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Abstract

This paper describes a method for detection, tracking
and recognition of lower arm and hand movements from
color video sequences using a linguistic approach driven by
motion analysis and clustering techniques. The novelty of
our method comes from (i) automatic arm detection, without
any manual initialization, foreground or background mod-
eling, (ii) gesture representation at different levels of ab-
straction using a linguistic approach based upon signal to
symbolic mappings, and (iii) robust matching for gesture
recognition using the weighted largest common sequence
(of symbols). Learning Vector Quantization abstracts the
affine motion parameters as morphological primitive units,
i.e., ”letters”, clustering techniques derive sequence of let-
ters as ”words” for both subactivities and the transition
occurring between them, and finally the arm activities are
recognized in terms of sequences of some subactivities. Us-
ing activity cycles from six kinds of arm movements, e.g.,
(slow and fast pounding), striking, swing, swirl, and stir-
ring, which were not available during training, the per-
formance achieved is perfect - 100% - if one allows, as it
should be the case for invariance purposes, to recognize
slow and fast pounding video sequences as one and the
same type of activity.

1. Introduction

Gestures, characteristic of nonverbal interactions, use
motions of the limb or body as a means of both communica-
tion and expression. What is exactly a gesture ? According
to Knapp and Hall (1997) ”Gestures are movements of the
body (or some part of it) used to communicate an idea, in-
tention, or feeling. Many of these activities are made with
the arms/hands. Gestures perform many functions. They
may replace speech, regulate the flow and rhythm of inter-

action, maintain attention, add emphasis and/or clarity to
the speech...”.

Learning has long been a central issue in the understand-
ing of intelligence as it plays a fundamental role in regu-
lating the balance between internal representations and ex-
ternal regularities. As ”versatility, generalization, and scal-
ability are desirable attributes in most vision systems the
only solution is to incorporate learning capabilities within
the vision system” [9]. Gesture recognition involves both
motion analysis and pattern recognition, often referred to as
the where and what problems. Our approach to recognize
arm movements incorporates clustering techniques, which
connect the motion analysis and gesture recognition streams
of computation for generalization and robustness purposes.

Gestures have to be parsed and interpreted by the com-
puter in order to iteratively construct and refine a model of
the human’s affective and cognitive states. The availability
of such users’ models can be then used in an adaptive fash-
ion to enhance human-computer interactions and to make
them appear intelligent, i.e., causal, to an outside observer.
Towards that end, this paper describes a novel method for
the detection, tracking and recognition of arm movements
from color video sequences. The novelty of our method
comes from (i) automatic arm detection, without any man-
ual initialization, foreground or background modeling, (ii)
gesture representation at different abstraction levels using
a linguistic approach based upon signal to symbolic map-
pings, and (iii) robust matching for gesture recognition us-
ing the largest common sequence (of symbols).

2. From Signals to Symbols

Recent reviews on machine analysis of human motions
by Gavrila, Aggarwal and Cai [3, 1], and Moeslund [8] pro-
vide excellent coverage of research on the detection, track-
ing, and recognition of human motion. It is widely accepted
that automatic detection of moving objects, their accurate
tracking, and the interpretation and recognition of long im-
age sequences remains very challenging. Bobick [2] has
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proposed a taxonomy of movement, activity, and action. In
his taxonomy, movements are primitives, requiring no con-
textual or sequence knowledge in order to be recognized.
Activities are sequences of movements or states, where the
only knowledge required to recognize them involves statis-
tics of the sequence. According to Bobick, most of the
recent work in gesture understanding falls within this cat-
egory. Actions are larger-scale events which typically in-
clude interactions with the environment and causal relation-
ships. An important distinction between these levels is the
degree to which time must be explicitly represented and ma-
nipulated, ranging from simple linear scaling of speed to
constraint-based reasoning about temporal intervals. The
taxonomy proposed by Bobick motivated our linguistic ap-
proach and the search for appropriate symbolic representa-
tions.

