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Abstract

We present a discriminative approach to frame-by-frame
head pose tracking that is robust to a wide range of illumi-
nations and facial appearances and that is inherently im-
mune to accuracy drift. Most previous research on head
pose tracking has been validated on test datasets spanning
only a small (< 20) subjects under controlled illumination
conditions on continuous video sequences. In contrast, the
system presented in this paper was both trained and tested
on a much larger database, GENKI, spanning tens of thou-
sands of different subjects, illuminations, and geographi-
cal locations from images on the Web. Our pose estimator
achieves accuracy of 5.82°, 5.65°, and 2.96° root-mean-
square (RMS) error for yaw, pitch, and roll, respectively. A
set of 4000 images from this dataset, labeled for pose, was
collected and released for use by the research community.

1. Introduction

Real-time, robust head pose tracking algorithms have the
potential to greatly advance the fields of human-computer
and human-robot interaction. The two main paradigms
are differential tracking and absolute tracking. Differen-
tial trackers (e.g., [1-5]) track the position and orientation
of the head through time, often using a geometrical model
of the face. They benefit from temporal and/or optic flow
information, but they are typically suscepetible to accuracy
drift due to accumulated uncertainty over time. They usu-
ally also require the initial position and orientation of the
head to be initialized, either manually or using a supple-
mental automatic system.

Absolute tracking approaches (e.g., [6—14]) detect head
pose from single images without temporal information and
without any previous knowledge of the user’s appearance.
Absolute trackers ignore all temporal or flow information
and hence are inherently immune to accuracy drift. They
are suitable for both independent image and video sequence
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analysis. Such trackers will likely play an important role in
integrated pose tracking systems that combine the benefits
of differential and absolute approaches.

Most work on automatic pose tracking reports accuracy
statistics over test databases spanning a relatively small
(< 20) number of subjects in continuous video sequences
under laboratory lighting conditions. Even the CAS-PEAL
dataset [15], which contains nearly 100,000 face images and
is a valuable asset to the face analysis community, was col-
lected under controlled lighting conditions in a laboratory.
Such datasets do not give a clear indication as to how well
a pose tracker would perform in unconstrained illumination
conditions outside the laboratory or across a diverse range
of human subjects.

In this paper, we propose a novel frame-by-frame (abso-
lute) pose tracker using an array of Viola-Jones-style [16]
classifiers that distinguish between different pose ranges.
The outputs of these classifiers are integrated using a re-
gression model to estimate the precise pose angle of all
three pose parameters: yaw (side-to-side), pitch (up and
down), and roll (rotation in-plane). We evaluate this system
in terms of root-mean-square (RMS) pose estimation error
on the MPLab GENKI Dataset, a large, diverse dataset of
Web images, which we describe in Section 2, and of which
we are releasing a sizable subset (GENKI-4K) for public
use. We also showcase the usefulness of frame-by-frame
pose analysis in a social interaction setting — detection of
spontaneous head-shakes from video.

This paper is structured as follows: In Section 2, we
briefly review the main pose tracking paradigms used in the
recent literature. Sections 3 and 4 describe the algorithm at
a high-level as well as implementation details. In Section
5, we measure the tracker’s accuracy and examine quan-
titatively how it might be improved. Section 6 presents a
qualitative example of how the tracker can detect a sponta-
neous head-shake from video. We summarize and conclude
in Section 7.



2. Previous Work

A number of different approaches exist within the frame-
by-frame pose tracking paradigm. Some systems detect the
face and its pose simultaneously [6, 17], perhaps using an
Active Appearance Model [10]. Some approaches employ
nearest-neighbor prototype methods, in which a query face
is matched to a training set of prototype faces; the face can
then be estimated as the pose of the nearest neighbor, or
interpolated between several neighbors. Other approaches
extract a set of features directly from the image pixels and
then map, using some regression or classification function,
directly to the pose [11-14]. Several hybrid systems span-
ning multiple static approaches exist as well [8,9].

