Modelling human perception of static facial expressions
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Abstract

Data collected through a recent web-based survey show
that the perception (i.e. labeling) of a human facial expres-
sion by a human observer is a subjective process, which
results in a lack of a unique ground-truth, as intended in
the standard classification framework. In this paper we
propose the use of Discrete Choice Models(DCM) for hu-
man perception of static facial expressions. Random utility
functions are defined in order to capture the attractiveness,
perceived by the human observer for an expression class,
when asked to assign a label to an actual expression image.
The utilities represent a natural way for the modeler to for-
malize her prior knowledge on the process. Starting with
a model based on Facial Action Coding Systems (FACS),
we subsequently defines two other models by adding two
new sets of explanatory variables. The model parameters
are learned through maximum likelihood estimation and a
cross-validation procedure is used for validation purposes.

1. Introduction

Facial expressions are probably the most visual method
to convey emotions and one of the most powerful means
to relate to each other. In order to move toward real inter-
acting human-computer systems, where algorithms written
by humans should be able to capture, mimic and reproduce
human perceptions, facial expressions play surely a central
role. The dominant challenge in building such an automatic
system, even if narrowed down to the ’only’ facial expres-
sion perception task, arises from the fact that such a per-
ception (performed by human beings in the real world) is
absolutely subjective and strongly related to contextual in-
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formation. Most of the available literature on the subject
proposes a two step procedure in order to make the prob-
lem operational: first, a representation of the expression,
learned from a set of pre-selected meaningful features, is
computed. Such a step is necessary and when properly
done provides reduced ’objects’, bringing the information
that matter. In [12] optical flow analysis is proposed, in or-
der to model dynamically muscle activities and estimating
the displacements of salient points. Gabor wavelet based
filters have been used in [18], in order to build templates for
facial expressions, over multiple scales and different orien-
tations. Data driven methods, based on statistical genera-
tive models (PCA, ICA) are used in [16] and [2], in order to
capture meaningful statistics of face images. Recent years
have seen the increasing use of feature geometrical analysis
( [6,11]). The Active Appearance Model (AAM, see [6])
is one of these techniques which elegantly combines shape
and texture models, in a statistical framework, providing as
output a mask of face landmarks. We use AAM to produce
part of our feature set.

The second step in the procedure consists in defining a de-
cision/classification rule which associates the feature-based
representation with the correct facial expression. Previous
works used for this step several well-know methods: HMM-
based classifier [12], template matching [18], SVM [15],
Dynamic Bayesian Networks [9]. The standard hard clas-
sification approach associates any two examples having the
same features to the same corresponding class. Moreover,
one of the main assumptions is that the facial expression
labels reported in the training set represent the true expres-
sions. This background does not hold in our case. Facial
expressions are ambiguous and different people perceive
differently the same expression. This fact is even more
accentuated in a static context, where the lack of transi-
tions between following expressions deprives the observer



of an important source of information. A soft approach
is more suitable in our case, where a probabilistic model
assigns a probability value to an example to be perceived
as a particular expression. First, flexibility is added when
two equal feature vectors are not necessarily assigned to the
same class while at the same time the respective probabil-
ity values do depend on the feature vectors. Second, the soft
approach could relate the computed discrete probability dis-
tribution over the different expressions to the heterogene-
ity in the human observer population, potentially explain-
ing such a difference in perceptions among different indi-
viduals. Based on the previous considerations, we believe
that Random Utility Theory (RUM) and more specifically
Discrete Choice Models (DCM) well fit our needs and they
represent a reasonable and theoretically grounded modeling
framework.

The paper starts describing the available data in Section 2,
followed by the description of the feature set we used in our
model and the relative methods. To make the paper as self-
contained as possible, we give in Section 3 a short overview
of RUM and DCM theoretical principles, while in Section
4,5,6 we go into the details, respectively, of the model spec-
ification, the estimation of the related parameters and the
model validation procedure. We end in Section 7 with final
remarks and some idea for future works.

