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Abstract
Despite significant progress in deformable model fitting over the last decade, the problem of
efficient and accurate person-independent face fitting remains a challenging problem. In this work,
a reformulation of the generative fitting objective is presented, where only soft correspondences
between the model and the image are enforced. This has the dual effect of improving robustness to
unseen faces as well as affording fitting time which scales linearly with the model’s complexity.
This approach is compared with three state-of-the-art fitting methods on the problem of person
independent face fitting, where it is shown to closely approach the accuracy of the currently best
performing method while affording significant computational savings.

1. Introduction
Deformable objects such as the human face are often parameterized using separate linear
models of shape and appearance. Prototypes utilizing this parameterization include the
active shape model (ASM) [7], the active appearance model (AAM) [6] and the 3D
morphable model (3DMM) [5]. The various prototypes are designed to handle specific kinds
of visual objects. The ASM is best suited for objects with strong edge features and the AAM
for objects that require a dense appearance representation. The 3DMM extends the AAM’s
application domain to 2.5D visual objects (i.e. 2D surface embedded in 3D). For each of
these prototypes, the aim of fitting is to find the model parameters that best describe the
visual object in an image. In machine learning this type of approach is often referred to as
generative as it adopts an analysis-by-synthesis strategy.

Generative methods present a principled approach to deformable face fitting. However, most
current formulations suffer from two main drawbacks. Firstly, efficient parameter updates
cannot be attained without approximations due to the coupling of shape and appearance
parameters within the formulated objective. Secondly, generalization is limited due to the
inability of the model to synthesize the whole gamut of appearance variations exhibited by
complex visual objects. As discussed in [2], ignoring peculiarities about the specific
problem of deformable face fitting and treating it as a generic function minimization
problem often leads to the inefficient Lucas-Kanade (LK) method [11]. Earlier methods,
such as [6], use a fixed approximation for LK’s Jacobian that results in a rapid fitting
procedure. More recently, a number of methods [1,12,16] have been proposed that
reformulate the optimization procedure using the inverse-compositional paradigm [10]. By
reversing the roles of the image and appearance model, components of the updates
pertaining to the warp can be precomputed. However, without making further
approximations, the optimization procedure can still be computationally expensive [1].
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Typical generative methods also suffer from limited generalizability [8,14]. As a result of its
linear parameterization, the model lacks the capacity to compactly represent the whole
gamut of appearance variations of a complex object, such as in the person-independent
fitting problem. As such, the objective deployed in generative fitting, typically formulated as
least squares, is often unduly effected by the unmodeled appearance.

In this work we address the two main drawbacks of typical generative fitting described
above, presenting a formulation that applies to both 2D and 2.5D models. The main insight
is that when only soft correspondences between the model and the image are enforced, then
observation uncertainty is shared between the shape and appearance. This has the effect that
unseen appearance variabilities are better handled, leading to improved generalization.
Rapid fitting is achieved through a mixed inverse-compositional-forward-additive parameter
update scheme, resulting in a computational complexity that scales linearly with the model’s
complexity. In Section 2, an overview of the parameterization and fitting of deformable face
models is presented. Our fitting formulation is presented in Section 3 and quantitatively
evaluated in Section 4. Section 5 concludes with an overview and mention of future work.

2. Generative Face Models
A review of generative face models is presented in this section. Their parameterization is
described in Section 2.1, where the nomenclature adopted in this paper is outlined. An
overview of generative fitting and their current limitations is presented in Section 2.2.

2.1. Parameterization
Intrinsic (local) sources of shape and appearance variations are commonly parameterized
linearly as1:

(1)

(2)

where n, D, N, P, Ms and Ma respectively denote the number of points defining shape, shape
dimensionality (2D or 3D), number of pixels in appearance, number of image planes,
number of shape modes and the number of appearance modes. Here, {μs, μa} and {Φs, Φa}
denote the mean and basis (modes) of variation respectively.

