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Abstract

Within the past few years, there has been a great
interest in face modeling for analysis (e.g. facial
expression recognition) and synthesis (e.g. wvir-
tual avatars). Two primary approaches are ap-
pearance models (AM) and structure from motion
(SFM). While extensively studied, both approaches
have limitations. We introduce a semi-automatic
method for 3D facial appearance modeling from
video that addresses previous problems. Four main
novelties are proposed:

e A 3D generative facial appearance model inte-
grates both structure and appearance.

e The model is learned in a semi-unsupervised
manner from video sequences, greatly reducing
the need for tedious manual pre-processing.

o A constrained flow-based stochastic sampling
technique tmproves specificity in the learning
process.

e In the appearance learning step, we automati-
cally select the most representative images from
the sequence. By doing so, we avoid biasing
the linear model, speed up processing and enable
more tractable computations.

Preliminary experiments of learning 3D facial ap-
pearance models from video are reported.

1 Introduction

Within the past few years, there has been great inter-
est in face modeling for analysis (e.g. facial expres-
sion recognition) and synthesis (e.g. virtual avatars).
Among various approaches to modeling 3D faces from
video, two of the most popular and commonly used
are based on appearance models (AM) [2, 4, 8, 9, 17]
and rigid/nonrigid structure from motion (SFM) [5,
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Figure 1: Generative 3D Facial Appearance Model
with Structure and Appearance.

7, 16, 21]. While each has been studied extensively,
both approaches suffer from several drawbacks. All
SFM approaches have an implicit data conservation
assumption in their formulation, since the correspon-
dence problem is usually solved with classical trackers
or flow techniques. In the face domain, this aspect is
dramatic as the face undergoes deep changes in appear-
ance due to variations in expression that may be either
qualitative (e.g. blinking, appearance of the tongue,
etc) as well as quantitative (i.e., intensity change),
which can seriously bias any parameter estimation.



While the AM approach overcomes the problem
of appearance change by explicitly introducing linear
variation of intensity and shape, it incurs other chal-
lenges. AM approaches do not necessarily decouple the
rigid/non-rigid motion in the fitting process, since a
single shape basis models both of them. Moreover, AM
approaches require a labeled training set to learn face
appearance. Manual labeling of face images is tedious
and prone to error. In this paper, we propose a gener-
ative model that is robust to intensity changes in ap-
pearance, takes into account structure and appearance,
and learns model parameters in a semi-supervised man-
ner. Fig. 1 illustrates the main idea of the paper.

2 Previous Work

It is beyond the scope of the paper to review all the
work related to 3D face modeling. Notwithstanding,
we cite the more relevant literature. Several papers
have used a relatively simple 3D model (e.g. cylinder
[19], ellipse, etc) and flow equations to recover 3D rigid
head motion. These approaches model 3D rigid motion
but only crudely the 3D shape of the face (relative to
SFM and AM).

In the area of structure from motion (SFM), several
authors have reported encouraging results. Torresani
et al. [18] decouple rigid and non-rigid motion under
orthographic projection. Chowdhury and Chellappa [7]
construct a 3D model by inferring depth from flow. In
a similar approach but using feature correspondences
and performing bundle adjustment, Zhang et al. [21]
construct 3D models from a video in which the face
rotates 180 degrees from profile to profile. Pighin et
al. [16] model and animate 3D Face Models using SFM
in multi-view images and solving the correspondence
by hand. Brand [5] reports a SFM technique using a
new algebraic approach that allows accommodation for
uncertainty and is less prone to propagating errors.

Since active shape model/active appearance mod-
els [8] and Morphable models [13] appeared, there has
been much related work in the appearance/face do-
main. Vetter and Blanz [4] have introduced morphable
models learned from a Cyberscan, which takes into ac-
count shape and texture. Romdhani and Vetter [17]
have recently improved the fitting process (see [1] for
efficient fitting). Black and Jepson [3] introduce an
elegant formulation for continuous alignment w.r.t. a
subspace. Cascia et. al. [6] show a method that is
able to track 3D heads under changeable illumination
conditions by registering w.r.t the eigenspace. While
the AM approach has shown great performance, the
various algorithms require training from hand-labeled
samples, which is labor intensive and error prone.