2. Problem requirements

There are two crucial steps that a model maker has to
deal with when modelling a certain behaviour: the choice
and the collection of the data she needs to use in her study
and the identification of the measures (explanatory vari-
ables) describing the phenomenon. In the following we fo-
cus on the choices we make for our problem.

2.1. Data description

Modelling human perception of facial expressions im-
plies the need for two sort of database: one for the fa-
cial expressions, a set of images of subjects performing ex-
pressions, and a database collecting how human perceives
them. As for the images database we use the Cohn-Kanade
Database [10]. The database consists of expression se-
quences of subjects, starting from a neutral expression and
ending most of the time in the peak of the facial expres-
sion. The 104 subjects of the database are university stu-
dents enrolled in introductory psychology classes. Six of
the displays were based on descriptions of prototypic emo-
tions (i.e, happiness, anger, fear, disgust, sadness and sur-
prise). Before performing each display, an experimenter
described and modelled the desired display. The choice for
this database is twofold. Firstly, the Cohn-Kanade Database
is one of the few available facial expressions databases and
secondly this is the database used by Sorci et al. [17] in their

facial expressions evaluation survey. In August 2006 Sorci
et al. [17] published the internet facial expressions evalu-
ation survey (http://ItsSwww.epfl.ch/face) in order to find
a way to directly get humans’ perception of facial expres-
sions. The ultimate aim of the survey is to collect a dataset
created by a population of real human observers, from all
around the world, doing different jobs, having different cul-
tural backgrounds, ages and gender, belonging to different
ethnic groups, doing the survey from different places (work,
home, on travel, etc.). The images used in the survey comes
from the Cohn-Kanade Database. Over the 104 subjects in
the database, only 11 of them gave the consent for publica-
tions. The subset of the Cohn-Kanade Database used in this
survey consists of the 1274 images of these 11 subjects (9
women and 2 men). In the survey the participants are asked
to annotate a certain number of images randomly chosen on
the whole set. The annotation process consists in associ-
ating an expression label (among a set of available human
expressions) to each of the images that will be presented to
the survey’s participant. In the list of the available expres-
sions the authors included, in addition to the 6 prototypic
expressions (happiness,surprise,fear,anger,disgust,sadness),
the neutral one, the ”I don’t know” and “Other” options.
The last two options have been introduced in order to deal
with images extremely ambiguous to the participant. In the
database 1780 participants have taken part to the survey for
around 40000 annotated images. As far as we are aware,
this is the only database collecting this kind of information.

2.2. Features: description and extraction

The survey, described in the previous paragraph, pro-
vides the raw data capturing the participants perception of
facial expressions. This raw data consists on a set of facial
expressions images (the Cohn-Kanade images) and the set
of participants choices among the nine options. In order to
exploit the information coming from both sources we need
to identify and represent the facial visual cues describing an
expression. Nowadays the Facial Action Coding Systems
(FACS) [8] represents the leading standard for measuring
facial expressions in behavioural science. For this reason
we have decided to rely on the main measures suggested by
this human observer system. In the rest of the paragraph
we detail the Computer Vision tool used to represent a face,
we describe the FACS system and its measures and we in-
troduce a new and complementary set of visual measures
improving the descriptiveness of the expressions.

Face Active Appearance Model Active appearance
models (AAMs) are generative models commonly used to
model faces which elegantly combines shape and texture
models, in a statistical framework, providing as output a
mask of face landmarks [6]. The appearance variability
is modeled by applying the Principal Component Analysis



Emotional | Primary Visual Cues Auxiliary Visual Cues
Category |AU|[AU|AU|AU| AU [|AU|AU|AU|AU|AU| Transient Feature(s)
Happiness | 6 | 12 25126 16 Wrinkles on outer eye canthi,
presence of nasolabial furrow
Sadness 1 |15]17 4|7 125(26
Disgust 9 |10 1712526 Presence of nasolabial furrow
Surprise 5 126|27 |1+2 Furrows on the forehead
Anger 2472324 ||17]25|26]16 Vertical ~ furrows  between
brows
Fear 20 | 1+5]5+7 415 7(25]26