3. Motion Analysis

We describe here the components responsible for mov-
ing arm detection, motion estimation, and tracking. Normal
flow is used to detect a moving arm automatically. Expec-
tation Maximization (EM), uniform sampling, and a short-
est path algorithm are used to estimate the boundary of the
arm. An affine motion model is fit to the arm region us-
ing residual analysis and outlier rejection for robust param-
eter estimation. The estimated parameters are used for both
predicting the location of the moving arm and encoding its
motion.

3.1. Normal Flow Estimation

We first consider normal flow in gray level images. Let
�ı and � be the unit vectors in the x and y directions, re-
spectively; δ�r = �ıδx + �δy is the projected displacement
field at the point �r = x�ı + y�. If we choose a unit direc-
tion vector �nr = nx�ı + ny� at the image point �r and call
it the normal direction, then the normal displacement field
at �r is δ�rn = (δ�r · �nr)�nr = (nxδx + nyδy)�nr. �nr can
be chosen in various ways; the usual choice (and the one
that we use) is the direction of the image intensity gradient
�nr = ∇I/‖∇I‖.

Note that the normal displacement field along an edge
is orthogonal to the edge direction. Thus, if at time t we
observe an edge element at position �r, the apparent position
of that edge element at time t + ∆t will be �r + ∆tδ�rn.
This is a consequence of the well-known aperture problem.
We base our method of estimating the normal displacement
field on this observation.

For an image frame (say collected at time t) we find
edges using an implementation of the Canny edge detec-
tor. For each edge element, say at �r, we resample the image
locally to obtain a small window with its rows parallel to

the image gradient direction �nr = ∇I/‖∇I‖. For the next
image frame (collected at time t0 + ∆t) we create a larger
window, typically twice as large as the maximum expected
value of the magnitude of the normal displacement field.
We then slide the first (smaller) window along the second
(larger) window and compute the difference between the
image intensities. The zero of the resulting function is at
distance un from the origin of the second window; note that
the image gradient in the second window at the positions
close to un must be positive. Our estimate of the normal
displacement field is then −un, and we call it the normal
flow.

In color images (RGB) we apply the Canny edge detector
to each color band to obtain partial derivatives rx, ry , gx,
gy, bx, by for the (r)ed, (g)reen, and (b)lue bands. Edges in
color images can be computed using a standard technique
used for processing multi-channel imagery [5]. One defines
a matrix S,

S =
(

r2
x + g2

x + b2
x rxry + gxgy + bxby

rxry + gxgy + bxby r2
y + g2

y + b2
y

)
.

The trace of S corresponds to the edge strength. If there is
an edge at point (x, y), the larger eigenvalue of S, λ1, corre-
sponds to the edge strength. The corresponding eigenvector
(nx, ny) represents the edge direction. Therefore we can
treat color edges in the same manner as we have treated gray
level edges. The only difference is that the edge strength
and the edge direction correspond to the larger eigenvalue
of S and its corresponding eigenvector.

For each edge element, say at �r, we resample the three
image color bands locally to obtain three small windows
with their rows parallel to the image gradient direction
�nr = (nx, ny). For the next image frame (collected at time
t0 +∆t) we create a larger window, typically twice as large
as the maximum expected value of the magnitude of the
normal displacement field. We then slide the first (smaller)
window along the second (larger) window and compute the
difference between the image intensities in all three color
bands. The result is a vector function (δr, δg, δb) of the color
differences. The magnitude of this vector has a zero cross-
ing at distance un from the origin of the second window;
the difference vector changes sign around the zero cross-
ing. We estimate the zero crossing by comparing the mag-
nitudes of the two difference vectors pointing in opposite
directions.Our estimate of the normal displacement field is
then −un, and we call it the normal flow.

