
Determining Minimal Testsets
for Reversible Circuits Using Boolean Satisfiability

Hongyan Zhang Stefan Frehse Robert Wille Rolf Drechsler
Institute of Computer Science, University of Bremen

28359 Bremen, Germany
{zhang,sfrehse,rwille,drechsle}@informatik.uni-bremen.de

Abstract—Reversible circuits are an attractive computation
model as they theoretically enable computations with close to
zero power consumption. Furthermore, reversible circuits found
significant attention in the domain of quantum computation.
With the emergence of first physical realizations for this kind
of circuits, also testing issues become of interest. Accordingly,
first approaches for automatic test pattern generation have
been introduced. However, they suffer either from their limited
scalability or do not generate a minimal testset. In this paper, a
SAT-based algorithm for the determination of minimal complete
testsets is proposed. An experimental evaluation of the proposed
method shows that the algorithm is applicable to reversible
circuits with more than 2 000 gates.

I. INTRODUCTION

Reversible circuits are n-inputs, n-outputs circuits in which
every input pattern maps to a unique output pattern. As a
result, computations in reversible circuits can be performed in
both directions, i.e. from the inputs to the outputs and vice
versa.

The reversibility of computation has intensely been studied
as it provides an alternative to conventional circuits where
power dissipation can theoretically be reduced or even elimi-
nated [1], [2]. While in conventional logic energy amounting
to kT · ln 2 is dissipated for each lost bit of information
(where k is the Boltzmann’s constant and T is the temper-
ature), reversible circuits are not affected by this. This makes
reversible circuits interesting for low-power applications in the
future.

Besides that, reversible circuits received significant attention
in the domain of quantum computation [3]. Here, qubits
instead of bits are applied which cannot only store the conven-
tional Boolean values 1 and 0, but any superposition of them.
Because of this, quantum circuits can solve many practical
relevant problems significantly faster than their conventional
counterparts. Since every quantum computation inherently is
reversible, reversible circuits are of interest in this domain.

Motivated by these applications, researchers started to de-
velop respective design methods for this new computation
model (see e.g. [4], [5], [6], [7], [8]). With the emergence
of first physical realizations for this kind of circuits, also
testing issues become of interest. In this context, researchers

studied different fault models and the respective methods for
Automatic Test Pattern Generation (ATPG).

While conventional fault models (like the stuck-at fault
model) have been considered at the beginning [9], new models
addressing physical realizations of reversible circuits have
been introduced later [10]. Among them are the missing gate
fault model and the missing control line fault model (also
known as the partial missing gate model). These fault models
remain to be computationally tractable, while at the same time
being applicable to different kinds of technologies.

Along with the fault models, researchers also started to de-
velop test pattern generation methods. A major goal is thereby
to keep the size of the testset (i.e. the number of test patterns
needed to detect all considered faults in a circuit) as small as
possible. Different approaches based on greedy and branch-
and-bound methods [10], ILP formulations [11] as well as
SAT-based approaches [12] and PBO-based methods [13] have
been introduced for this purpose. However, they suffer either
from their limited scalability (i.e. they are only applicable to
circuits with a small number of gates [10], [11]) or do not
generate a minimal testset [12], [13].

In this paper, we present an approach which determines
a minimal testset for a given reversible circuit. The general
idea is to iteratively check, whether for a given circuit and
a given fault list a testset detecting all faults with only k

patterns exists. By starting these checks with k = 1 and
iteratively increasing k by one, minimality is ensured. The re-
spective checks are thereby conducted by solvers for Boolean
satisfiability. Experiments demonstrate that using the proposed
approach, minimal testsets for reversible circuits can efficiently
be generated.

The remainder of this paper is structured as follows. The
next section introduces the basics on reversible circuits as
well as on Boolean satisfiability. Section III introduces the
fault models considered in this paper and defines the term of
a minimal testset. Afterwards, the proposed approach is de-
scribed in Section IV. Finally, experiments results are provided
in Section V, while Section VI concludes the paper.