The appearance of a visual object in the image is often effected by extrinsic (global) sources
of variation, both geometrically and photometrically. It is common practice to model
extrinsic photometric variations also as a linear model [1,6]:

(3)

1Notation: Vectors are written in lowercase bold and matrices in uppercase bold, where 1 denotes the all one vector and I the identity
matrix. Greek letters denote either vectors or matrices depending on context. The Hadamard (element wise) and Kronecker (tiling)
products are written as ⊙ and ⊗, respectively. The diag{x} operator makes a diagonal matrix with the components of x as its diagonal
entries. Functions are written in upper case calligraphic font with ○ denoting their composition. When composing functions with
multiple parameters, ⋄ denotes the parameters resulting from the output of the composed function, for example: ( (x); y) = (⋄; y)
○ (x).
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where ga = {α, β} are the gain and bias for each image channel. Extrinsic geometric
variations are more involved as they typically represent the object’s rigid motion:

(4)

where gs = {s, R, t}, R is a (D × D) rotation matrix, t is a translation, s is a scaling factor
and G denotes the number of parameters defining the rigid motion.

Together, the local and global transformations constitute the visual object’s generative
model:

(5)

(6)

Where we have used (x; pa) to denote the appearance at pixel location x in the model
frame.

2.2. Fitting
The objective of generative fitting is to minimize a cost function of the form:

(7)

where ℐ is the image and θ = {ps, gs, pa, ga}. The data term  is often set as the least
squares error between the cropped image and the model’s appearance:

(8)

where  is the set of locations in the model frame defining appearance,  is a projection
onto the image and  is a warping function, often chosen as the piecewise affine warp
[6,12,16]:

(9)

Note that we parameterize the warp using its target nodes, similar to that derived in [3] for
the thinplate spline.

The regularization ℛs and ℛa, which correspond to priors over the shape and appearance
parameters, are often chosen as anisotropic Gaussians [4,15]:

(10)
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where  denotes the variances along the directions of shape variation (similarly for
appearance). However, many works, for example [6,7,12], do away with a regularization
term, solving the maximum-likelihood (ML) instead of the maximum-a-posteriori (MAP)
problem.

Utilizing a generic optimization strategy such as Gauss-Newton to minimize the data term in
Equation (8) leads to expensive updates for θ, since the derivative of the cropped image with
respect to the shape parameters needs to be recomputed at each iteration [1]. As such, in
inverse-compositional based methods, at each iteration the solution is sought for the
reformulated problem:

(11)

optimizing over {Δps, Δgs, pa, gt}, where:

(12)

The forward warp is then found by inverting the update warp and composing it with the
current estimate.

Since μa and Φa are known and the derivative of the warp is always evaluated at the
identity, the Jacobian of μa and Φa can be precomputed. However, the Jacobian of the
synthesized appearance is not fixed as it depends on {pa, ga} [1]. As such, when utilizing a
Gauss-Newton step to optimize Equation (11), the Jacobian and its pseudo-inverse (linear
update model) must be rebuilt, the computational cost of which scales cubically with the
model’s complexity. In [16], fixed linear updates were attained by applying (x; s) only to
μa, rather than to Φa as well. However, this is equivalent to approximating the appearance
Jacobian with that evaluated at the identity appearance, an instance of the efficient
approximation to the simultaneous inverse compositional method [1].

The project-out method [12] affords extremely rapid fitting by minimizing in the subspace
orthogonal to Φa:

(13)

resulting in fixed linear updates. However, as shown in [8], the efficacy of this approach
greatly deteriorates as the model’s complexity increases. Although some possible causes of
this deterioration was given in [8], a satisfactory explanation is still lacking. Examining the
form presented in Equation (13), however, the reason for the performance deterioration
becomes apparent: the model frame warp (Δs) is applied only to μa rather than to Φa as
well. A more appropriate objective is to minimize the template-to-image difference in
span(Φa ○ (Δs))⊥. However, this ruins the precomputability of the updates. Therefore, the
project-out method makes the same approximation as the efficient approximation to the
simultaneous inverse-compositional method [1].