Li, et al [17] and Srinivasan and Boyer’s [18] approaches
are arguably the most similar to the one presented in our
paper. Both methods estimate head pose by integrating the
outputs of a bank of pose range classifiers. In [17], head
pose (yaw) is estimated using kernel-PCA and kernelized
support vector regression as belonging to 1 of n bins (span-
ning 10 degrees), and the system is evaluated on a large,
presumably diverse database of images. (The dataset was
not thoroughly described in the paper.) However, no exact-
pose accuracy measurements were reported, only percent-
correct statistics of bin assignment. [18] use a polynomial
model to estimate the exact pose of query images after pro-
jecting them onto multiple eigenspaces. They evaluate their
system on a dataset containing less than 10 test subjects.

In this paper, we train and evaluate the accuracy of our
pose tracker on the GENKI dataset, which consists of over
60,000 images downloaded from publicly available Inter-
net repositories of personal Web pages. The database spans
a wide range of imaging conditions as well as variability
in age, gender, ethnicity, and head pose. Human labels of
head pose (yaw, pitch, and roll parameters in degrees) are
available for most images, as are the locations of the eyes,
nose, and mouth. (The pose tracker uses automatically de-
tected eye locations, however.) Poses are labeled using a
special labeling program containing a 3-D graphical model
of the head. The labeler’s task is to align the 3-D head
model using the keyboard (to adjust yaw, pitch, and roll)
so that its appearance matches that of the face contained
in the GENKI image. The program enables both coarse-
grained and fine-grained labeling to facilitate efficient and
accurate pose coding. A subset of the GENKI database, en-
titled GENKI-4K, containing 4000 randomly selected, pose-
and expression-labeled images is available for public use at
mplab.ucsd.edu.

3. Architectural Overview

The pose tracker we present operates on each video
frame independently and in real time. The system, por-
trayed graphically in Figure 1, works as follows:

1. Given an input video frame, the face is detected using
a real-time face detection system (e.g., OpenCV [19]).

2. Facial features are detected automatically as (x,y) co-
ordinates. Specifically, we detect the centers of both
eyes (defined as the midpoint between the inner and
outer eye corner), the tip of the nose, and the center of
the mouth.

3. The face patch is registered and cropped using the lo-
cations of the eyes.

4. The cropped face pixels are passed through an array
of pose range classifiers that are trained to distinguish
between different ranges of yaw, pitch, and roll. Two
types of such classifiers are used: one-versus-one clas-
sifiers that distinguish between two individual pose
ranges (e.g., Yaw Range 1 and Yaw Range 4); and one-
versus-all classifiers that distinguish between one indi-
vidual and the remaining pose ranges (e.g., Yaw Range
2 and Yaw Ranges { 1, 3,4, 5, 6,7 }). The pose range
discriminators are trained using GentleBoost on Haar-
like box features and output the log probability ratio of
the face belonging to one pose range class compared to
another. The run-time performance of these classifiers
is fast and small compared to the task of face detection.

5. The (z,y) coordinates output by the feature detectors,
and the real-valued outputs of the pose range classi-
fiers are integrated using linear regression to yield the
estimate of the exact pose angles (yaw, pitch, and roll).

4. Implementation Details

This section describes in more detail some of the steps
outlined in Section 3.

4.1. Face and Facial Feature Detection

For face detection, we employed a Viola-Jones-style face
detector developed at our laboratory. For facial feature de-
tection, we employed the system described in [20], which
returns the maximum a posteriori estimates of the centers
of the eyes, tip of the nose, and center of the mouth, given
the appearance of the face, and using a prior over relative
locations of facial features.