1
1
1
1
0

0
1
1
1
1

x1

x2

x3

x4

x5

(a) Reversible circuit

x1

x2

x3

x4

x5

0

1
1

(b) Single missing control
fault (SMCF)

x1

x2

x3

x4

x5

1

1
1

(c) Single missing gate
fault (SMGF)

Fig. 1. Reversible circuit with different faults

II. BACKGROUND

In this section, reversible circuits and the basics of Boolean
satisfiability are briefly reviewed.

A. Reversible Circuits

A reversible function is a function f :Bn → Bm over inputs
X = {x1, ..., xn} with two properties: (1) its number of inputs
is equal to its number of outputs (i.e. n = m) and (2) it maps
each input pattern to a unique output pattern. A reversible
circuit is a realization of a reversible function. Accordingly,
reversible circuits also have n-inputs, n-outputs, and map each
input pattern to a unique output pattern. Because of that, the
output assignment can be obtained from the input assignment
and vice versa. In comparison to a conventional circuits, fanout
and feedback are not allowed in reversible circuits [3]. As a
result, every reversible circuit G is composed of a cascade
of reversible gates gi, i.e. G = g1g2...gd. In this work, we
consider the most widely used reversible gate, the Toffoli
gate [14]. A Toffoli gate is defined as follows:

Definition 1: A Toffoli gate over the set of inputs
X = {x1, ..., xn} has the form g(C, xt), where C ⊂ X is
the set of control lines and xt ∈ X \ C is the target line. A
single Toffoli gate g(C, xt) realizes the bijective function

(x1, ..., xn) 7→ (x1, ..., xt−1, xt ⊕
∧
xc∈C

xc, xt+1, ..., xn).

That is, the target line xt is inverted if (1) all control line
variables xc ∈ C are assigned to 1 or (2) the set of control
lines is empty, i.e. C = ∅. In these cases, the gate is called
activated. All other values xk with xk ∈ X \{xt} always pass
the gate unaltered.

Example 1: Fig. 1(a) shows an example of a reversible
circuit which is composed of Toffoli gates. This circuit has
five circuit lines and four Toffoli gates, i.e. n = 5 and d = 4.
Control lines are denoted by a •, while the target line is
denoted by an ⊕. The annotated values demonstrate the
computation of the respective gates for a certain input pattern.
In this case, the gates g2 and g3 are activated.

B. Boolean Satisfiability

The Boolean satisfiability (SAT) problem is defined as
follows:

Definition 2: Let h be a Boolean function. Then, the SAT
problem is to determine an assignment to all variables of h
such that h evaluates to 1 or to prove that no such assignment
exists. In the case a satisfying assignment exists, the respective
instance is called satisfiable (SAT); otherwise the instance is
called unsatisfiable (UNSAT). Usually, the Boolean formula
is thereby given in Conjunctive Normal Form (CNF), i.e. in a
product-of-sum representation. A CNF consists of a conjunc-
tion of clauses. A clause is a disjunction of literals and each
literal is a propositional variable or its negation.

Example 2: Let h be a Boolean function in CNF with
h = (x1 + x2 + x3)(x1 + x3)(x2 + x3). Then, x1 = 1,
x2 = 1, and x3 = 1 is a satisfying assignment for h. The
values of x1 and x2 ensure that the first clause becomes
satisfied while x3 ensures this for the remaining two clauses.

Because of its significance in both, theoretical research and
practical applications, the SAT problem is one of the intensely
studied NP-complete problems. The NP-completeness of the
SAT problem has been proven by Cook in 1971 [15]. Despite
this complexity, very efficient algorithms and techniques have
been developed in order to solve this kind of problems. Besides
learning [16] and efficient implication strategies [17] also very
powerful term re-writing techniques [18] are applied today.
Because of that, nowadays instances including hundreds of
thousands of variables and clauses, respectively, can be solved
in short time.