Apart from difficulty in attaining efficient fitting without approximations, another weakness
of current generative fitting methods is their limited generalizability. In [8,14],
investigations into this aspect of face fitting found that the main source of difficulty lies in
the inability of the appearance model to accurately generate previously unseen appearance.
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This problem is exacerbated when the model exhibits large shape variability, as it tends to
deform, often away from the true shape, to account for the unmodeled appearance. This
results because the unmodeled appearance does not generally follow an isotropic Gaussian
distribution, which is implicitly assumed in the least squares fitting objective. It was found
in [14] that optimal performance was attained when full appearance and 60% shape variance
is retained. However, this can have the effect that the shape model lacks expressiveness as
well as a significant increase in fitting time due to the highly complex appearance model
used.

3. A Soft Correspondence Formulation
To address the main difficulties associated with generative fitting, we propose reformulating
the fitting objective such that only soft correspondences between the model’s shape and
image coordinates are enforced. For this, a set of auxiliary variables, , are
introduced that denote locations in the image frame corresponding to each pixel in the
model. Inspired by Thirion’s demons algorithm [18] for optical flow, the idea is to let
undesired shape deformations, stemming from unmodeled appearance, to be handled by the
correspondences, without excessively disturbing the model’s shape. As an added benefit,
with the formulation presented shortly, these correspondences decouple components of the
fitting objective pertaining to shape and appearance, allowing efficient fixed updates for the
intrinsic parameters to be afforded without approximations.

Let us redefine the data term in Equation (8) as:

(14)

Here, ℱ denotes a measure of fit between the model’s appearance and the image, defined at
Z:

(15)

The term  penalizes deviations of the correspondences from locations defined by the
model’s shape:

(16)

In this work, it is assumed that  is a linear function of the destination shape, which define
the nodes of the warp as in Equation (9). Warps that exhibit this form include the piecewise
affine and thinplate spline warps. In our formulation, the warp is used in a slightly different
way from the convention of warping the model to image coordinates for the purposes of
appearance cropping. Here, the warp is used to transform the model’s shape to another shape
of the same dimensionality. In the 2D case, no distinction is made between the typical use of
warp and how it is used here. However, in the 2.5D case, the warp transforms 3D locations
to other 3D locations, which can also be defined linearly. In the exposition that follows, we
define:
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(17)

where rows of W are set to . When a dense shape model is used, as in 3DMM’s, W is
the identity.

Examining Equations (15) and (16) one immediately notices that the extrinsic geometric and
photometric transformations are applied to the image rather than the model frame
components. Optimizing such an objective involves a mixture of forward-additive and
inverse-compositional updates for the intrinsic and extrinsic parameters respectively.

In order to allow such use, the extrinsic transformations must form a group. The
transformations defined in Equations (3) and (4) exhibit this property. Although this choice
may appear unconventional, it will be shown in Section 3.2 that such a formulation has
significant impact on the computational efficiency of the method.

Intuitively, the choice of the terms in Equations (15) and (16) have the effect of favoring Z
that simultaneously defines locations in ℐ that best fit the generated model’s appearance
while also adhering to the space of allowable geometric deformations. As λc in Equation
(14) increases, Z becomes increasingly constrained to adhere to the shape model. As λc →
∞, the correspondences become deterministic, yielding the original LK algorithm (albeit
with inverted extrinsic transformations). As such, this formulation allows a level of
“slackness” to the shape and appearance fit, with the trade-off between them regulated by λc.
This slackness has the effect of sharing observation uncertainties between the shape and
appearance.

With the reformulation of the data term in Equation (14), optimization is now required over
an extra DN parameters compared to typical generative fitting scenarios. As such, a
simultaneous optimization strategy is computationally expensive. For this, we use a parallel
axis optimization strategy, where parameters are iteratively grouped and optimized
separately. Here, we propose partitioning the parameters into the correspondences Z, the
local parameters {ps, pa} and the global parameters {gs, ga}.

3.1. Optimizing the Correspondences
Keeping the other parameters fixed, the correspondences are found by minimizing:

(18)

Since the spatial locations within an image are generally related to its pixel values
nonlinearly, this problem constitutes a nonlinear function over Z. However, if we assume
that the current estimates of the correspondences are close to their optimal settings, then a
first order Taylor expansion of the image is a reasonable assumption:

(19)

Saragih et al. Page 6

Proc Int Conf Autom Face Gesture Recognit. Author manuscript; available in PMC 2010 April 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where  is the current estimate of zi. Note that when the shape model is 2D,  is simply the
identity function, and when a 3D shape model is used with a weak perspective projection, 
simply extracts the x and y components of z. A full perspective 3D model is more involved
and is out of the scope of this paper, however, the formulation here allows a direct
derivation to be made, modifying only .