3.2. Moving Arm Detection and Delin-
eation

In a typical image the background is larger than the fore-
ground and most background edges do not move; note that
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the shadows move. However, due to various factors in-
cluding camera noise, shadows, and lightning variations
between frames 1 the normal flow in the background is
nonzero. In addition, the foreground edges usually have
larger motion than the background edges, but due to interac-
tion of the background and the foreground (“T-junctions”)
we cannot compute flow everywhere and at some points
computed values are not reliable. To separate the fore-
ground and the background edges, we assume that the the
normal flow values (projections on the image gradients) in
the background have a Gaussian distribution. We use the
Expectation Maximization (EM) to fit a Gaussian to the his-
togram of normal flow values. We assume that the normal
flow values < 4σ belong to the background and that the
normal flow values ≥ 4σ belong to the foreground; we use
4σ threshold to reduce noise in the foreground detection.

We compute a bounding box for the parts of the image
that have normal flow values higher than the 4σ threshold.
We scan the inside of the box to find the outside layer of the
points within the box. We select points which have large
values of the gradient as well as large normal flow values.
We choose sample points from the selected points based on
similarity of their gradient and flow values with their neigh-
bors. The sample points are linked to their neighbors using
a variation of the Dijkstra’s shortest path algorithm to cre-
ate a connected contour. The cost of the path is obtained
by subtracting the gradient magnitude value from the max-
imum gradient magnitude computed for the image.

3.3. Estimating Affine Motion Parameters

Let (x, y) be the image coordinates of a pixel in an image
I(x, y) and let the image be centered at (0, 0). Consider an
affine transformation where (x′, y′) are image coordinates
in the transformed image I ′(x′, y′) and a − f are the trans-
form parameters. We use all image points with high gradi-
ent values within or on the detected contour to estimate the
affine flow parameters for that frame. If one subtracts the
vector (x y)T from both sides of affine equation one ob-
tains the following expression for the displacement (δx, δy)
of the point (x, y):

(
δx
δy

)
=

(
a − 1 b

c d − 1

) (
x
y

)
+

(
e
f

)

≡
(

a1 b
c d1

) (
x
y

)
+

(
e
f

)
. (1)

Using Equation (1) we obtain the normal displacement
field at (x, y) as

δ�rn · �nr = nxδx + nyδy

1We rely on normal ambient lights that correspond to a mixture of neon
light panels and outdoor lights.

= a1nxx + bnxy + enx + cnyx + d1nxy + fny

≡ a · u (2)

where �nr = nx�ı + ny� is the gradient direction at
(x, y), a = (nxx nxy nx nyx nyy ny)T , and u =
(a1 b e c d1 f)T is the vector of affine parameters.

We use the method described in Section 3.1 to compute
normal flow. For each edge point �r i we have one normal
flow value un,i which we use as the estimate of the normal
displacement at the point. This gives us one approximate
equation ai · u ≈ un,i. Let the number of edge points be
N ≥ 6. We then have a system

Au− b = E

where u is an N -element array with elements un,i, A is
an N × 6 matrix with rows ai, and E is an N -element error
vector. We seek u that minimizes ‖E‖ = ‖b−Au‖; the so-
lution satisfies the systemATAu = ATb and corresponds
to the linear least squares solution.

3.4. Arm Tracking

We subtract the normal flow from the normal motion
field given by the affine parameters to compute the residual
normal flow field. We observe that the residual normal flow
values should be small and that their distribution should be
similar to the distribution of the background normal flow
values. However, due to various factors including noise,
shadows, lightning variations, and interactions of the back-
ground with the foreground we expect to have residual val-
ues corresponding to outliers. We use the same EM method
as in Section 3.2 to estimate the Gaussian distribution and
detect the outliers. After the outlier detection and rejection
we reestimate the affine motion parameters by using the re-
maining normal flow vectors; the second estimate is usually
much better than the first one. Fig.1 shows examples of the
residual flow fields and the reestimated affine flows.