III. TEST OF REVERSIBLE CIRCUITS

For a given circuit G, the goal of Automatic Test Pattern
Generation (ATPG) is to create a testset TF , i.e. a set of
stimulus patterns, which detects faults provided in a fault
list F . The fault list F is composed of all possible faults that
may occur in the circuit according to a given fault model.

A. Fault Models

In this paper, we explicitly consider the fault models intro-
duced in [11] and defined as follows:

Definition 3: Let g(C, xt) be a Toffoli gate of a circuit G.
Then,

1) a Single Missing Control Fault (SMCF) occurs if instead
of g a gate g′(C ′, xt) with C ′ = C \ {xi} is executed

(i.e. a gate with a missing control line xi is executed
instead of g)1.

2) a Single Missing Gate Fault (SMGF) appears if instead
of g no gate is executed (i.e. g completely disappears).

In order to detect a fault, the respective gates have to be
activated so that the faulty behavior shows up at the outputs
of the circuit. Depending on the considered fault, this requires
certain input assignments. More precisely:

Definition 4: Let g(C, xt) be a Toffoli gate of a circuit G.
1) To detect an SMCF in g, all control lines in C (except

the missing one) have to be assigned to 1, while the
missing control line has to be assigned to 0. The assign-
ment of the remaining lines can arbitrarily be chosen.

2) To detect an SMGF in g (i.e. the disappearance of g), all
control lines in C have to be assigned to 1, i.e. g simply
has to be activated. The assignment of the remaining
lines can arbitrarily be chosen.

Example 3: Fig. 1 illustrates an SMCF (b) and an
SMGF (c), respectively, which can occur in the reversible
circuit previously introduced in Fig. 1(a). The respective
assignments needed to detect these faults are also given.

B. Complete and Minimal Testsets

Having a fault list F , a testset should be created that detects
as many as possible of the faults provided in F . Moreover,
usually a complete testset is desired.

Definition 5: A testset TF is complete with respect to a
fault list F iff each fault fi ∈ F can be detected by applying
at least one test pattern of TF .

If there are no further restrictions (as e.g. constant primary
inputs as shown in [13]), determining a complete testset is
easy for reversible circuits, since a complete testset can be
computed in polynomial time with respect to the the number
of faults. In fact, it is sufficient to apply the respective
input assignments given in Definition 4 to the gate with
the considered fault and, afterwards, simulate this assignment
towards the primary inputs. Since reversible circuits have full
controllability [19], this can easily be performed. Furthermore,
observability is also always ensured, i.e. in case of a fault, the
faulty behavior is always shown on at least one primary output.

Applying this procedure to every fault to be considered, a
complete testset can be determined. Moreover, since a single
test pattern might cover more than one fault, fault simulation
can be performed after each test pattern generation. That is,
each newly obtained test pattern is simulated and further faults
which are additionally detected are removed from the fault list.
This obviously reduces the size of the testset.

However, even if determining a complete testset for a
reversible circuits is easy, the size of the testset should be
kept as small as possible. In fact, a minimal testset is desired.

1Note that in the literature (e.g. in [11]), the SMCF model is also called
Partial Missing Gate Fault Model.

Algorithm 1: minATPG(G,F): ALGORITHM DETERMIN-
ING A MINIMAL TESTSET.
Input: G a reversible circuit, F a fault list
Output: A minimal complete testset TF
begin1

k = 1;2

while true do3

enc = encode(ATPG(G,F , k));4

if solve(enc) = UNSAT then5

k = k + 1;6

else7

return TF obtained from the satisf. assgmt.8

end9

end10

end11

Definition 6: Let TF be a complete testset detecting all
faults fi ∈ F . The testset TF is a minimal testset iff there
exists no testset T′F with |T′F | < |TF | also detecting all these
faults.