With this linearization, the cost function in Equation (18) becomes quadratic. Furthermore,
since the correspondences exits in separate terms of the summation, the cost function for
each takes the form:

(20)

where:

(21)

(22)

The solution, then, is given by:

(23)

where:

(24)

This is a (D × D) linear system that affords an efficient evaluation for each zi. It constitutes
the constrained optical flow estimate at each pixel, where the color constancy equation is
defined between the image and the locally synthesized appearance. With no geometric
constraint, Hi is rank deficient. However, the shape constraint in the model frame ensure that
Hi is invertible (i.e. {λc, s} > 0 and RTR is positive definite).

3.2. Optimizing the Intrinsic Parameters
By virtue of the additional variables Z, the components of Equation (14) pertaining to shape
and appearance are decoupled from each other. As such, simultaneously optimizing over the
local shape and appearance parameters is equivalent to optimizing each independently.
Furthermore, for fixed {Z, gs, ga}, the objective is quadratic.

With the linearization in Equation (19) and letting:

(25)
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(26)

the cost function pertaining to intrinsic shape and appearance parameters are respectively
given by:

(27)

(28)

where we have assumed Gaussian priors on the parameters. Solutions for the intrinsic
parameters are given by:

(29)

(30)

In these equations, all components apart from ∇s and ∇a can be precomputed, allowing
fixed linear updates to be attained. Since the expressive power of linear models rely on the
number of these local parameters, the savings here is significant, especially for more
complex models, since the computational complexity increases only linearly with the
number of modes of shape and appearance variation.

These fixed updates are made possible through the specific formulation of the problem used
here. Firstly, the introduction of Z decouples the shape parameters, both from the image and
the intrinsic appearance parameters. In the conventional forward additive formulation, ps is
coupled with the image, whereas in the inverse compositional formulation it is coupled with
pa. It should be noted, however, that when a sparse point set is used, as in AAMs, the linear
system for the shape parameters is much larger than that of typical formulations.
Nonetheless, as Ms increases, the formulation here may still affords significant
computational savings. For 3DMMs, where a dense point set is used, savings are attained,
regardless of the model’s complexity.

Secondly, applying the extrinsic photometric transformation to ℐ and the extrinsic
geometric transformation to Z decouples the intrinsic and extrinsic parameters. Without this
measure, Equations (29) and (30) would depend on the current estimates of the extrinsic
parameters, preventing the updates from being precomputed. It should be noted however,
that in a ML framework, the photometric gain and bias can be appended to Φa, allowing
fixed updates to be attained simultaneously for both local and global transformations.
Similarly, for the global geometric transformation, some authors (for example, see [12])
implement a 2D similarity transform linearly by prepending four orthogonal columns to Φs.
However, such a simplification cannot be made for 3D rigid motion. Furthermore, since the
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local and global parameters become inseparable, a Gaussian prior cannot be placed on the
intrinsic parameters alone.

3.3. Optimizing the Extrinsic Parameters
As with the local parameters, the global parameters are also decoupled within the cost
function. Furthermore, for multi-plane images, the photometric gain and bias for each plane
are also decoupled from each other. Letting:

(31)

where ℐi(j) denotes the jth plane of the ith cropped pixel, the cost function pertaining to {α(j),
β(j)} is:

(32)

where (pa)j denotes the jth plane of the generated appearance. This quadratic function has
the solution:

(33)

that allows a rapid evaluation at each iteration.

The component of the error function pertaining to the extrinsic geometric transformation is
given by:

(34)

This is the extended Procrustes alignment problem [17] that also affords an efficient globally
optimal solution.

3.4. Discussion
An outline of the proposed fitting algorithm is presented in Algorithm 1. At first glance, the
iterative loop (steps 3 through 9) seem to resemble typical feature based fitting [4, 7].
However, those methods re-estimate the correspondences from the shape defined locations
at each iteration. As such, they fail to minimize a consistent global objective between
iterations, often leading to non-convergent cyclic behavior. In contrast, the method proposed
here treats the correspondences as additional variables and minimizes a consistent global
objective.