4.2, Face Registration

Using the automatically detected locations of the eye
centers, the face region is cropped (see Figure 2) accord-
ing to the following measurements: Given the distance d
between the centers of the eyes, the size of the cropped face
is set to be md. We found that m = 3.125 yielded good
pose tracking accuracy. The top of the cropped face is set
such that the distance from the top to the midpoint of the
centers of the eyes equals kd. We set k = 0.875.
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Figure 1. The high-level architecture of the pose tracker. The face and eye positions (z,y) are detected automatically. The face patch is
cropped about the eyes and then classified by an array of pose classifiers that discriminate between different yaw and pitch ranges (defined
in Figure 3). The classifier outputs and facial feature locations are then integrated, using linear regression, into an estimate of the three

pose angles.

Figure 2. The face measurements by which faces were cropped
from the surrounding image. Given the locations of the centers
of the eyes (represented in the figure by the circles), the distance
d between them is calculated. The size of the face md, and the
y-distance kd between the midpoint of the centers of the two eyes
and the top of the cropped face, are then calculated. We found that
m = 3.125 and k = 0.875 yielded good pose tracking accuracy.

Once the face region is cropped, it is downscaled to
24x24 pixels, converted to grayscale, and normalized to
zero mean and unit variance.

4.3. Training the Appearance-based Pose Range
Classifiers

In our implementation we partitioned the Yaw space into
seven ranges and the Pitch space into three ranges; these
ranges are listed below Figure 3. Since the roll angle of
a face can be accurately estimated using feature point po-
sitions alone, we did not train any classifiers to discrim-
inate between ranges in Roll space. One-versus-one and
one-versus-all classifiers were trained for Yaw and Pitch.

For training the classifiers, we used 80% (approximately
28,000 images) of the GENKI dataset (described in Sec-
tion 2) for which pose labels existed and in which the face
detector found a face. The remaining 20% of the GENKI

Yaw ranges:
1 2 3 4 5 6 7
Pitch ranges:
1 2 3
Figure 3. The average images from each of the seven yaw and
three pitch ranges used in our implementation. The yaw ranges are
(from 1-7): [—45,-30], [-30, —18], [—18,—06], [—06, +06],

[4+06, +18], [+18,+30], and [+30, +45], in degrees. The pitch
ranges (from 1-3) are: [—45, —10], [-10, +10], and [+10, +45].

images were used for validation. In particular, the now pub-
licly available GENKI-4K dataset is contained completely
in this validation set.

Each appearance-based pose range classifier was trained
using GentleBoost [21], which is a variant of boosting
whose final output is the log probability ratio of the class
(yaw/pitch range) given the input (the face). For example,
for the 1-v-{2,3} pitch classifier, the classifier’s output is the
log probability ratio of the face belonging to Pitch Range 1
to the face belonging to either Pitch Range 2 or 3. As a
feature set, we used the same set of box filters (Haar-like
wavelets) as Viola and Jones in their original face detec-
tor [16]. In essence, the individual pose range classifiers
we use are single-cascade Viola-Jones face classifiers. All
classifiers were trained for 500 rounds, i.e., they contain 500
weak classifiers.



4.4. Linear Regression

The (z,y) outputs of the facial feature detectors and the
real-valued outputs of the pose range classifiers are com-
bined to form an estimate of the exact head pose using stan-
dard linear regression. Specifically, the inputs to the linear
regression function are the raw outputs of the facial fea-
ture detector, and the arctangent (arctan) of the outputs of
the pose range classifiers. We found that using arctan as a
transfer function prior to regression improved results signfi-
cantly. This may be because arctan has bounded range and
thus limits the effect that any single yaw range classifier can
have on the final yaw estimate.

As alternatives to linear regression, we also tested ridge
regression and e-SVM regression (linear and RBF kernels)
but did not find an improvement in accuracy.

5. Experimental Analysis

We measured the accuracy of the pose tracker on the
GENKI-4K dataset (see Section 4.3), containing 4000
GENKI images not used for training. Accuracy was mea-
sured as the root-mean-square (RMS) error of estimating
separately the yaw, pitch, and roll of the head with the hu-
man pose-labels as ground-truth. For comparison, we also
estimated the accuracy of human pose labels by computing
the average human labeling error (RMS) over 671 GENKI
images which were labeled by at least four different human
coders. The mean pose label for each image was taken as
ground truth.