Determining a minimal testset is much harder than deter-
mining a complete testset. In fact, for certain fault models
it has been proven that minimal testset generation is even
NP-hard (see e.g. [20]). In this paper, we propose an ap-
proach that uses Boolean satisfiability techniques to generate
a minimal testset for the SMCF and the SMGF models.

IV. DETERMINING A MINIMAL TESTSET

In this section, we show how a minimal complete testset
for a given circuit G and a fault list F can be determined
using techniques for Boolean satisfiability. The general flow
is presented first. Afterwards, details on the structure of the
proposed SAT instance as well as on the actual encoding are
provided.

A. General Flow

In order to determine a minimal testset, an iterative approach
is proposed. The basic idea of the flow is as follows: Given
a circuit G and a fault list F , first it is checked whether a
complete testset exists that consists of k = 1 test pattern only.
If no such test pattern can be determined, k is increased by
one. This procedure is repeated until a testset results which
detects all faults provided in F . By iteratively increasing k by
one, minimality is ensured.

This procedure is formalized in Algorithm 1. The function
minATPG(G,F) gets the circuit G as well as F and initializes
k = 1. Then, in each iteration the question “Does there exist a
testset consisting of k patterns and detecting all faults f ∈ F
in the circuit G?” is encoded as a SAT instance (Line 4) and
passed to a solver (Line 5). If the solver returns UNSAT, no

G1

G2

Gk

...

×fG1
×f ′G1

×fG2
×f ′G2

×fGk
×f ′Gk

∧∨ ∨
Fig. 2. SAT encoding for a testset of size k

such testset exists and k is increased by one (Line 6). Oth-
erwise (i.e. if the solver returns SAT), the complete minimal
testset can be obtained from the satisfying solution (Line 8).

While this represents the main flow of the proposed ap-
proach, details on the instance as well as on the concrete
encoding are provided in the next sections.

B. Structure of the Instance

According to Algorithm 1, a SAT instance encoding the
question “Does there exist a testset consisting of k patterns
and detecting all faults f ∈ F in the circuit G?” needs to
be created. To this end, the considered circuit G is copied
k-times so that k different input patterns can be assigned to
the circuit’s primary inputs (allowing for a testset of size k).
Furthermore, for each fault f ∈ F and for each circuit copy Gi

with 1 ≤ i < k, a variable fG
i

is created. This variable is
constrained so that fG

i

evaluates to 1 (0) if a test pattern is
applied to Gi that detects the fault f (that does not detect the
fault f). Furthermore, constraints are added ensuring that at
least one variable fG

i

with 1 ≤ i < k is assigned to one. By
doing so, it is ensured that the considered fault f is detected
in at least one circuit copy, i.e. by at least one test pattern.

More formally, the instance

ATPG(G,F , k) =
k∧
i=1

Gi ∧
∧
f∈F

(
k∨
i=1

fG
i

) (1)

is encoded. The general structure of this instance is also
depicted in Fig. 2.

Passing this instance to a SAT solver, the solver tries to
determine an input assignment for each circuit copy so that
each fault is detected in at least one circuit copy. In other

words, the SAT solver takes over the task of determining the
test patterns. If this is possible, i.e. if the instance is satisfiable,
the respective test patterns can easily be obtained from the
satisfying assignment of the respective variables. If in contrast
the SAT solver returns unsatisfiable, it has been proven that
no complete testset with k patterns exists.

C. Encoding of the Instance

In order to encode the instance presented in the last sec-
tion, a formulation based on the SAT-based ATPG approach
proposed in [12] is applied. The encoding of the respective
circuit copies as well as the encoding of the respective fault
constraints are introduced in the following.