After outlier rejection and affine parameter reestimation
we use the computed affine motion parameters to predict
the position of the arm in the next frame. Note that we
only use those points in the current frame that have small
residuals; we assume that points with large flow residuals
are erroneous. We vary the affine parameters in a small
range to obtain multiple candidate points in the next frame;
this is used to help account for errors in the model (e.g.,
the shirt moves nonrigidly) and in the parameter estimation.
From the candidate points in the next frame we select those
points that have the largest motion and gradient magnitude
values in their neighborhoods. From these points we sam-
ple uniformly and link the neighbors by a shortest path al-
gorithm; the neighbors are determined with respect to the
points corresponding to them in the previous frame. Using
this method we have been able to fully automate detection
and tracking of moving arms in long image sequences.
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Figure 1. Residual and reestimated flows for the
detected arms. Upper row: residual flow com-
puted as the difference between the computed
normal flow and the estimated affine normal
motion field. Lower row: reestimated affine
flow after outlier rejection.

4. Learning

Learning Vector Quantization (LVQ) [6] first abstracts
the affine motion parameters as morphological primitive
units, i.e., ”letters”, clustering driven by homogeneity then
finds out the dictionary ”word” entries corresponding to
subactivities and the transitions holding between them, and
finally the arm activities are recognized in terms of se-
quences of subactivities. Similar to a phonotopic map one
can parse (“read”) and interpret (“recognize”) arm move-
ment activities along the ”linguistic” trajectories they trace.
The learning component implements a linguistic approach
and provides for computational efficiency, conceptual ab-
straction and hierarchical modeling, and robustness. The
first few cycles of each moving arm sequence are used for
training, while the remaining cycles are used for testing.

4.1. Self-Organization

Self-organization involves the unsupervised ability to
learn and organize (’cluster’) sensory information without
the benefit of a teacher. Learning is driven here by ho-
mogeneity. One example of self-organizing algorithms is
the Self-Organizing Feature Maps (SOFM) [7], driven by
competitive learning. As a result of competition, a mean-
ingful lattice-like coordinate system eventually emerges to
represent the sensory input. Furthermore, the spatial loca-
tions of the neurons across the lattice induce a compressed
and intrinsic feature representation of the sensory patterns.

There are many situations where the clusters derived as a
result of self-organization have to be appropriately labeled
as it would be the case for information retrieval. Towards
that end, one expands the SOFM using a supervised learn-
ing scheme and the result is Learning Vector Quantization
(LVQ) [4]. The labeled collection of clusters corresponds
to a (quantized) codebook of compressed sensory prototype
patterns and it defines a Voronoi tesselation.

4.2. Parsing and Interpretation

Arm activities include striking, (slow or fast)pounding,
swirling, swing, and stirring (augmented by tool using).
Video sequences are represented using three hierarchical
layers of abstraction in order to facilitate parsing and in-
terpretation of arm movements. LVQ self-organizes and
compresses the original input space spanned by affine pa-
rameters using 14 (fourteen) symbols, i.e., ”letters”, each
of them corresponding to an individual tile in the Voronoi
tesselation. One can show using the inner product of the
prototype vectors that the letters are quite dissimilar. Clus-
tering derives the next layer, which consists of 14 (fourteen)
”words”, corresponding to specific subactivities and tran-
sitions (”edges”) as segmentation (”punctuation”) points
between subactivities. Examples of words include (”UP”
- AAAAAAAAA), (”LEFT” - QQQQQQQQQLQ), while
examples of transitions include (FKHGJ) and (FJHFJKQ).
Please note that some conceptual subactivity can map to
more than one cluster. One can again show that the dic-
tionary ”word” entries are quite dissimilar. The last rep-
resentational layer encodes arm activities in terms of sim-
ple word sequences using clustering, e.g., pounding con-
sists of repeating cycles of up and down segments, swirling
consists of repeating circle segments, swing consists of re-
peating left and right segments and so on. Finally, one can
recognize the arm activity as follows : (a) derive the letter
sequence using the prototypes derived using LVQ; (b) de-
rive the corresponding subactivity (and transition) sequence
via flexible and robust matching between the sequence of
letters derived so far and the subactivity clusters using as
distance a properly weighted largest common letter subse-
quence and the nearest neighbor as the classification rule.
The identity of the sequence is determined by matching the
sequence of subactivities, punctuated by transitions, against
activities prototypes learned earlier. The arm activities are
again quite dissimilar to each other.