Overall Accuracy: The overall accuracy of the
pose tracker, using both the facial feature locations and
appearance-based information via the pose range classifiers,
was 5.82°, 5.65°, and 2.96° RMS error for yaw, pitch, and
roll, respectively, on the GENKI-4K dataset. Automatic
pose tracking accuracy compared to human accuracy is por-
trayed graphically in Figure 4. For pitch estimation, the
accuracy of the automatic system is comparable to that of
human labelers. Estimation could be improved significantly
for yaw. The inter-human accuracy for roll was particularly
low because roll was computed automatically from eye co-
ordinate positions that the humans coded.

In the following subsections, we examine which compo-
nents of the system’s architecture were most instrumental in
achieving this accuracy, and also examine how error varies
as a function of the pose itself.

5.1. Benefit of Feature Point Coordinates

The tracker’s pose estimates are based on two input
sources: the geometry of the face as represented by the lo-
cation of automatically detected facial features, and appear-
ance information extracted from the cropped face. To assess
the contribution of each input source, we trained two addi-
tional classifiers by restricting the linear regression weights:

Classifier Appearance, which uses only appearance infor-
mation, and Classifier Geometry, which uses only facial fea-
ture locations. We refer to the original classifier which uses
both input sources as Combined. The RMS yaw estimation
error of the Appearance, Geometry, and Combined classi-
fiers are shown in the following table:

Approach Estimation Error
(RMS, in degrees)
Yaw Pitch Roll
Appearance-based 5.96 5.82 6.81
Facial feature locations| 8.94 6.27 2.93
Combined 5.82 5.65 2.96

These results indicate that nearly all of the useful yaw infor-
mation comes from appearance information from the face.
Since no pose discriminators were trained for roll, it is not
surprising that appearance-based roll estimation was much
less accurate. Pitch seems to benefit from both appearance-
based and feature point-based information. It is also possi-
ble that, by using more facial feature locations, such as are
available in an Active Appearance Model [22], the utility of
facial feature locations would increase.

5.2. Benefit of One-versus-One versus One-versus-Rest
Classifiers

To assess the relative importance of the one-versus-one
compared to the one-versus-rest appearance-based classi-
fiers, we measured yaw estimation accuracy using these in-
put sources alone (without facial feature coordinates). We
compared accuracy for yaw and pitch (since no classifiers
were trained to discriminate roll ranges):

Approach Estimation Error
(RMS, in degrees)
Yaw Pitch
One-versus-one| 6.06 5.86
One-versus-rest| 6.38 5.83
Combined 5.96 5.82

It thus seems that the one-versus-one pose range classifiers
contain more signal than do the one-versus-rest classifiers.

5.3. Error as a Function of Pose

Figure 4 displays the RMS error of the automatic pose
tracker as a function of the human-labeled pose. Each of
the three RMSE figures form an approximately U-shaped
curve, meaning that pose estimation is less accurate for
poses farther from frontal (0°).

One possible explanation for this result is that the num-
ber of images in our training set is greater for near-frontal
views than for views far from frontal, as displayed in Figure
5. The correlations between the number of training exam-
ples at each pose angle with the corresponding RMS error
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Figure 4. Smoothed root-mean-square errors (RMSE), as a function of human-labeled pose, for both the automatic pose tracker and the
individual human labelers. RMSE for the automatic pose tracker was estimated over GENKI-4K using the average human labeler’s pose
as ground-truth. RMSE for humans was measured on a different subset of GENKI comprising 671 images on which at least 4 different
humans had labeled pose. Human error for roll was not available since roll was computed automatically using the labeled eye positions.
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Figure 5. Histogram of training images as a function of the human-labeled pose.

of yaw pitch, and roll, were —0.55, —0.57, and —0.82, re-
spectively. Not surprisingly, this means that, the more train-
ing examples that were available, the smaller the estima-
tion error. This suggests that we can improve the accuracy
of the pose tracker by collecting more training examples in
the underrepresented yaw regions. We are currently in the
process of expanding our GENKI dataset to include more
non-frontal poses.