Table 1. The association of six emotional expressions to AUs, AU combinations, and Transient Features (from [9])

(PCA) to the shape s; and texture g;:

gi = g + P¢by (D

where ®, and ®, are the matrices describing the modes of
variation derived from the training set, bs; and by; the mean
shape and texture. The unification of the presented shape
and texture models into one complete appearance model is
obtained by concatenating the vectors b,; and by; and per-
forming a further PCA:

si =S+ ®bg;  and

bi = <I>cci (2)

The vector of appearance parameters c; allows to control
simultaneously both shape and texture.
The statistical model is then given by:

s; = 8 4+ Qsc; and 3)

where ()5 and (); are the matrices describing the principal
modes of the combined variations.

gi =g+ Qicy

©

Figure 1. a) Facial landmarks (55 points); b) the geometrical re-
lationship of facial feature points, where the rectangles represent
the regions of furrows and wrinkles; c) Featural descriptors used
in the definition of the EDUs

FACS Facial expressions represent a visible consequence
of facial muscle and autonomic nervous system actions: is
it possible to describe and quantify every action the face can
perform? Ekman and Friesen [8] provided an answer to this
question with their Facial Action Coding System (FACS),
by measuring all visible movements. Ideally, FACS would
differentiate every change in muscular action, but it is lim-
ited to what a user can reliably discriminate. FACS mea-
surement units are called “action units” (AUs) and represent
the muscular activity that produces momentary changes in
facial appearance. A facial expression is indeed the combi-
nation of AUs. In particular, the six basic emotions (hap-
piness, anger, disgust, fear,surprise and sadness) have been
postulated by Ekman [7] as having a distinctive content to-
gether with a unique facial expressions. Zhang et al. [9]
group AUs of facial expressions as primary AUs and auxil-
iary AUs, see Table 1. The primary AUs refer to those AUs
or AU combinations that univocally describe one of the 6
expressions. The auxiliary AUs provide an additional sup-
port to the expression description. Additionally, changes
in facial transient features, such as wrinkles and furrows,
also provide support cues to infer certain expressions. In
order to transform the AUs in a set of quantitatively mea-
sures Zhang et al. [9] translate these appearance changes
descriptors in a set of geometrical relationships of some fa-
cial feature points. In our work we use the same geometrical
relationships, but with the different goal of modelling the
human perception of expressions based on the response of
the heterogeneous group of participants. We use the AAM
to measure the set of angles and distances reported in Ta-
ble 2. Indeed the application of the AAM model on each
image of the survey provides a mask as the one in Figure
1(a). Figure 1(b) shows the relations between the features
points suggested by Zhang et al. [9] and the landmarks auto-
matically extracted by AAM. The presence of furrows and
wrinkles on a face image can be determined by edge fea-
ture analysis in the areas where transient features appear.
The regions of facial wrinkles and furrows are indicated by
rectangles in Fig. 1(b). The change of wrinkles in the re-
gion 11X is directly related to AU9 (Nose Wrinkler). The
furrows in the regions 17, 1Y, LV, LU provide diagnos-
tic information for the identification of AU2 (Outer Brow
Raiser), AU4 (Brow Lowerer), AU6 (Cheek Raiser), and
AU17 (Chin Raiser), respectively. In order to detect these



features, the edge detection with embedded confidence, pro-
posed by Meer and Georgescu [14], is used.