1) Encoding the Circuit Copies Gi: First, the encoding
of the circuit copies is presented. Given a reversible cir-
cuit G with n lines and d gates, k circuit copies need to
be encoded. For each copy Gi with 1 ≤ i < k, vari-
ables ~xi,µ = xi,µn , xi,µn−1 . . . x

i,µ
1 for µ ∈ {1, . . . , d + 1} are

introduced representing the assignment to the primary inputs
(for µ = 1), the primary output (for µ = d+ 1) as well as the
inputs and outputs of the gates (for 2 ≤ µ ≤ d), respectively.
Fig. 3 shows those variables for one copy Gi of the circuit
from Fig. 1(a).

In order to model the functionality of the circuit copy, the
following constraints are added to the SAT instance for each
circuit copy, i.e. for each i ∈ {1, . . . , k}:

d∧
j=1

n∧
l=1

xi,j+1
l =



xi,jl ,
if xi,jl represents a control
line of gate gj

xi,jl ⊕
∧

xc∈Cj

xc, if xi,jl represents the target
line of gate gj

xi,jl ,
else (i.e. if xijl represents
neither a control line nor
a target line of gate gk)

That is, for each gate gj in the circuit copy, the respective
input/output mapping is constrained (depending on the posi-
tion of the control and target lines). In other words, the values
of all lines (except the target line) are passed through (first
and third case), while the output value for the target line is
determined depending on the input values of the control and
the target line, respectively (second case). The bottom-left part
of Fig. 3 shows the respective constraints for one copy Gi of
the circuit from Fig. 1(a).

2) Encoding the Faults Variables fG
i

: Finally, the encod-
ing of the constraints for the fG

i

-variables is presented. As
described above, fG

i

is supposed to evaluate to 1 (0) if a
test pattern is applied to Gi that detects the fault f (that does
not detect the fault f). Consequently, just the respective input

xi,11

xi,12

xi,33

xi,44

xi,55

~xi,1

xi,21

xi,22

xi,23

xi,24

xi,25

~xi,2

xi,31

xi,32

xi,33

xi,34

xi,35

~xi,3

xi,41

xi,42

xi,43

xi,44

xi,45

~xi,4

xi,51

xi,52

xi,53

xi,54

xi,55

~xi,5

Encoding the circuit copy Gi:
xi,21 = xi,11 xi,22 = xi,12 ⊕ x

i,1
5

xi,23 = xi,13 xi,24 = xi,14

xi,25 = xi,15

xi,31 = xi,21 xi,32 = xi,22

. . .

Encoding fG
i

for an
SMCF in g3:
fG

i

= xi,34 ∧x
i,3
5 ∧x

i,3
3

Encoding fG
i

for an
SMGF in g3:
fG

i

= xi,33 ∧x
i,3
4 ∧x

i,3
5

Fig. 3. SAT encoding for an SMCF and an SMGF

assignments for the given fault as provided in Definition 4 has
to be applied to the corresponding gate.

More precisely, let f ∈ F be an SMCF in a gate gj(Cj , tj)
with a missing control xm ∈ Cj . Then, the corresponding
fG

i

-variable is constrained as follows:

fG
i

=

 ∧
xc∈Cj\{xm}

xijc

 ∧ xijm
Similarly, let f ∈ F be an SMGF in a gate gj(Cj , tj). Then,

the corresponding fG
i

-variable is constrained as follows:

fG
i

=
∧

xc∈Cj

xijc

The bottom-right part of Fig. 3 shows the respective con-
straints for an SMCF and an SMGF in gate g3.

V. EXPERIMENTAL EVALUATION

The proposed approach has been implemented in C++ on
top of RevKit [21]. Boolector [18] was used as the satisfiability
solver. Circuits taken from RevLib [22] were evaluated with
respect to both considered fault models. The experiments have
been carried out on an AMD Opteron ×4 processor with 3GHz
and 32GB main memory running Linux. The timeout was set
to 3 600 CPU seconds.

The results have been compared to previously introduced
ATPG approaches for reversible circuits, namely the SAT-
based approach introduced in [12] and the PBO-based ap-
proach introduced in [13], respectively. Both approaches are
not intended to compute minimal testsets. However, the dif-
ference between the size of the testsets obtained by these

approaches and the size of the (minimal) testsets obtained by
the proposed approach is investigated.