5.4. Synthetic Training Examples

In an effort to increase the number of training images in
our dataset for the outer poses (see Section 5.3), we aug-
mented GENKI with a number of synthetically generated
face images. Collecting high-quality, accurately labeled im-
age databases can be time-consuming and tedious, and the
ability to generate precisely (pose-)labeled images automat-
ically would be extremely useful. Previous research has
used synthetically generated images for recognizing articu-
lated full-body poses [23]. Here, we present our preliminary

results for the task of yaw estimation:

We used the 3-D face rendering software Poser [24] to
generate several thousands of face images of varying poses.
Specifically, we automatically rendered 3200 face images in
the yaw ranges of [—35, —25]°, [-10, 10]°, and [25, 35]° in
1° increments, using five different facial appearance models
and a variety of different facial expressions (to increase the
diversity of the images) using PoserPython, Poser’s script-
ing language. Ethnicity parameters are, to our best deduc-
tion, not accessible from PoserPython and had to be set
manually. The roll and pitch parameters were varied across
the range of [—8, 8]° in 2° increments. All of the rendered
images were then superposed onto a random set of back-
ground images (not containing faces) to simulate the geo-
graphic variability of GENKI. These synthetic images were
added to the GENKI training set, but not to the test set. Ex-
amples of Poser-generated images and a random sample of
GENKI are displayed, for comparison, in Figure 6.

Preliminary results have shown a marginal improvement
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Figure 6. Above: A random subset of GENKI images from Yaw
Range 1. Below: A random subset of synthetic images generated
using Poser 7 and superimposed on random backgrounds from the
yaw range of [—10, 10]°.

in accuracy by augmenting the training set of naturally oc-
curing images (GENKI) with synthetically generated ones
(0.05° RMS improvement for yaw estimation). In our ex-
periment, randomly selecting a subset (%th) of the artifi-
cially rendered faces yielded better performance than in-
cluding all of them. An important question which we will
address in future research is whether the statistics of the
synthetically generated images — e.g., spatial frequencies of
face images, diversity of ethnicity, illumination conditions
— match those of GENKI and are thus suitable for training.

6. Head Gesture Recognition

Estimating head pose is an important signal in many
human-computer interaction and human-robot interaction
applications. The head yaw can indicate, for example, that
the human user is looking toward the computer (attentive)
or looking in a side direction (inattentive). Oscillation of the
yaw may indicate the user is shaking her head to say “no.”

As a qualitative example of the pose tracker’s ability to
capture such gestures, we show the pose tracker’s output
on a video clip of a user shaking her head “no.” Sample
video frames (every 4th frame) are shown beneath the graph
as well as time-aligned video frames taken at the peaks
and valleys of the yaw tracker’s output. No information is
shared between frames, and no smoothing was employed.
Though the head-shake is subtle, the automated yaw output
clearly shows the head-shake. While this example is only
anecdotal, it is an encouraging indicator of the usefulness
of the frame-by-frame pose tracker we developed.

7. Conclusions and Further Research

Our results on a large, diverse image database indicate
that an array of discriminative pose range classifiers, in-
tegrated using linear regression, can yield accuracy levels
close to that of humans using precise 3-D graphical label-
ing software.

In future work we will examine whether head pitch (up
and down movement) can be estimated accurately using the
same architecture as described in this paper. We will also

collect more training examples in the yaw regions for which
relatively few images exist in the GENKI dataset, and con-
tinue to experiment with synthetically generated faces for
training.
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