AUs | Facial Visual Cues

AUl | ZFHJ, JF increased OR JF increased, (8
nonincreased

AU2 | I8 increased and JF nonincreased furrow in
0JZ increased

AU4 | I8, FJ,JJ", FP, F'P’" decreased, ZHFI in-
creased and wrinkle in (Y

AUS | 16, JF and JJ’

AU6 | nasolabial furrow presence and wrinkle in OV
AU7 | ZHFI nonincreased and £ HGF increased
AU9 | wrinkle increased in [JX nasolabial furrow
presence OR PF, F'.J decreased

AUI10 | 14 decreased and |[FC' — F’C’| increased, na-
solabial presence OR OD decreased, DB, C'C
increased

AU12 | FC,F'C’ decreased, CC" increased, GI non-
increased

AUL5 | FC,F'C’,CC" increased

AU16 | OD nonchange, DB decreased

AU17 | OB decreased and wrinkle in U presence
AU20 | CC" increased and F'C', F’C" nonchange
AU23 | DB, CC" decreased

AU24 | DB decreased, CC’ nonchange

AU25 | DB increased, DB < T, CC" nonincreased
AU26 | Ty < DB < T5,CC" nonincreased

AU27 | DB > T», CC" nonincreased

Table 2. Linguistic description of the AUs of Figure 1 (from [9])

Expressions Descriptive Units In the visual perception
community there is a general agreement on the fact that face
recognition is the result of two main sources of informa-
tion: the featural one coming from individual facial features
(mouth, nose, etc.) and the configural one related to the fa-
cial layout and configuration of the previous features [5].
The measures extrapolated by the FACS give information
about isolated components in a face, providing a featural
contribution to face representation. In order to exploit the
combination of these two useful sources we have decided to
add a group of measures encoding the interactions among
the featural descriptors showed in Figure 1(c). The new
set of measures, called Expression Descriptive Unit (EDU)
and reported in Table 3, has been introduced by Antonini
et al. [1]. The first 5 EDUs represent, respectively, the ec-
centricity of eyes, left and right eyebrows, mouth and nose.
The EDUs from 7 to 9 represent the eyes interactions with
mouth and nose, while the 10th EDU is the nose-mouth re-
lational unit. The last 4 EDUs relate the eyebrows to mouth
and nose. The EDUs can be intuitively interpreted. For ex-
ample, in a face displaying a surprise expression, the eyes
and the mouth are usually opened and this can be captured

lewFrew leh+reh
EDU1 lehireh EDU8 lbhirbh
EDU2 T EDU9 lew
rbw nw
EDU3 Lo EDU10 1w
EDU4 o EDU11 | EDU2/EDU4
EDUS5 ah EDU12 | EDU3/EDU4
EDU6 lew EDU13 | EDU2/EDU10
EDU7 Leh EDU14 | EDU3/EDU10

mh.
Table 3. Expressions Descriptive Units

by EDU7 (eyeneight/mouthneignt).

The appearance parameters FACS and EDU provide
measures of local facial features or areas that are prone to
change with facial expressions, but they do not provide a de-
scription of a face as a global entity. This information can
be obtained considering the appearance vector ¢ matching
the face in the processed image. Figure 2 shows the effect
of varying the first appearance model parameter, showing
changes in identity and expression.

Figure 2. Examples of synthesized faces obtained varying the first
¢ parameter from the mean face (+3std).

3. Discrete Choice Models

Discrete choice models are known in econometrics since
the late 50’s. They are defined to describe the behavior of
people in choice situations, when the set of available alter-
natives is finite and discrete (choice set). They are based
on the concept of utility maximization in economics, where
the decision maker is assumed to be rational, performing a
choice in order to maximize the utilities she perceives from
the alternatives. The alternatives are supposed to be mutu-
ally exclusive and collectively exhaustive, while the ratio-
nality of the decision maker implies transitive and coherent
preferences. The utility is a latent construct, which is not
directly observed by the modeler, and is treated as a ran-
dom variable. The discrete choice paradigm well matches
the labelling assignment process of the participants in the
survey. This approach can be interpreted as an attempt to
model the decision process performed by an hypothetical
human observer during the labelling procedure for the facial
expressions. Given a population of N individuals, the (ran-
dom) utility function Uj;,, perceived by individual n from
alternative 7, given a choice set C,,, is defined as follows:



It is composed by the sum of a deterministic term V;,,, cap-
turing the systematic behaviour (features extracted from a
face), and a random term &;,, capturing the uncertainty.
This random term captures the uncertainty on unobserved
attributes, unobserved individual characteristics, measure-
ment errors and instrumental variables. We actually do not
observe the real values of the utilities as perceived by the
participant and we need a framework to deal with this un-
certainty. Under the utility maximization assumption, the
output of the model is represented by the choice probability
that individual n will choose alternative ¢, given the choice
set C',. It is given by:
Pn(i‘on) - Pn(Uin > an,Vj S Cnaj 7& Z) =

[ 10 <V = Vi Vi € Cud £ f(en)den 9)
En

where € = ¢, — €;,. Based on Equation 5, in order to
define the choice probability, only the difference between
the utilities matters. The specification of the utility func-
tions represents the modeler’s mean to add her prior knowl-
edge on the choice process. Different models are obtained
making different assumptions on the ¢;,, term. A family of
models widely used in literature are the GEV (Generalized
Extreme Value) models, introduced by [13]. GEV models
provide a closed form solution for the choice probability
integral in 5, allowing at the same time for a certain flexi-
bility in designing the variance/covariance structure of the
problem at hand (i.e., several correlation patterns between
the alternatives can be explicitly captured by these models).
Assuming the error terms being multivariate type I extreme
value distributed the general expression of the GEV choice
probability for a given individual to choose alternative ¢,
given a choice set C' with J alternatives, is as follows:

eVitlogGi(yr,--ys)

6
S eVotHooGy ) ©

P(i|C) =

where 3; = €' and G; = g—f. The function G is called

generating function and it captﬁres the correlation patterns
between the alternatives. Details about the mathematical
properties of G are reported in [13] (differentiable and ho-
mogeneous of degree ;1 > 0, among the others). Several
GEV models can be derived from Equation 6, through dif-
ferent specifications of the generating function. In this pa-
per we use a Multinomial Logit Model (MNL), which is
largely the simplest and most used discrete choice model in
literature. It is obtained assuming the following G function,
which implies no correlations between the alternatives:

Gy, ys) = Yy @)

jeC
where p is a positive scale parameter. Under these assump-
tions, the MNL choice probability is given by the following

expression

etVin

Z e/t‘/jn

JjeCn

In this work the choice set C,, is represented by the 9 sur-

LEINT3

vey alternatives (“happiness”, “surprise”, “fear”, “disgust”,
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“sadness”, “anger”, “neutral”, “other” and “I don’t know”).

4. Model Specifications

In this paragraph we focus on the deterministic part V;
of the random utility function (see equation 4). Any al-
ternative i can be described in terms of a combination of
a certain number of attributes (explanatory variables) EV;
reflecting reasonable hypotheses about the effects of these
variables on the corresponding utility. The model maker’s
a priori knowledge of the phenomenon plays a key role in
the specification of V. This knowledge is reflected in a set
of specific assumptions about the relationships between the
set of explanatory variables observed by the model maker.
For our problem we can rely on the FACS system as a valid
a priori theory providing us the first set of explanatory vari-
ables to use in the construction of the model. In line with
the considerations made in the previous section, we improve
the descriptiveness of the model by adding the measures in-
duced by the EDUs and by the appearance parameters c.
The model design process has been done, indeed, in three
consecutive steps. Each step defines a model by adding a
new set of explanatory variables to the “cleaned” model of
the previous stage. Cleaning a model consists in evaluat-
ing the model, retaining those parameters that are statisti-
cally significant (z-test statistic against the zero value) and
combining those that are correlated. In the first step, the
local measures of the face, coming from the AUs defined
by the FACS, are used to define the systematic utility func-
tions of the MNL model, Model F in eq.9. In the second
step the local interactions between facial features provided
by the EDUs are included, Model FE in eq.9. In the last
model the ¢ appearance parameters, encoding global mea-
sures about the face, are finally added to the two previous
sets of measures, Model FEC in eq.9. For all the models the
utility functions are specified using a linear-in-parameters
form, combining the explanatory variables chosen by the
model maker. The choice of a linear form is based purely
on simplicity considerations, in order to reduce the num-
ber of parameters in the estimation process. The following
equation summarizes the form of the utility for each of the
three developed models:

K
V; = ASC; + > 5 IEBEEVE
+30 IEBEEV,E  Model FE  (9)

, Model F

+ Y 5S IGBS EVE, Model FEC



F MODEL FE MODEL FEC MODEL
BE, estimate ttest 0 FE estimate ttest 0 FEC estimate t test 0
8L, +103 +56.81 HA +34 +4.98 e 4105 +37.67
FES +8.12 +483 FEC 1+6.89 +39.59
FEC 1967 -11.13

BE y=mouth width Happiness, 3,5, =EDU4 Surprise,

FEC-C5 Anger

Sample size = 38110

Nb. of estimated parameters = 93
Null log-likelihood = - 83736.229
Final log-likelihood = - 57072.872
Likelihood ratio test = 53326.712
P> =0317

Sample size = 38110

Nb. of estimated parameters = 120
Null log-likelihood = - 83736.229
Final log-likelihood = - 55027.381
Likelihood ratio test = 57417.695
P2 =0.341

Sample size = 38110

Nb. of estimated parameters = 139
Null log-likelihood = - 83736.229
Final log-likelihood = - 53474.271
Likelihood ratio test = 60523.915
P2 =0.360

Table 4. MNL Part of the estimation results

(a) Expressions decreasing C5

Figure 3. Interpretation of the 3155¢

(b) Neutral

(c) Expressions increasing C5

parameter. The central image refers to the neutral expression. The images on the right correspond to

an increase of the c5 parameter, those on the left to a decrease on the c5 parameter

where j € {“happiness”, “surprise”, “fear”, “disgust”,
“sadness”, “anger”, “neutral”, “other”, “I don’t know”},
{F, E,C} refer respectively to the FACS, EDUs and the

appearance parameters c, EV{{;}’L%C} refers to {k, h,l}-th
explanatory variable of one of the used sets, K(r g, cy is
the total number of the explanatory variables for each set,
1 ,if’E’C} is an indicator function equal to 1 if the k-th ex-
planatory variable is included in the utility for the alterna-
tive 5 and O otherwise, ﬂ,if’E’C} is the weight for the k-th
EV in alternative j and ASC} is an alternative specific con-
stant. The ASC} coefficients captures the average effect on
the utility of all factors that are not included in the model.
For identification purposes the absolute values of the con-
stants must be normalized. This normalization is obtained
by fixing one of the constant to zero. In our case the neutral
alternative is considered as the reference alternative and its

ASC is set to zero.

5. Model Estimation

The parameters of the three models, introduced in the
previous paragraph, have been estimated by maximum like-
lihood estimation through a sequential quadratic program-
ming algorithm, using the Biogeme package [4]. Note that
such nonlinear programming algorithms identify local max-
ima of the likelihood function. We performed various runs,
with different starting points (a trivial model with all param-
eters to zero, and the estimated value of several intermedi-
ary models). They all converged to the same solution. In