Finally, since the updates for Z constitute a constrained optical flow estimate, their
predictive region is limited. To capture large deformations, the procedure should be
implemented on a Gaussian pyramid, where higher pyramid levels predict large
deformations, with increasingly localized predictions as the procedure descends the
pyramid.
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4. Experimental Evaluation
Experiments were performed on a subset of the CMU Pose, Illumination, and Expression
Database (MultiPIE) [9], pertaining to ambient lighting with frontal and pseudo-frontal
views. The selected subset was further partitioned into training and test sets, consisting of
100 and 239 subjects respectively, for a total of 3051 images. Also, a separate set of 10
subjects was used to select the regularization parameters {λc, λs, λa} through cross
validation. The database includes 68-point manual annotations for all images, allowing a
quantitative analysis of performance to be made. On this database, two sets of experiments
were performed. The first, which is presented in Section 4.1, was designed to investigate the
effects of varying model complexity on the best fitting accuracy, similar to that in [14].
Performance in this set of experiments gives an indication of how well the method
generalizes to unseen faces. Given the large number of additional variables, a serious
concern regarding the efficacy of the proposed method is its susceptibility towards local
minima. The second set of experiments, which is presented in Section 4.2, was designed to
investigate this aspect of fitting, given realistic initial conditions.

In order to evaluate the 2.5D variant of our proposed method, 3D shape models were learned
by applying non-rigid Structure-from-Motion [19] on the training set in each experiment. As
with most annotations aimed at building 2D shape models, the topology around the
periphery of the face is not preserved by the annotations in MultiPIE. Points corresponding
to the inner jaw in the frontal view are annotated on the cheek in the half profile view, as
illustrated in Figure 1. Including images with extreme poses can lead to unrealistic 3D shape
models being learned. As such, they have been excluded from the experiments presented
here.

4.1. Investigating Generalization
To investigate the robustness of the proposed approach to unseen sources of variability,
shape and appearance models were first built using an increasing number of subjects
selected from the training set. Then, starting from their optimal settings in each test image,
the model was fit until convergence or a maximum of Ni = 100 iterations was performed.
Perturbations from their optimal settings gives a measure of how well the models generalize
under the prescribed fitting objective and optimization strategy. Results are presented in
Figure 2 for the 2D and 2.5D variants. The graphs (fitting curves) show the proportion of
images at which various levels of maximum perturbation was exhibited, measured as the
root-mean-squared (RMS) error between the annotations and the projected shape.

The results show a clear trend of performance improvement as the number of training
subjects increases. This trend persists even when only a small training set of 5 and 10
subjects is used. As discussed in [8,14], the shape model requires far fewer training
instances to achieve good representation capacity compared to appearance. They also
identified that performance deteriorates when the increase in shape representation outweighs
that of appearance, which typically occurs with a small sample set. This is because the shape
can deform in more ways to satisfy unmodeled appearance. However, this artifact of
common generative formulations is absent in the results presented here, by virtue of the soft
correspondence formulation which shares the observation uncertainty between shape and
appearance.

4.2. Comparisons with other Methods
To compare the proposed approach against others under realistic initial conditions, the
model’s translation and scale in each test image was attained from an off-the-shelf face
detector and the intrinsic shape and appearance parameters were initialized to zero (i.e. mean
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shape and appearance). From there, the model was fit on three levels of a Gaussian pyramid
until convergence or a maximum number of iterations was performed. Its performance was
compared against three prominent generative fitting methods: the project-out inverse
compositional method [12] (POIC), the simultaneous inverse compositional method [1]
(SIM) and the 2D+3D method [13] (2D+3D IC). In the following, we will refer to the
method proposed in this work as the Softly Constrained Correspondence method (SCC). In
all cases, we set Ni = 20 for the POIC, SIM and 2D+3D IC methods, and set it to 100 for
SCC, since it uses parallel axis optimization that requires more iterations to converge.
Results of these experiments are presented in Figure 3, where the fitting time and accuracy
are plotted against the total number of shape and appearance modes (i.e. Ms + Ma). Also
shown are fitting curves, analogous to those in Figure 2, for models trained with 5 and 100
subjects. For the accuracy plot, performance is measured as the area under the fitting curve.
The fitting times shown denote C++ implementations on a 1.83GHz MacBook.