Frey and Jojic [11] introduced an Expectation Maxi-
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Figure 2: a) Original 3D Mesh. b)Deformed 3D Mesh.

mization (EM) algorithm that learns several statistical
models (e.g. PCA, mixture of Gaussians, etc) that
are invariant to geometric transformations. However
the complexity of the algorithm scales exponentially
with the number of motion parameters. To solve this
problem, De la Torre and Black [10] proposed an en-
ergy function based algorithm to learn the appearance
model. Their algorithm achieves invariance to geomet-
ric transformation while remaining scalable. In related
but independent work, Baker et al. [2] have proposed
a method to learn the AAM in a unsupervised fashion.
Morency et al. [15] introduce an adaptive view-based
appearance model, which is able to register w.r.t. pre-
vious selected prototypes. The method we present in
this paper benefits from previous AM and SFM ap-
proaches, by learning a structured appearance model
in an unsupervised manner.

3 Generative Model for 3D Faces

In this section we describe a possible generative 3D
facial appearance model that takes into account the
structure, appearance and 3D motion.

3.1 From Generic 3D Structure to
Person-Specific Models

We begin with a generic 3D head model
(http://grail.cs.washington.edu/projects/realface/)

and subsample it to make it more computationally
tractable. To give a first estimation of the shape
of the face, we select 30 points by hand in two
orthogonal views. The mesh is then deformed using
a radial basis function and affine transformation
that minimizes: E(C,A) = ||Pog — CD — AP34||r

subject to CT1 = 0 and CTP3; = 0, where
X1 i) e In .
P = are the 2D image
2d yl y2 “ e yn g
X; Xy - X,
points, P3q = Y. Y5 - Y, are the 3D
1 1 ... 1

points of the mesh. A € R2*3 contains an affine

transformation, D is a matrix such that each element
(Xi—X;)2+(vi-yj?

dij = exp” B is the Euclidian distance

[16]. Once we have re-escaled the XY axis, we do a
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Figure 3: a)Projection into cylindrical coordinates.
b)Unwarped Mesh.
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Figure 4: a)Texture mapped from one image to the
unwarped cylinder. b)Two views of the texture map
in 3D.

similar approach to re-scale the Z axis. In fig. 2.a, we
see the original 3D mesh and in fig. 2.b we can see the
person-specific model once deformed.

3.2 Modeling Appearance Changes

Once the structure of the face is obtained, we construct
the appearance model by mapping the 3D model into
cylindrical coordinates. In figure 3.a it is possible to see
how to project the mesh into cylindrical coordinates,
y = Y and x = arctan(aX/Z) where « is a variable
which adjust the cylindrical projection. In figure 3.b
we can see the unwarped mesh.

Once we have unwarped the mesh, we map the tex-
ture from the image to the unwarped mesh, assuming
perspective projection. Similar to previous work [10],
in the unwarped texture image, we define four regions
in the unwarped texture image, corresponding to the
eyes, mouth, profiles and the rest of the face. Each
of the regions contains a subspace of different dimen-
sionality (figure 4.a). After the unwarped texture is
obtained, it is mapped from the unwarped cylindrical
parameter space to the 3D model, by means of the tri-
angular patches [16] (figure 4.b).

4 Flow based initialization

We use flow based techniques to give an initial and
fast estimation of the rotational and translational
components of the rigid motion of the head between
frames[19]. However, flow techniques are based on the
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brightness constancy assumption and are well known
for being noisy and ambiguous when recovering 3D in-
formation. To overcome these difficulties, we make use
of robust statistics techniques [3] and approximate the
average head depth with a simple 3D model. Candi-
date 3D models include cylindrical [19], ellipsoidal and
anthropomorphic models. Within a coarse-to-fine iter-
ative strategy, we minimize!:

E(p) =Y pldpi(f(xp, 1) — dpe—1)(£(x,0)),0) (1)
pER

where p(z,0) = #202, p = (6,t) =

(02,0y,0.,t5,ty,t.) are the parameters for the rota-

tional and translation components and R is the region

of support. f(x, p) is the geometric transformation:

£, RO00,0 )X Y Z)tts _
£ ) = TR(05,0,,0-)(X Y Z)+i, 0
X, @ R(02,04,0-)(X Y Z)+t,
YR(0,,0,.0.) (X Y Z)+t. IO

where R(6,0,,0.) is a rotation matrix and [X Y Z]T
are the 3D coordinates (the intrinsic camera parame-
ters are known).