Table 4 we report the final coefficients estimates for some (3
for the three models. In the first half of the table, each row
relates each particular 3 for a specific model to its estimated
coefficient and its associated ¢-statistic values. The second
half of the table shows summary statistics for the entire esti-
mation run for each of the three models. The interpretation
of the model estimation outputs is performed, at first, con-
sidering a given structure of the model and analysing the
significance of the explanatory variables in the utility func-
tions and then comparing the goodness of fit among the dif-
ferent specifications. The most basic test, in the given struc-
ture analysis case, consists in the examination of the values
of the coefficient estimates. The goal of this informal test
is to check if the signs of the estimated coefficients reflects
our a priori expectations. In the three cases, the learned
parameters show important consistencies with the common
reading of facial expressions in terms of facial component
modifications. For space reasons, we report in Table 4 only
a subset of J; estimates. A parameter is considered signif-
icant if the norm of the t-test against O is bigger than 1.96.
3% ; represents the coefficient of the mouth width measure
in the happiness expression. It is a FACS parameter and it
is included in all the specifications. Its positive value shows
a positive impact on the respective utility. This means that
an increase of the mouth width with respect to the neutral
expression (the reference one in our model) corresponds to
higher utilities for the happiness alternative. The ﬁf; 5 esti-
mate is inline with the FACS expectations for the happiness
expression. The first row in Table | describes the FACS



happiness encoding in terms of the primary action units 6
and 12. During an AU12 a stretching of the mouth’s lip cor-
ners is expected. This corresponds indeed to an increase
of the measure C'C" associated to the estimated parame-
ter 3%, and representing the mouth width. 8%, is the
parameter related to EDU4 (Table 3) describing the mouth
eccentricity in the surprise alternative. Its positive sign ex-
plains the expected behaviour of the mouth in subjects per-
forming a surprise expression, where the mouth movement
leads to a lower mouth’s height and a higher mouth’s width,
with respect to the reference alternative. The third param-
eter ﬁﬂﬁc is the coefficient related to the fifth appearance
parameters ¢ for the anger utility. The bigger this coeffi-
cient is the more negative is the impact on the anger utility.
We can visually interpret this result by looking at Figure
3. Considering the neutral c5 value as the reference value,
we can notice how increasing this parameter (leaving un-
changed the others) we move towards an happiness-like ex-
pression, whereas an anger-like face corresponds to values
of ¢5 smaller than the reference one. The statistics concern-
ing the goodness of fit for the three different models are
reported in the second half of Table 4. It can be observed
that for the second model the fitting is better than for the first
one (higher log-likelihood and p?) and the same for the third
model with respect to the second one. The proposed mod-
els have been built in a nested way. This means that the first
model is a restricted version of the second one and the latest
a restriction of the third one. The restrictions imply that the
restricted model can be obtained as a special case of the un-
restricted one. In this case, a likelihood ratio test [3] can be
used to verify if the additional variables of the unrestricted
model add a significant explanatory power to the model and
compensate for the degrees of freedom used by the fuller
specification. The null hypothesis for this test states that
the restricted and unrestricted models are equivalent. The
statistic to compute the test is

—2(L(Br) — L(Bv)) ~ Xky—K»n (10)

where K; is the number of parameters of the model ¢ and
X; is a x* distribution with j degrees of freedom. Usually,
a significance level of 95% is taken, and then the null hy-
pothesis is rejected if the test value is above the threshold
provided by the x? distribution corresponding to the j de-
grees of freedom. The results for this test are reported in
Table 5. The performed tests refer to the two possible (re-
striced,unrestricted) models couples. The first test shows
that the inclusion of new parameters makes the unrestricted
FE model significantly different from its restricted counter-
part, the F model. This result justifies the second test com-
paring the the most complex model (FEC) with its restricted
version (FE), showing that the model considering the whole
set of 3 different explanatory variables can be considered
and retained as the final model that best fit our data.

Performed test | Degrees of freedom | Test value | x> Th.
Fvs FE 27 4090.98 40.11
FE vs FEC 19 3106.22 30.14

Table 5. Summary of the different performed likelihood ratio tests

6. Model Validation
Model D CB NC
FEC | 0.23+0.0221 | 0.60 & 0.0346 | 0.76 & 0.0496
FE 0.25 4 0.0239 | 0.59 4+ 0.0376 | 0.72 + 0.0582
F 0.26 & 0.0231 | 0.57 & 0.0350 | 0.72 4 0.0528

Table 6. Cross-validation results.