5. Experimental Results

We show here the feasibility of our method using the six
kinds of arm movements referred to in the previous sec-
tion. Each sequence consists of several hundred (100 - 500)
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frames. These images were collected using a Sony DFW-
VL500 progressive color scan camera; the frame rate was
thirty frames per second and the resolution was 320 × 240
pixels per frame. The moving arm was detected and tracked
automatically using the methods described in Section 3.
Figure 2 shows 4 frames and the corresponding tracked con-
tours for each kind of arm movement. The input to LVQ
learning program consists of the affine motion parameters
derived for one cycle (approx. 60 frames) for each of the
six kinds of arm movements.

The output of LVQ yields fourteen prototypes; the cor-
responding affine flows are shown in Figure 3. After the
letters are derived by LVQ, each video frame is represented
by a letter corresponding to the nearest motion prototype.
Next clustering compresses the letter sequences into word
sequences. As an example, slow and fast pounding cy-
cles are compressed from 123 and 70 letters, respectively,
to < 01 >, where 0 and 1 stand for two subactivities –
note that the resulting activity representation for pound-
ing is invariant to speed; swing is compressed from 44
letters to < 6(12) >, where 6 and (12) stand for two
subactivities; stirring is compressed from 115 letters to
< 13965047(12)(13) >, where 1, 3, 9, 6, 5, 0, 4, 7, (12)
and (13) stands for 10 subactivities. The feasibility and the
robustness of the proposed method is shown using long and
inherently noisy image sequences corresponding to differ-
ent arm activities, some of them possibly recorded at differ-
ent speeds. Testing performed on those activity cycles not
used during training yields perfect accuracy - 100% – if one
allows that slow and fast pounding are recognized as one
activity.

6. Conclusions

This paper describes a method for detection, tracking and
recognition of lower arm and hand movements from color
video sequences using a linguistic approach driven by mo-
tion analysis and clustering techniques. The novelty of our
method comes from (i) automatic arm detection, without
any manual initialization, foreground or background model-
ing, (ii) gesture representation at different levels of abstrac-
tion using a linguistic approach based upon signal to sym-
bolic mappings, and (iii) robust matching for gesture recog-
nition using the largest common sequence (of symbols).
The feasibility and the robustness of the proposed method
has been shown using long and inherently noisy image se-
quences corresponding to different arm activities, some of
them possibly recorded at different speeds. Using activity
cycles from six kinds of arm movements, which were not
available during training, the performance achieved is per-
fect - 100% - if one allows, as it should be the case for
invariance purposes, to recognize slow and fast pounding
video sequences as one and the same type of activity.

Figure 2. Frames from the “striking”, ” (slow
and fast) pounding”, ”swirling”, ”swing”, and
”stirring”arm movement sequences. First row:
color frames. Second row: tracked contours.
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Figure 3. Affine flows corresponding to the 14
(fourteen) prototypes: A, C, F, G, H, I, J, K,
L, M, O, Q, R and T.

The linguistic approach described in this paper can be
easily expanded in terms of both alphabets and dictionary
entries. Furthermore, one can add yet another level of ab-
straction, and define actions as sequences of activities. An-
other possible extension could include analysis of motions
of wielded tools. The stirring activity considered earlier on
as part of our experimental data involved the use of some
tool. Our preliminary experiments suggest that one can ac-
tually enhance recognition of arm activities by coupling the
parsing and interpretation processes for the motions traced
by both the lower arm and the wielded tool. Such coupling
would be similar in spirit to using Graphical Models in gen-
eral, and Coupled HMM [10] in particular but different in
implementation.
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