From these results, one notices that although both variants of SCC outperform POIC and 2D
+3D IC, they fail to outperform SIM. Furthermore, the 2.5D variant yields poorer
performance than its 2D counterpart. Although SCC has the capacity to attain better
accuracy as its representation capacity improves, it appears that this is not always achieved
under realistic initial conditions, with the tendency to terminate in local minima. An
example of this is shown in Figure 4. This is an artifact, not only of the formulation, which
involves a larger set of variables, but also of the parallel axis strategy used for optimization.
Since the correspondences are updated based only on local image structure and their
distance from the current shape, when there is insufficient image structure their movements
are highly constrained. As these correspondences are then used to update the shape with
equal weight assigned to each, undue importance is placed on correspondences with
insufficient image structure. Confidence over their predictive capacity, encoded in the
Hessian of Equation (24), is lost through this procedure. The problem is amplified in the
2.5D variant, which exhibits an extra N variables compared to its 2D counterpart, resulting
in a more complex error terrain. Nonetheless, SCC’s performance closely approaches that of
SIM, and is much better than POIC or 2D+3D IC. Furthermore, it achieves a significantly
reduced fitting time compared to SIM.

5. Conclusion
In this work, the typical objective for fitting generative deformable models was reformulated
to enforce only soft correspondences between the image and the model. Through
experiments on the human face, it was shown that this objective has the effect of affording
better fitting accuracy as the model’s representation capacity improves, even when the
training set is small. Furthermore, through a parallel axis optimization strategy, the
computational cost of fitting is highly reduced without needing to make further
approximations. However, it was also found that the method is sensitive to local minima.
Despite this, performance is comparable to the currently most accurate method, while
affording significant savings in computational complexity.

Future work will address the sensitivity of the method towards local minima. Reducing the
number of parameters through a combined appearance representation as in [6] is a first step
towards this, which also allows fixed updates for the intrinsic parameters to be attained by
the formulation presented here. Performing simultaneous optimization over all parameters
may also yield better robustness, where the block structure of the Hessian may be taken
advantage of in order to speed up computations.
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Figure 1.
Effects of learning a 3D model from 2D annotations. First row: Example annotations of
frontal, pseudo frontal and half profile views. Second row: one mode of variation of the 3D
shape model built from a set including half profile views. The unrealistic contortions around
the inner jaw result from annotations which do not correspond to the same physical location
between views.
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Figure 2.
Effects of training set size on the optimal fitting performance on unseen faces. Legend
denotes the number of subjects used to train the shape and appearance models.
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Figure 3.
Performance comparison between SCC and another three methods. Top left: fitting
accuracy, measured as the area under the fitting curve, against total number of shape and
appearance modes. Top right: Fitting time of the various methods as model complexity
varies. Middle and bottom rows: fitting curves of the various methods for models trained
using 5 and 100 training samples respectively.
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Figure 4.
Some examples of fitting using the 2D SCC. Left to right: Area of image containing the
face, initial model placement using a face detector, and final fitting result. Top row:
Successful fitting. Bottom row: Fitting terminating in local minima.
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Algorithm 1

Fitting with Soft Correspondence Constraints

Require: ℐ, {ps, gs, pa, ga}, and Ni.

1: Initialize correspondences: Z =  ○ (ps, gs).

2: gs ← (gs)−1 and ga ← (ga)−1.

3: for i = 1 to Ni do

4: Linearize image {Eqn. (19)}.

5: Update correspondences Z {Eqn. (23)}.

6: Update {ps, pa} {Eqn’s. (29) and (30)}.

7: Update ga {Eqn. (33)} and gs {see [17]}.

8: Check for convergence.

9: end for

10: gs ← (gs)−1 and ga ← (ga)−1.

11: return {ps, gs, pa, ga}
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