The results are presented in Table I. The first four columns
describe the characteristics of the evaluated circuits, namely
(1) the name of the circuit, (2) the number of gates, (3)
the number of lines, and (4) the number of constant inputs.
Column |F| denotes the number of faults to be considered for
the respective fault model. Afterwards, the results obtained by
the previously introduced methods are reported, i.e. the size of
the testsets obtained by the SAT-based approach and the size of
the testsets obtained by the PBO-based approach, respectively.
Finally, the size of the testsets determined by the proposed
approach is given in column MINATPG and the required run
time is given in column TIMES. Timeouts are reported by T.O.,
whereas the > denotes the considered testset size before the
timeout occurs. This value provides a lower bound.

As can be seen from the results, minimal testsets can
efficiently be obtained for circuits including approx. 100 gates.
In fact, less than one second is needed for this purpose. Besides
that, also larger circuits can be handled. Hence, for the first
time, it was possible to generate a minimal testset of a circuit
composed of more than 2 000 gates. So far, minimal testsets
have been presented only for significantly smaller circuits
(e.g. in [11]).

Using these results, also conclusions on the quality of other
ATPG methods for reversible circuits can be made. While the
size of the test patterns obtained by the SAT-based approach
still is way beyond the minimum (e.g. for ham15 107, 26 test
patterns are generated for the SMGF; in fact, six would be
sufficient), the PBO-based approach leads to testsets which are
very compact (in fact, the size of these testsets only slightly
differs from the minimum).

VI. CONCLUSION

In this paper, an approach to determine minimal complete
testsets for the single missing control fault model and the
single missing gate fault model are introduced, respectively.
The approach iteratively checks for a testset with a certain
size. If there is no testset with the considered number of test
pattern, the approach continues with one more test pattern.
Finally, by iteratively incrementing the number of test patterns,
a minimal complete testset is eventually be determined.

The experimental evaluation shows that the approach is
able to handle circuits with more than 2 000 gates for both
considered fault models. If the approach aborts due to limited
computational resources, a lower bound for the size of the
minimal complete testset is provided.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. This work was supported by the
German Research Foundation (DFG) (DR 287/20-1).

TABLE I
RESULT FOR MINIMAL COMPLETE TESTSETS FOR SMCF AND SMGF

SMCF – Single Missing Control Fault SMGF – Single Missing Gate Fault
Circuit d n c |F| SAT [12] PBO [13] MINATPG TIME(S) |F| SAT [12] PBO [13] MINATPG TIME(S)

4gt4-v0 78 13 5 1 18 5 6 4 0.91 13 4 3 2 0.39
4gt12-v0 86 14 5 1 20 4 5 4 0.88 14 3 2 1 0.46
decod24-enable 32 14 9 6 17 3 3 2 0.13 14 2 1 1 0.47
mod5d1 16 15 8 3 19 5 3 2 0.77 15 4 2 1 0.28
4 49 16 16 4 0 24 7 5 4 0.77 16 6 3 2 0.28
miller 5 16 8 5 24 5 4 3 0.7 16 3 2 1 1.14
3 17 6 17 7 4 20 5 5 4 0.74 17 5 2 1 0.53
mini-alu 84 20 10 6 27 6 4 3 0.74 20 5 2 1 0.63
rd53 131 28 7 2 24 11 11 9 1.85 28 5 5 4 0.44
rd84 142 28 15 7 49 16 8 7 0.95 28 9 4 3 0.55
sym6 63 29 14 8 43 11 7 6 0.42 29 7 3 2 0.42
4 49 7 42 15 11 61 7 5 4 0.83 42 6 3 2 0.13
ham15 108 70 15 0 125 9 9 8 1.17 70 10 8 7 0.98
hwb5 13 88 28 23 131 11 7 4 0.46 88 8 4 3 1.10
ham15 109 109 15 0 126 8 9 6 0.35 109 6 4 3 0.52
ham15 107 132 15 0 352 25 16 12 760.63 132 26 7 6 0.59
hwb6 14 159 46 40 241 13 7 6 0.71 159 10 4 3 0.48
ex5p 647 206 198 904 19 18 >12 T.O. 647 24 11 9 22.85
spla 1709 489 473 2711 42 19 >13 T.O. 1709 34 18 12 2088.79
alu4 2186 541 527 3390 38 18 12 1978.12 2186 40 12 10 1802.56