Minimizing expression (1) becomes a non-linear esti-
mation problem due to the robust function and the be-
havior of the motion parameters. To approximate the
problem by a linear one, we linearize the motion varia-
tion and use the Iteratively Reweighted Least Squares
(IRLS) algorithm [14, 10]. Given an initial estimation
of the motion parameters u°, a Gauss-Newton method
can be applied by incrementally updating the param-
eters solving the following approximate minimization
problem:

E(p) = ||di(f(x, 1°)) + JeAp — di-1 (f(x, 0)|lw, (2)

where Jy = %‘lj‘; is the Jacobian matrix. See [10, 19].

5 Dimensionality Reduction

Dimensionality reduction is a common technique to
filter and makes algorithms more computationally
tractable. ~ When processing large videos of the
same person, the amount of redundant facial ex-
pression/poses becomes an issue for several reasons.

IThroughout this paper, we will use the following notation:
bold capital letters denote a matrix D, bold lower-case letters a
column vector d. d; represents the j-th column of the matrix
D. dij denotes the scalar in the row i and column j of the ma-
trix D and the scalar i-th element of a column vector d; . All
nonbold letters will represent scalar variables. ||d||3, = dTwd
is a weighted norm of a vector d. diag is an operator which
transforms a vector to a diagonal matrix. Dj o D2 denotes the
Hadamard (point wise) product between two matrices/vectors
of equal dimensions.



Figure 5: a) Example of tracking results with pose and
facial expression changes.

Firstly, we do not necessarily have a uniform sam-
pling of all the possible facial expressions/poses. This
will bias the appearance learning algorithm towards
reconstructing better the expressions with more sam-
ples. Secondly and more importantly, the amount of
data would make the stochastic algorithm very compu-
tationally expensive. To avoid this phenomena, once
the images are registered, we find the most represen-
tative prototypes by clustering, using the recent ad-
vances in multi-way normalized cuts [20]. In figure (6)
we show 50 prototypes extracted from a sequences of
800 frames. Figure (7) shows some of the samples of
the same cluster. We can observe that individual pro-
totypes capture changes in expression/pose.

6 Stochastic Smoothing for
Appearance Learning

The optical flow provides a first estimation of the rigid
motion parameters, which can be biased due to changes
in facial expression, the fact that the 3D model is not
accurate enought and linealization errors. In order to
improve the estimation, compute non-rigid motion pa-
rameters, and build the appearance model, we use a
smoothing particle filtering algorithm [12]. We pose
the problem as doing inference in a general state space
model, which can be described by: s; = g(si—1,u;)+ 0
and d; = h(s;) + & where d; is the vectorized observed
image frame at time t. The hidden state, s;, will re-
cover (6,0,,0.,t:,ty,t;, k), where k are the non-rigid

Figure 7: Samples of several clusters.

parameters (see section 6.1). wuy is the input and j;
and & are samples from a noise distribution. A is the
measurement function and g describes the dynamics of
the system.

