reservoir as varying between a few MWh up to a reservoir

(a) Average over all years

(b) Average over individual years

Fig. 7. Evolution of the average prices for the years 2007 to 2013 as a
function of the period of the year.

which is large enough for never being fully filled by the agent.
The results are plotted on Fig. 10. We remind the reader that
in the previous subsection, a maximum capacity of 1000 MWh
was used for the storage device. As we can see, the revenues
are a growing function of the storage capacity. However, the
incremental revenue obtained from the exploitation is lowered
as the storage capacity increases. Whatever the size of the
reservoir, it is not possible to generate a revenue which is
larger than 272 000 e.

C. Influence of the discretization on the maximum revenue

In this section, we study the influence of the discretization
steps δs and δu on the results obtained. To do so, we have
run Procedure 1, followed by Procedure 2, for several values
of δs and δu. Figure 11 plots the results obtained. Several
interesting observations can be made. First, for a given value of
δs (δu), the return of the bidding policy does not vary anymore
when δu (δs) becomes lower than δs (δu). Second, if δu > δs
(δs > δu), better results can be obtained by moving δu closer to
δs (δs closer to δu). Finally, in the case where the discretization
steps are equal, the smaller they are, the better the quality of
the policy. Note however, that below a certain value of the
discretization steps, the quality of the policy remains roughly
the same.

VII. REVENUES ESTIMATION UNDER MULTIPLE PRICE
EVOLUTIONS

The experimental design exposed in the previous sections
assumes that the future price evolution is known in advance.
Additionally, it also relies on a discretization of the state-action
space. A more realistic assumption would be to assume a set



(a) Average over all years

(b) Average over individual years

Fig. 8. Evolution of the price as a function of the hour of the day for the
years 2007 to 2013.

Fig. 9. Illustration of the sequence of actions and of electricity prices with
time. A dot is associated to every market period and its color refers to the
action taken. Its position gives the market price at this time.

of possible price evolutions {(pk,t)t}Kk=1 where K ∈ N0 and
consider the empirical return of a given sequence of actions
over such a set of realizations as an approximation of the
expected value of this sequence of actions.

If we make the hypothesis that the efficiencies of the fuel
cell and the electrolyzer are constant, the reward function and
the system dynamics are both linear mappings of states, actions
and prices. The empirical return over K price outcomes is
then also a linear mapping of the control variables. Finding
a sequence of actions

(
A∗0, . . . , A

∗
nD−1

)
leading to the max-

imization of the empirical return can be achieved by solving

Fig. 10. Evolution of the expected revenues as a function of storage capacity
for the years 2007 to 2013.

Fig. 11. Revenues generated by the bidding policies as a function of the
action space discretization step (δu) and the state space discretization step
(δs)

the following linear program:(
A∗0, . . . , A

∗
nD−1

)
∈

arg max
Ai∈Ai,i=0...nD−1

1

K

K∑
k=1

nD−1∑
i=0

ρ(si,0, Ai, ~pk,t),

where ~pk,t denotes the vector of prices for the i−th day.
Note that the previous linear program allows to solve the
problem exposed in the previous section in the case K = 1
for continuous state-action spaces. The dynamic programming
approach has the advantage (i) to ensure a linear complexity
with the time horizon and (ii) to remain applicable in the
case of non-linear and even non-convex system dynamics and
reward function.

VIII. CONCLUSION

In this paper, a methodology has been proposed for esti-
mating the revenues that can be generated by a high-capacity
hydrogen-based storage device on the energy markets. It was



then used to estimate the revenues that could be generated on
Belpex - the Belgian power exchange market.

The results show that for fixed size electrolyzers and
fuel cells, significantly higher revenues can be achieved by
having large storage capacities, such as for example hydrogen
tanks that would take tens of days to fill or to empty. This
is explained by the fact that with huge tanks, the storage
device can be operated so as to exploit the inter-seasonal price
fluctuations. The results also show that over the last years, the
revenues that could have been generated by storage devices
have decreased.

The research reported in this paper could be extended along
several directions. First, our algorithm for estimating the future
revenues assumes that the market price is not influenced by
the storage device itself and, more importantly, that the future
price evolution is known (or, at least, an ensemble of possible
price evolutions are known). It would be worth extending the
methodology proposed in this paper to a more general case.
Note that this would imply working in a probabilistic setting
where we would compute an expected future revenue or a
distribution over future revenues.

Second, the only mechanism considered here for valorizing
storage has been to buy or sell energy on the electricity market.
But other mechanisms also exist, such as for example selling
services to the balancing/reserves markets [18] or those that
would relate to absorbing the excess of energy produced locally
by renewable sources of energy so as to relieve congestions
[19]. In this respect, it would be worth computing the revenues
that can be generated by storage devices when all these
mechanisms are taken into account.

Finally, it would be interesting to study how prediction
models of the future revenues could be utilized to give clear
indications about the storage technology in which to invest and
about where to install storage devices.
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[8] Nils Löhndorf and Stefan Minner. Optimal day-ahead trading and
storage of renewable energies - an approximate dynamic programming
approach. Energy Systems, 1(1):61–77, 2010.

[9] Pedram Mokrian and Moff Stephen. A stochastic programming frame-
work for the valuation of electricity storage. In 26th USAEE/IAEE
North American Conference, pages 24–27, 2006.

[10] Stein-Erik Fleten and Trine Krogh Kristoffersen. Stochastic program-
ming for optimizing bidding strategies of a nordic hydropower producer.
European Journal of Operational Research, 181(2):916–928, 2007.

[11] Daniel F Salas and Warren B Powell. Benchmarking a scalable
approximate dynamic programming algorithm for stochastic control of
multidimensional energy storage problems. Technical report, Working
Paper, Department of Operations Research and Financial Engineering,
Princeton, NJ, 2013.

[12] Belpex, feb 2014.
[13] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst.

Reinforcement learning and dynamic programming using function ap-
proximators. CRC Press, 2010.

[14] Damien Ernst. Near optimal closed-loop control Application to electric
power systems. PhD thesis, University of Liege, 2003.

[15] Warren B Powell. What you should know about approximate dynamic
programming. Naval Research Logistics (NRL), 56(3):239–249, 2009.

[16] Robert Dopp. Hydrogen generation via water electrolysis using highly
efficient nanometal electrodes. Quantum Sphere, Inc, 2007.

[17] Sivan Kartha and Patrick Grimes. Fuel cells: Energy conversion for the
next century. Physics Today, 47(11):54–61, 2008.

[18] Eurelectric. Decentralized storage: Impact on future distribution grids.
Technical report, Eurelectric, 2012.

[19] Quentin Gemine, Efthymios Karangelos, Damien Ernst, and Bertrand
Cornélusse. Active network management: planning under uncertainty
for exploiting load modulation. In Bulk Power System Dynamics and
Control-IX Optimization, Security and Control of the Emerging Power
Grid (IREP), 2013 IREP Symposium, pages 1–9. IEEE, 2013.