CIRCUIT: name of the circuit d: number of gates n: number of lines c: number of constant inputs |F|: number of faults to be tested
SAT: number of test patterns obtained by SAT-based ATPG PBO: number of test patterns obtained by PBO-based ATPG

MINATPG: number of test patterns obtained by proposed approach TIME: required run-time in CPU seconds for the proposed approach

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res. Dev., vol. 5, p. 183, 1961.

[2] C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev,
vol. 17, no. 6, pp. 525–532, 1973.

[3] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[4] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Reversible
logic circuit synthesis,” in Int’l Conf. on CAD, 2002, pp. 353–360.

[5] R. Wille, D. Große, G. Dueck, and R. Drechsler, “Reversible logic
synthesis with output permutation,” in VLSI Design, 2009, pp. 189–194.

[6] D. Maslov, G. W. Dueck, and D. M. Miller, “Techniques for the synthesis
of reversible Toffoli networks,” ACM Trans. on Design Automation of
Electronic Systems, vol. 12, no. 4, 2007.

[7] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[8] R. Wille, S. Offermann, and R. Drechsler, “SyReC: A programming
language for synthesis of reversible circuits,” in Forum on Specification
and Design Languages, 2010, pp. 184–189.

[9] K. N. Patel, J. P. Hayes, and I. L. Markov, “Fault testing for reversible
circuits,” IEEE Trans. on CAD, vol. 23, no. 8, pp. 1220–1230, 2004.

[10] J. P. Hayes, I. Polian, and B. Becker, “Testing for missing-gate faults in
reversible circuits,” in Asian Test Symp., 2004, pp. 100–105.

[11] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes, “A family of logical fault
models for reversible circuits,” in Asian Test Symp., 2005, pp. 422–427.

[12] H. Zhang, R. Wille, and R. Drechsler, “SAT-based ATPG for reversible
circuits,” in International Design and Test Workshop, 2010.

[13] R. Wille, H. Zhang, and R. Drechsler, “ATPG for reversible circuits us-
ing simulation, Boolean satisfiability, and pseudo Boolean optimization,”
in IEEE Annual Symposium on VLSI, 2011.

[14] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, W. de Bakker and J. van Leeuwen, Eds. Springer, 1980, p.
632, technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[15] S. A. Cook, “The complexity of theorem proving procedures,” in
Symposium on Theory of Computing, 1971, pp. 151–158.

[16] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm
for propositional satisfiability,” IEEE Trans. on Comp., vol. 48, no. 5,
pp. 506–521, 1999.

[17] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Design Automation
Conf., 2001, pp. 530–535.

[18] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for
bit-vectors and arrays,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2009, pp. 174–177.

[19] V. D. Agrawal, “An information theoretic approach to digital fault
testing,” IEEE Trans. on Comp., vol. 30, no. 8, pp. 582–587, 1981.

[20] S. Tayu and S. I. S. Ueno, “On the fault testing for reversible circuits,” in
Algorithms and Computation, ser. LNCS, vol. 4835, 2007, pp. 812–821.

[21] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A toolkit
for reversible circuit design,” in Workshop on Reversible Computation,
2010, pp. 69–72, RevKit is available at http://www.revkit.org.

[22] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,”
in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220–225, RevLib is
available at http://www.revlib.org.