6.1 Measurement Equation

The measurement equation expresses the fact that an
image at time ¢, dy, is generated by a general non-linear
function h of s;. The likelihood of a particular sample
of s; is related to the image by:

M* = NR(R(0,,0,,0.) - M + [ta, t,, ], k) (3)
||d; — Rec(d(Proj(M*)))]| )

p(di|p, k) ~ exp —

o
where we define several operators; M =
X, - X,
Yy, - Y, is the centered 3D mesh.
Zy e Zn

NR(M, k) is an operator which takes the 3D mesh
and deforms the non-rigid parameters x. k is a
vector of 3 parameters which modify the positions



of eyebrows, mouth corners and the mandible aper-
ture. Proj is the perpective projection operator
[foX/Z — xo, fY/Z — yo] of the visible triangles in
the 3D mesh. Given the projected visible triangles,
Rec takes the image triangles, projects them into
cylindrical coordinates and reconstruct the subspace
as Zle(ﬂ'i o Blcl), where:

7i: Binary mask of the [ layer at time t, which

represents its spatial domain. =} = [}, w},---7},],
where each n,, € {0,1}and >, 7l, = 1 Vp,t. It is
defined by hand.

cl: Coefficients which linear combination of the basis
B! will reconstruct the graylevel of the layer [.

B!: Appearance Basis of the I layer.

Observe that equation (4) represents a pseudolikeli-
hood (not necesarily normalized).

6.2 State Equation

Eq. (4) describes the dynamical behavior of the hidden
states of the dynamical system (the image sequence).
In the more general case g(s¢, u;) is a nonlinear trans-
formation (e.g. a mixture of gaussians, a multilayer
perceptron network, - -).

The optical flow has given a first estimation of the 3D
rigid parameters up to a scale factor due to the ambi-
guity between translation and depth. Despite the fact
that the flow estimation can be a little bit biased, we
use it to guide the search while sampling the posterior
distribution of the state parameters. We combine both
estimations(flow and temporal) with their covariances
in an optimal Bayesian way:

p(silsi—1,£) = N(S7H(E As + 271 £),50) (5)
S =g +50 (6)

where ¥4 is the uncertainty comming from the dynam-
ical system, f; is flow estimation for the rigid parame-
ters, 3; is the uncertainty of the computed optical flow.
To compute an estimation of Xy, we run several iter-
ations of Gauss-Newton with IRLS method, and, once
it has converged, we recompute the Jacobian J; with
the final parameter values f; and a binary weighting
matrix W, is constructed. Then, an estimation of the
uncertainty is given by 3; = trace(W;)(JEWJ¢) L.
A stands for a simple linear dynamical model, which
is assumed to have a constant velocity model. Once
the parameters are known, we sample from the multi-
dimensional gaussian to generate new samples.

6.3 Deterministic Gradient Learning

Having a reasonable assessment of the rigid /non-rigid
parameters over a set of k frames, we unwarp the tex-
ture and compute an estimation of the subspace for
each region of the face. For each unwarped frame, we
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have an image p, € %% *! and a weighting matrix w; €
REex1 We minimize E(B!,C!,--- B!, C) = |[Wo
(P — Zlel 7'B!CY||F, where W = [wy, -, wy] €
RFexF is a matrix such that w;; = 1 is the pixel which
is visible and w;; = 0 if not. B! € R4 is the set
of k basis and C' = [c} ---cl] € R¥*™ are the set of
coefficients for the [ layer. We recursively update the
basis to preserve 85% of the energy. To optimize for
B and C, we use a two step method which alternates
between minimizing C in closed form with B fix and
viceversa until convergence. See [10] for more details.

7 Experiments

Figure 8 shows some pictures with the tracking results.
The projected 3D mesh onto the images is shown as
well as the original rotated 3D mesh. The original se-
quence has approximately 800 frames from which, af-
ter tracking with flow (section 5) and clustering, 130
frames are selected. From each of the 130 frames, we
have taken subsets of 15 frames, compute an appear-
ance basis and run the smoothing for Condensation in
order to register w.r.t the subspace. We iterate the
learning step and the smoothing algorithm until con-
vergence. Good results have been achieved using 700
particles and, tipically, 3 runs going backward and for-
ward for the smoothing process. The algorithm has
been implemented in a non-optimized Matlab code and
takes roughly 7 hours to process the original image se-
quence of 800 frames. This takes into account the Op-
tical Flow, Condensation, smoothing for Condensation
and the learning of the appearance model. Figure 9
shows the 3D mesh with the learned appearance model.
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