Models validation has been performed by means of a
subject based cross-validation. The observations from the
survey are split into eleven groups corresponding to the the
number of subjects of the survey. Based on this partition
we perform a 11-fold cross-validation. Each fold contains
all the survey observations for all the images of a single
subject. A subset of the data is, in turn, held out and used
as a validating set; the model is fit on the remaining data
(calibration set) and used to predict for the validation set.
For each image in the validation set, the predicted prob-
ability distribution over the expressions is compared with
the observed one. The comparison is performed using sev-
eral measures useful to compare probability distribution.
The aforementioned measures belong to the category of
the bin-by-bin similarity measures, in which only pairs of
bins with the same index in the two compared histograms
are matched. The similarity between two histograms is a
combination of all the pairwise comparisons. In the fol-
lowing, the nine bins in the histograms O = {oé} and
Pl = { pé} represent the mass of the distribution that falls
into the corresponding bin (survey alternative b) for the im-
age i. In particular, O" = {o}} refers to the participants
responses distribution for the image i and it is considered
as the groundtruth, whereas P* = {pé} represents the pre-
dicted distribution of the estimated model for the same im-
age.The used measures are: the Jeffrey Divergence, the
City-Block metric and the Normalized Correlation. The
empirically derived Jeffrey Divergence is a modification of
the KL divergence that is symmetric and numerically stable
when comparing two empirical distributions. It is a measure
of the inefficiency of assuming that the distribution is P°
when the true distribution is O°. Although the JD measure
is always non negative and is zero if and only if o' = p?, it
is not symmetric and does not satisfy the triangle inequality.
It is defined as:

. . . oi . i
d; (O, P') = Z <0?, log m—bl + py log :;bz) (11)
b b b

where m} = %. The JD is defined in the interval

[0, +00). The closer their value to zero the more similar the



two distributions should be. The city-block metric (CB):

dn (0", Py =1~ |0} — pj|
b

12)

provides a value in the interval [0, 1]. The closer the value to
one the more similar distributions should be. The Normal-
ized Correlation (NC) is a widely used measure to describe
the similarity between two vectors, in pattern classification
and signal processing problems. It is defined as:
_ >_i 0D

V3040,V 2 i
This measure, as the JD divergence, is not a metric since it
cannot satisfy the non-negativity and the triangle inequal-
ity. As for the CB, the NC is defined in [0, 1] with ex-
pected values for similar mass distributions close to one.
For the calibration of the model on each set, the Biogeme
package described in Section 5 is used. The prediction is
performed applying the estimated models on the validation
set by means of the Biosim package (available at the same
address of Biogeme). BioSim performs a sample enumera-
tion on the validation data, providing for each of them the
utilities and the choice probabilities for each alternative in
the choice set. The results of the cross-validation are pre-
sented in Table 6. For each fold we compute the mean of the
(01, P%) similarities measures. The values reported in the
table represents the average and the variance of the per-fold
mean distance over the eleven fold for the three considered
models. The measures are all coherent, showing the robust-
ness of the specification of the FEC model.

13)

dyc (0, P =1

7. Conclusions

In this paper we propose a new method for facial ex-
pressions modelling, based on discrete choice analysis. The
data of the facial evaluation survey suggests that a sub-
jective component biases the labeling process, requiring a
detailed statistical analysis on the collected data. DCM
paradigm well matches the human observer labeling pro-
cedure, allowing to capture and model the subjective per-
ception of the choice makers. We showed how to improve
the descriptiveness of the model by sequentially introducing
complementary set of features. The parameters estimation
of the three proposed models, has shown the correctness
of the chosen sets of features, revealing the best fitting be-
havior of the third and most complex model. The use of a
cross-validation has allowed to validate the proposed mod-
els. We are currently working on the comparison of our ap-
proach with some other techniques, especially with neural
networks that have analogies with DCMs.
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